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The central problem in the study of population structure is to define a quantitative
measure of kinship which is applicable to nearly all the data which might interest
a geneticist, including migration, genealogy, anthropometrics, polymorphisms, and
isonymy. This problem was solved by definition of the coefficient of kinship [1, 2]
and its extension to various types of data [3, 4].
Next in importance is the problem posed by Lewontin [5, p. 59]: "It is un-

avoidable that effective population sizes and migration rates will be very difficult
to estimate except for rare cases of completely isolated populations living in well-
defined areas. For more continuous distribution, it may be that N and m are simply
inappropriate parameters and that some other way of describing the breeding
structure is preferable." Fortunately, this difficulty has now been overcome by
redefinition of effective migration rate and effective population size so that they
describe the increase of kinship from generation to generation.

For clarity we must distinguish the related quantities m and me. The long-range
migration rate m does not depend on the pattern of short-range migration, while
the effective migration rate me depends on both long- and short-range migration.
In principle, m (and therefore me) includes the linearized effects of selection and
mutation, but in practice the migrational component predominates. In this paper
we shall assume that mutation and selection are negligible relative to migration,
since the estimates of me are larger than all mutation rates and most selection
coefficients.
We must also distinguish between N, the local effective population number

determined by census size and fertility, and Ne, the effective number dependent on
migration among localities. Thus N and m are taken as known quantities, while
N, and me must be calculated from the migration pattern, genealogies, or bioassay,
using either a forward or backward solution.

In the forward solution, the migration matrix [6, 7, 8] leads to predictions
of kinship 4ij(t) between gametes drawn from populations i and j in generation t,
with only the values for t = oo being used to calculate me. In the backward
solution, predictions or estimates of cij(t) in successive generations are used to
reduce the migration pattern and the vector of population sizes to a single value of
m6 and Ne for each pair (i,j), following the suggestion of Wright [9] that me be
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so defined as to characterize the rate of increase of kinship from generation to gen-
eration. His proposal was restricted to gene frequencies in a special case. The same
approach can be applied to genealogical data, or more generally to any set of
estimates of the coefficient of kinship in successive generations (or half-genera-
tions). The island model (on which m _ me and N Ne) gives for the coefficient
of kinship the recurrence [10]

+(t)= (1_m)2[-+M± (.1--2N) (t-1) ], t = 1,2, ...

which may be written as

+(t)-+(t- = (I M)2 + (t1 -(M)2 _)1

Beginning with 4(0) 0, the successive values are

+(1) (0)~b(1)- 2N ;

(1- 1/2N)
0(2) (l) =(1-m)4 2N ;

and, in general,

(1 - 1/2N)t' 1

+(t) 0(t 1) (1 m2t
e

2N* N (2m+ 12N) t

In its integrated form,

+(t) 2N j e-(2m+1/2N)tdt =(1 - et/2t)2 (l1)

where 4D = 4(oo) 1/(4Nm + 1). This equation, which also holds with sexes

separate, was almost derived by Malecot [2, p. 35] but he inadvertently omitted
the factor 1D in the second term of +(t).

Later he considered the mean number of chains between two individuals
through a common ancestor t generations back [11]. We denote this mean by
M (t). The kinship associated with each such chain is (1/2 )2t+1. Therefore
(1/2)2t+'M(t) = +(t) - 4(t - 1), where M(t) = (4t/2N)(1 -_m)2t(1 -
1/2N)t-1. In this island model, the migration rate plays a more important role
and the population size a less important role than Malecot found for isolation by
distance in the discontinuous and continuous cases.

Replacing m,N by me,Ne to indicate reduction of a more complex migrational
pattern to an island model, we carry out the analysis as follows. Let the input be
a set of records bearing t and the corresponding estimate of +(t), together with a

weight W(t) if it is desired to weight estimates by the number of observations.
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Trial values of the basic parameters Ne and me are provided, either or both of
which may be estimated iteratively by weighted least squares (see Appendix). The
output consists of these estimates of Ne and me, together with the derived quan-

tities (D and b 1/2Ne cD = 2me + 1/2Ne, with their standard errors.

ISOLATION BY DISTANCE

This method treats each of the reference populations (Pingelap and Mokil)
separately. A mating is considered to belong to the population if either or both
parents are from a sibship which belonged to the population in the preceding gen-

eration. This requires ascertainment through residents of Pingelap or Mokil and
at least one chain of kinship back to a survivor of Typhoon Lengkieki which
devastated the atolls around 1775 [12]. Matings between Pingelapese and Mokilese
are allocated to the population of residence, or to the population of the father if
resident in Kolonia on Ponape. The population of birth should be understood as

a statement of parentage. Thus a child born on Kusaie of two Pingelapese parents
would be considered Pingelapese, but hybridization more remote than F1 is ignored.
Data on migration are given in table 1. Fathers are more commonly migrant

than mothers, and Mokil has experienced more migration than Pingelap. Short-

TABLE 1

IMMIGRATION INTO PINGELAP AND MOKIT

PINGELAP RESIDENTS M1OKIL RESIDENTS

POPULATION Children Children Children Children
OF of of of of

BIRTH Fathers Mothers Fathers Mothers Fathers Mothers Fathers Mothers

Pingelap ........ 707 726 2,105 2,123 6 9 15 38
Mokil ........... 9 13 16 32 261 283 859 868
Gilberts ......... 2 4 10 13 4 6 18 13
Philippines 1...... 0 1 0 2 0 3 0
Kusaie .......... 2 0 10 0 0 1 0 1
Japan ........... 7 0 7 0 2 0 2 0
Mortlocks ....... 6 1 15 1 2 2 2 3
Causasian ....... 4 0 5 0 12 0 18 0
Guam ....I..I..... 2 0 4 0 0 0 0 0
New Guinea 2 0 2 0 0 0 0 0
Ponape ......... 3 5 3 13 6 2 14 3
Nukuoru ........ 2 0 2 0 1 0 1 0
Marshalls ....... 0 0 0 0 8 4 11 12
Tonga .......... 0 0 0 0 1 0 1 0
Ngatik .......... 2 1 2 1 1 2 1 3
Truk ........... 0 0 0 0 1 0 1 0
Palau ........... 0 0 0 0 2 0 2 0
Marshallese-

Caucasian 1 0 1 0 1 1 1 8
Nukuoru-Mokil 1 0 1 0 0 0 0 0
Kusaie-Ngatik ... 0 1 0 1 0 0 0 0

Total ........ 751 751 2,184 2,184 310 310 949 949
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range migrants come from these atolls and from Ponape, Kusaie, and the Mort-
lock Islands (fig. 1). Migration from large distances is exclusively male, and the
mean family size for such migrants is small.

Parent-offspring distances have been computed both by including the Gilbert
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FIG. 1.-Map of Micronesia

and Marshall Islands with the short-range migrants and by pooling them with the
Caucasian, Japanese, and other long-range migrants (table 2). Ngatik and Nukuoro
Atolls are considered long-range because of the Polynesian culture of Nukuoro,
Caucasian admixture on Ngatik, and the small number of migrants from both
atolls.

TABLE 2

PARENT-OFFSPRING DISTANCES, FREQUENCIES, AND CENSUS SIZE

PINGELAP MIOKIL

SOURCE Distance (km) Frequency Distance (km) Frequency CENSUS SIZE

Pingelap ...... 0 4,228.0 113 53.0 815
Mokil ......... 113 48.5 0 1,727.0 393
Kusaie ........ 272 10.5 384 1.0 3,648
Mortlocks ..... 776 16.0 684 5.0 6,116
Gilberts ....... 1,462 23.0 1,575 31.0 40,702
Ponape ....... 282 16.0 173 17.0 12,310
Marshalls ..... 845 0.5 934 2 7.5 18,239
Other ......... .. 25.5 ... 36.5 ...

Total ...... ... 4,368.0 ... 1,898.0 ...

Let k be the proportion of short-range migrants after long-range migrants have
been excluded. For example, treating the Gilberts and Marshalls as short-range
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populations, we estimate m for Pingelap as m =25.5/2(2184) .00584, where
25.5 is the number of children from long-range migrants (allowing for one child
from a Marshallese-Caucasian father) among 2,184 children recorded in the
Pingelapese population since Typhoon Lengkieki; the factor of 2 arises because
only one of the two parents in an exogamous mating is an immigrant. Similarly,
k 114.5/[2(2,184) - 25.5] = .02637, where 114.5 is the number of children
from short-range migrants into Pingelap. Malecot [2] provided the approximation

me= m(m + 2k)= .0185 (2)

where me is the effective migration rate into Pingelap. The corresponding figure
for Mokil is .0561, or three times as great.
These calculations are influenced by the division of migrants into short- and

long-range groups. Since each population has two steppingstones in linear migra-
tion and four steppingstones for migration in a plane, the number of populations
considered to yield short-range migrants should not be large. If populations on the
Gilbert and Marshall Islands, which contribute many immigrants but lie at a
considerable distance from Pingelap and Mokil, are treated as long-range migrants,
the estimate of me becomes .0245 for Pingelap and .0820 for Mokil. Notice that
these estimates were derived with no assumption about the effective population
size and with only a qualitative consideration of parent-offspring distances.

The Forward Solution with a Migration Matrix
Our treatment of isolation by distance did not estimate the effective population

size and therefore gave no prediction of the evolution of kinship from generation
to generation; furthermore, the separation of short- and long-range migration
seemed arbitrary. These deficiencies are avoided in a migration matrix, which we
have constructed in table 3. The two columns corresponding to Pingelap and Mokil
populations of residence are extracted from table 2. We cannot know how many
Pingelapese and Mokilese had children in other populations, but it is mathe-
matically convenient and seems plausible to assume that the numbers of migrants
from i to j and from j to i are equal, permitting us to complete the first two rows
of the matrix.

This leaves us with the submatrix for migration among the populations of
Kusaie, the Mortlocks, Gilberts, Ponape, and the Marshalls, on which there is
only anecdotal evidence [13]. It seems likely that migration between the Marshalls
and Mortlocks, Gilberts and Mortlocks, and Gilberts and Ponape can be neglected.
Since Kusaie and Ponape are large islands lying as close to the Mortlocks as
Pingelap and Mokil, we assume that migration among them is equal to the sum
of migrants to Pingelap and Mokil, and similarly for the Marshalls and Gilberts.
Marginal totals were obtained as 6,204/1,208 times the census size, where 6,204 is
the sum of the entries for Pingelap and Mokil in table 4 and 1,208 is the census
size of the two atolls.
We see that it is possible to construct a migration matrix on reasonable assump-

tions, but only by making crude extrapolations from the data. If we had made as
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thorough a migration census of the other populations over the last 200 years as
we did for Pingelap and Mokil, we would have encountered migrants from addi-
tional populations, requiring either more extrapolation or truncation of the matrix.
It does not seem to us that the errors introduced by extrapolation are likely to be
serious for a study centered on the two reference atolls, but it should be stressed
that methods based on migration matrices are inherently approximate, just as a
model of isolation by distance is. Only by using these in conjunction with other
methods can the genetic structure of populations be revealed.

Dividing each element by the column total, we obtain the column-stochastic
exchange matrix P, in which the element pij is the probability that an individual
having a child in j was born in i. Since table 3 is symmetrical, the transpose P' is
the row-stochastic transition matrix T, in which the element tij is the probability
that a parent born in i has a child in j. The computer program NUMIX [14] gives
4ij(t) from a systematic pressure m, an exchange matrix P, and a vector n of
effective population sizes [8]. Symmetry of table 3 guarantees that the effective
population sizes are stable (apart from trivial effects of rounding errors in P).

Calculation of effective population size is fraught with difficulties, which we
shall discuss later. At this point we take the effective size N as N0/3, where No
is the current census size (table 2) and N corresponds roughly to the current
breeding size, or the number of individuals between the ages of 15 and 45 years.
To test whether estimates of effective migration rate me depend critically on
population size, we have also considered effective sizes of N/10 and 10N. In the
island reduction for population i,

me = m + (10-m)zpji(1 - ji/i). (3)

In the steppingstone reduction,

me= m'(m'+ 2k) (4)

where m' m + (1 - m) Ypji (1 _ 4ijl/cf), k = [(1 - m) Xpij/(1 m'), and
the summation is over all j except steppingstones [8, 14]. We took either Pingelap
or Mokil as a steppingstone for the other atoll. Table 4 shows that varying N by
a hundredfold has virtually no effect on the estimates of me, which differ slightly
between the island and steppingstone reductions.

Malecot's formula [2] for isolation by distance, qb(d) = ae-bd, may be fitted to

4ij( oo). Measuring distance from Pingelap and taking m -.00584, we find b -
.0091 ± .0009. Measuring distance from Mokil and taking m = .01923 gives b =
.0124 + .0016. These estimates (which do not depend on the population size) are
greater than the Malecot approximation for large distances, b -* /2m/cr2, where
0.2 iS the mean value of d2 from parent-offspring pairs. Even with the Marshalls
and Gilberts treated as long-distance populations, the data of table 2 predict
b =.0028 for Pingelap and .0070 for Mokil. Imaizumi and Morton [15] obtained
b = .0014 + .0005 from bioassay of blood groups and .0005 ± .0001 from cognate
frequencies in Micronesia, but observed that b was significantly greater at small
distances.
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The Backward Solution with a Migration Matrix
The forward solution gave no estimates of the effective migration rate between

Pingelap and Mokil, and there were small differences between the island and
steppingstone reductions. These problems are eliminated in the backward solution,
which we believe gives the best estimate of me. From predictions of 4i,(t) by the
forward solution, we fitted the values for t = 1, 10, and co to equation (1),
iterating Ne and me simultaneously. Again, the estimates of me are consistent at
different multiples of N (table 4). Agreement with the forward solution is closer
for the island than the steppingstone reduction. The average of reciprocal values
of m for Pingelap X Mokil is .0170, indicating (in conjunction with large estimates
of N) a slow approach to equilibrium.

DISCUSSION

We have seen that different methods lead to consistent estimates of the effective
migration rate me even when the vector of effective population size is varied by a
factor of 100. The effective population size, on the other hand, is sensitive to the
migration matrix as well as to other demographic parameters. Table 5 shows that

TABLE 5

ESTIMATES OF EFFECTIVE POPULATION SIZE Ne IN BACKWARD SOLUTION
WITH me, ITERATED SIMULTANEOUSLY

Pingelap Mokil Pingelap X Mokil Mokil X Pingelap
Assumed Size m = .00584 m = .01923 m = .00584 m = .01923

N .......................... 293 158 1,665 1,817
Nl10 ....................... 29 16 173 187
ION ........................ 2,926 1,584 16,581 18,304

Effective size/assumed size .. 1.08 1.21

the estimates of Ne are discrepant and tend to be larger than N. This is because
each local population participates in the gene pool of its neighbors, as demon-
strated for artificial populations [16]. Population growth, avoidance of incest, and
the mean and variance of fertility also influence the effective population size.
The best estimation procedure would therefore seem to require that me be

calculated from migration data, as above, and then Ne be inferred at this value of
me from genealogical data or from bioassay of polymorphisms, anthropometrics,
or isonymy. This avoids convergence problems when Ne and me are estimated
simultaneously in small samples.

SUMMARY

A theory is derived which estimates the effective population size Ne and the
effective migration rate me from coefficients of kinship in successive generations,
and thereby predicts the equilibrium value of kinship from incomplete genealogies.
The effective migration rate determined in this way from the exchange matrix is

347



MORTON ET AL.

.0267 for Pingelap, .0763 for Mokil, and .0170 for Pingelap X Mokil. Selection
and mutation seem to be negligible stabilizing pressures compared to migration
in these populations.

APPENDIX
DEMOGEN. A program for demographic analysis of genealogical data. Let y(t) be an

estimate of a coefficient of kinship <p(t) with weight W(t) at generation t = 1, 1.5, 2,
etc., where n values of t have W(t) > 0 and k parameters are to be estimated. We take

W(t) = 1 unless defined on input. To minimize the variance

,2 W(t) [y(t) - 4(t)]2
(r- ~ ~~ kn-k

where

+p(t) = _ 4Nm + 1
] [1 - (2n+1/2N)t

we use the iteration

FNFN]=[ ]+ UK-1.

Here No and mo are trial values and

U = [EWXNy/lo2 JWXmY/y02], K [ IWxN/O >,WXNXmAT2]

where

xv e- (2mn+ 1/'2NS) t
aN L 4Nm + 1 _ L2 ] +/

4m 1
- 1- e-(2m+1/22N)t]

_ (4Nm+1)X

80(t) r 2t 1
xl= = e- (2m +112NF)t
Xldm L 4Nm +1

_ [ 4N ]
- [1 -e- (2m+1/2VN)t] -

L (4Nm +- 1)"
and y y(t) -+(t). If either parameter is not iterated, the corresponding elements are

deleted from U and K. The standard errors are

= r1 if m is not iterated, = KNN if m is iterated;

and

m = 1/K if N is not iterated, = / K"t" if N is iterated.

Derived quantities are
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1
4Nm + 1

b = 2m + 1/2 N

with standard errors ci-+ = K where

arD l_1 4m 4N 1
L ON Am I L (4Nm + 1)2 (4Nm + 1)2

and ob=VAK 1A' where

Lab abF

AN alit 2N2

Again the corresponding elements of a, A, and K are omitted if a parameter is not
estimated.

REFERENCES
1. WRIGHT S: Systems of mating. I. The biometric relations between parent and off-

spring. Genetics 6:111-123, 1921
2. MALE'COT G: Les matheImatiques de l'he'redite. Paris, Masson, 1948
3. MORTON NE, YASUDA N: The genetical structure of human populations, in Les

deplacements humains, edited by SUTTER J, Entretiens de Monaco en Sciences
Humaines, Paris, Hachette, 1962, pp 185-203

4. CROW JF, MANGE AP: Measurements of inbreeding from the frequency of marriages
between persons of the same surname. Eugen Quart 12:199-203, 1965

5. LEWONTIN RC: Population genetics. Ann Rev Genet 1:37-70, 1967
6. MALE'COT G: Quelques schemas probabilistes sur la variabilite des populations

naturelles. Ann Univ Lyon (Sec A) 13 :37-60, 1950
7. BODMER W, CAVALLI-SFORZA LL: A migration matrix model for the study of random

genetic drift. Genetics 59:565-592, 1968
8. IMAIZUMI Y, MORTON NE, HARRIS DE: Isolation by distance in artificial populations.

Genetics 66:569-582, 1970
9. WRIGHT S: Stochastic processes in evolution, in Stochastic Models in Medicine and

Biology, edited by GURLAND J, Madison, Univ. Wisconsin Press, 1964, pp 199-244
10. WRIGHT S: Evolution in Mendelian populations. Genetics 16:97-157, 1931
11. MALE'COT G: Consequences statistiques de la parente. Mathematical Statistical Insti-

tute, 36th Sess., Sydney, Bloxham & Chambers, 1969, pp 651-669
12. MORTON NE, HuRD J, LITTLE GF: Pingelap and Mokil atolls: a problem in popula-

tion structure. In preparation
13. RIESENBERG SH: Table of voyages affecting Micronesian islands. Oceania 36:155-

170, 1965
14. HARRIS DE: NUMIX, in A Genetics Program Library, edited by MORTON NE,

Honolulu, Univ. Hawaii Press, 1969, p 41
15. IMAIZUMI Y, MORTON NE: Isolation by distance in New Guinea and Micronesia.

Archeology Phys Anthrop Oceania 5:218-235, 1970
16. HARRIS DE, YEE S, MORTON NE: Evolution of kinship in artificial populations.

In preparation

349


