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INTRODUCTION

In a series of publications over the past several years, Cavalli-Sforza and Edwards
have presented theoretical models and estimation procedures for the analysis of
genetic relationships of human populations [1, 2, 3]. Their techniques of phylogenetic
analysis have given a new perspective to the study of human variation and its origins.
Moreover, their techniques are suitable for the study of microevolutionary relation-
ships among populations of any species for which gene-frequency data are available.
However, Cavalli-Sforza and Edwards only outlined the actual methodology in-
volved. Recent studies concerning South American Indian tribes [4, 5] and domestic
cattle breeds [6] have utilized their theoretical framework and their techniques; none
of these papers discusses the methods thoroughly.

Two of the models have been compared in separate studies of human populations
[4, 7]; although they used different methodologies, both concluded that the two
models led to similar results. One study [7] was based on examination of all possible
relationship structures, but involved only the one set of data. The other study [4]
based the conclusion on examination of only an undisclosed fraction of the possible re-
lationships. Thus, to date, there has been no systematic comparison of the various
models proposed by Cavalli-Sforza and Edwards [3].

Because suitable gene-frequency data are rapidly accumulating and many workers
are interested in such analyses, detailed discussion and comparison of the models and
methods are in order. Here we present (1) the way in which Cavalli-Sforza and
Edwards’s theoretical models and estimation procedures can be applied to the study
of real populations, (2) comparisons of the results obtained with the various methods
used for the various models, and (3) our interpretation of the results of such an
analysis. We also review some basic concepts.

GENETIC DISTANCES

The initial phase of the analysis is the transformation of population gene fre-
quencies into genetic distances. To date, three slightly different distance measures
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have been used. All three start with the same single-locus transformation [8, 9]. The
absolute angular distance 6,; (measured in radians) at one locus between populations
7 and j is defined by

Ccos 0,';,' = ; V Pik'Pj; y (1)

where m is the number of alleles at that particular locus, and p. and p;x are the fre-
quencies of the kth allele in populations ¢ and j, respectively. Each pairwise distance
between two populations is then calculated for the nth locus as
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where the summation and symbolism are as in equation (1). Because of the multiplica-
tion of the arc cos by 2/, d;ja is in gene substitution units with values ranging from
0 to 1. Additional explanations of the derivation have been published [6].
Cavalli-Sforza and Edwards proposed that in combining the pairwise distances
obtained for several loci, the following formula be used for each pair of populations 7

and ] 1/2
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where summation is over the number of loci and chord,;, is an approximation of
dijn at the nth locus given by
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where summation is the same as in equation (1). We refer to this as the geometric
transformation [6]; the same transformation has been called “E” [10] and “root
model” [4]. “Chord” was introduced [3] as an approximation to d;;, in a Euclidean
space. For small values of d;j,, the chord approximation is very good and allows the
construction of a space with the same scale, one unit per gene substitution. However,
chord is a bad approximation for large values of d.;., since it ranges from 0 to only
.9003 (24/2/7), not from 0 to 1 as stated by Fitch and Neel [4].

The necessity of maintaining a Euclidean space has been questioned and alterna-
tive transformations for combining the distance values obtained at single loci have
been proposed. One additive transformation [2, 4] is

Cij = D chordju, )
n

where summation is over the loci and chord;;, is the value at the nth locus obtained
from equation (4). An alternative additive transformation [6], not based on the chord

approximations, is
Ay = 2dijn, (6)

n

where summation is again over the loci and d;» is the value at the nth locus obtained

from equation (2).
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The distance measures which have been used in extensive analyses are then:

A,’j = Zd,‘jn y C,‘j = Z ChOl‘d,‘jn s

o 1/2
G,‘j = (Z chordzjn> .

When these are applied to population gene frequencies, each of them yields a matrix
of pairwise distances among the populations. A, C, and G are all symmetric matrices
with zeros on the main diagonal. Because of the symmetry, usually only a triangular
matrix of the potentially nonzero elements is considered.

These final values are not standardized with regard to the number of loci or with
regard to the uniformity of allele testing in a given system. Therefore a locus must be
represented in the data for all populations, and all alleles must be tested for in a
consistent manner.

Other distance measurements are possible. Several of these have been critically
discussed [10-14]. We wish to emphasize the use of distance matrices, rather than the
various genetic models leading to the various measures or their statistical properties.
Therefore, we have presented only the three transformations so far used on real
population data and we are using only two of them in our analyses. We feel, however,
that two of the other measures [11, 13] have strong genetic arguments in their favor
and may well be preferable for future work.

Despite the mathematical differences between the 4 and G distances (particularly
the approximation introduced by chord), it is worth noting that the results obtained
separately from the two matrices are only slightly different [6, 15]. Also noteworthy
is that the matrices of additive distances (A and C) are not necessarily representable
in a Euclidean space. The minimum path method of analysis [3] requires the distances
to be represented in a Euclidean space, and therefore A and C cannot always be used
in that analysis, as we shall explain later.

and

TREES

The final results of our analyses are tree structures. We use trees, not only because
of the precedent of evolutionary trees in biology, but also because we find them useful
as relation graphs for depicting a set of complex interrelationships. The topology and
the lengths of the various parts of the tree give, respectively, the qualitative and the
quantitative relationships. Moreover, when dealing with populations represented in a
multidimensional Euclidean space, we can draw the tree that connects them in that
space on a two-dimensional surface by changing only the angles, while the topology
and magnitude of the lines remain unchanged.

We follow the terminology of graph theory [16, 17] in order to define a tree: (1) a
tree is a connected graph that has no circuits; (2) the degree of a point is the number
of lines incident to it—a bifurcating tree has only points of degree one, d(p;) = 1,
which we call terminals, and points of degree three, d(p;) = 3, which we call nodes;
and (3) an unrooted tree has no point distinguished as different by being described as
an origin or root. In our analyses we use only unrooted bifurcating trees, as specified
by the above definitions. By limiting our analyses to bifurcating structures, we reduce



238 KIDD AND SGARAMELLA-ZONTA

the number of possible trees and greatly simplify the mathematics involved. Most of
our methods give no information on a root or origin, thereby limiting us to unrooted
trees.

When we superimpose a phylogenetic purport on this kind of relation graph, the
definitions assume a precise biological meaning: (1) we do not allow hybridization
between populations already separated; (2) each population splits only into two sub-
populations; and (3) our analyses give no specific information about the position of
the common ancestor, even if we can infer the probable root by other means. These
trees are undirected graphs so long as no root exists. As soon as a segment of a tree is
designated as containing the root, the tree becomes directed. Only in a directed graph
can we say which populations are ancestral to which (i.e., specify the direction of
evolution). A simulation study designed to test the relative merits of various methods
[18] has shown that two types of cluster analyses can be used to assign a root to a
tree with a higher probability of being correct than by chance alone. For a slightly
different formulation of the problem [19], a very good maximum likelihood solution
for the position of the root has been obtained. However, for the present we are ex-
amining only unrooted trees.

We have just defined two classes of points, the terminals and the nodes. Defining
“segment” as the line connecting any two adjacent points, we can distinguish between
terminal segments—those connecting a terminal to a node—and internal segments—
those connecting two nodes. The terms “branch” and “arm” of other authors are
synonymous with our “segment’’; we use ‘“branch” for a collection of connected seg-
ments.

From the preceding definitions, it follows that for NV populations each tree has
2N — 2 points (N terminals and N — 2 nodes) and 2V — 3 segments (N terminal
segments and N — 3 internal segments). There are

N_
I1¢k —5)
K=3

different trees with IV terminals for N > 3. Trees are different only if they cannot be
superimposed with both topology and labeled terminals coinciding. Thus, for a single
topological structure, several different trees are produced by permutations of the
populations on the terminals. However, not all permutations produce different trees;
whenever two topologically identical branches are joined to the same node, the num-
ber of different trees for that topology is reduced, as illustrated by the three trees in
figure 1. Trees 1 and 3 are identical, whereas tree 2 is different.

MODELS AND ANALYSES

As the bases for the estimation of evolutionary trees, Cavalli-Sforza and Edwards
proposed two models of evolution which we call the additive and the spatial models.
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The additive model states that the amount of evolution observed to separate two
populations is equal to the sum of the amounts of evolution from those two popula-
tions to their common ancestral population. The spatial model states that evolution
operates as a random walk and that with the appropriate measure of distances the
populations can be placed in a Euclidean space in which the unit vector is a unit of
evolution. Following these models, we obtain quantitative ‘“solutions’ for given tree
structures and then choose that structure that allows the “best solution” according
to some statistic calculated on the basis of the solution. The additive model has no
rigorous statistical foundation for such solutions, while the spatial model has a
rigorous statistical basis with evolution considered as a Brownian motion/Yule pro-
cess. Unfortunately, the use of maximum likelihood to estimate the relevant parame-
ters of this process has proved intractable [20]. Thus there is little or no statistical
theory to justify the “solutions’” obtained following either model.

The adoption of either model implies that evolution occurred independently in
each ancestral population. The measures of genetic distance seem less valid in trying
to reconstruct ancestry by these models than in simply measuring differences among
extant populations. Indeed, in the case where the additive model might seem most
likely to hold—namely, the evolutionary change of the amino-acid sequence of a
protein—the observed distances between the species do not allow an exact recon-
struction by the additive model because examples of parallel, reverse, and convergent
evolution are observed [21, 22].

In spite of these problems, analyses assuming the additive model have been shown
to produce results agreeing with available historical data [6]. The method of minimum
path (described later) gives an intuitively-based solution to the spatial model and has
similarly been shown to give reasonable results [5, 15]. We are therefore accepting the
methods of analysis for both the additive and spatial models and will explain their
mathematical bases and practical applications in more detail.

Additive Model

Cavalli-Sforza and Edwards [1] proposed the least-squares method to solve the
additive model; Fitch and Neel [4] used a computer program based on weighted
averaging. Because of its simple formulation in matrix notation and its statistical
properties, we prefer least squares and will discuss only that method.

For V populations, there are N(V — 1)/2 pairwise distances and 2N — 3 segments
(see preceding section on trees). We can write a system of equations, in matrix
notation,

D = BS, 7

where D and S are, respectively, the distance vector {[N(NV — 1)/2] X 1} and the
segment vector [(2V — 3) X 1], and Bis a [0, 1] matrix {{[N(V — 1)/2] X (2N — 3)}
representing the form of the tree by specifying for all pairs of populations (rows) the
presence (1) or absence (0) of each segment (column) in the pathway connecting
them; there is a unique B matrix for every tree. The data consist of the values in the
D vector, the B matrix is dictated by the tree structure we wish to solve, and the S
(segment) vector is unknown and to be estimated.
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The system of equations, (7), is solved for S by
S=®BB)'BD, (8)

as given in most linear algebra texts. An exact solution is unlikely with real data and
this estimation of S has the desirable quality that

(BS — D)’(BS — D) = X(error?) 9)

is minimized. Following Cavalli-Sforza and Edwards, we can use the quantity
Z(error?) as a measure of the deviation of the system of equations from exact addi-
tivity.

The least-squares solution can be applied only to unrooted trees because (B'B)
must be nonsingular and this only holds for unrooted trees. If a root is inserted,
(B'B) always has two equal rows (and columns)—those corresponding to the two
segments incident at the root [d(root) = 2]. The rank of (B'B) is 2V — 3 = number
of unknowns = number of segments in an unrooted tree.

After obtaining quantitative solutions for different trees, the discrimination among
them is based primarily on their relative ability to yield an additive solution. The tree
allowing the most nearly additive solution is considered best. Only two of several
possible ways to measure deviation from precise additivity have so far been used:
the Z(error?) value of least squares [2] and the “sp” value [21]. In addition to
deviation from additivity, Cavalli-Sforza and Edwards impose a further restriction
by considering as unacceptable any tree whose solution has negative segments. Evi-
dence [23] linking the deviation from additivity, Z(error?), with lack of negative seg-
ments has led to a new statistic, related to both, that will be presented here.

Although Cavalli-Sforza and Edwards never published reasons for their rejection
of trees with negative segments, such rejection has been their policy [2]. In fact, it
seems possible that the imposition of an incorrect topology on an essentially additive
set of data results in a solution containing one or more negative segments even when
the original (or correct) tree has only positive values. This view is supported by an
examination of exactly additive data. We examined all 105 possible trees for six
populations using two different sets of data. In each case, only the original tree used
to generate the distance matrix allowed an all-positive solution, the exactly correct
solution. Real population data do not allow an exact solution because of statistical
fl uctuations. However, the present results—see discussion of least-squares method
(L.S) length and of the changing subroutine—also support empirically the rejection of
trees containing negative segments, even for real population data. Thus, we reject
trees containing negative segments.

An alternative approach to discrimination among trees is used for the minimum-
path method (explained below) and is also applicable to the additive solutions. It
considers that the total amount of evolution given in the relationships should be a
minimum. By this we do not imply that evolution proceeds in a directed way. Quite
the contrary, our total approach assumes that evolution proceeds in a random manner
with respect to the microevolutionary differences we are observing. Even though a
complete demonstration is lacking, it does seem reasonable that under these condi-
tions the best estimate of the actual evolutionary relationships is the one which re-
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quires the least evolution. When we use the additive model, we will base our estimate
of parsimony on the results of the least-squares solution.

For each different tree solved by least squares, S (the vector of segment lengths) is
estimated in such a way that the Z(error?), as in equation (9), is a minimum. As a
measure of parsimony of evolution, we define a new statistic based upon S:

2N -3

L(S) = Z [5:, (10)

where §; are the elements of S. The absolute value is used, since even negative values
are considered as amounts of evolution. The statistic L(S), called LS length, does not
produce orderings of trees the same as Z(error?). We are unable to give mathematical
explanations for several interesting aspects of this statistic. We are therefore present-
ing conjectures followed by some of the results upon which they are based.

ConjeEcTURE 1. If there exists at least one tree whose least-squares solution has
no negative segments, the tree with the minimum LS length has no negative segments.

ConjecTURE 2. The tree with the lowest Z(error?) value among those with no
negative segments is the tree with the minimum length.

In analyses of many sets of data, we have always found both conjectures to hold
if all trees were examined. When only a fraction of the total number of trees were
examined [15], we have always observed the first conjecture to hold, but have not
always found the second conjecture to hold among those trees examined. The second
conjecture, if valid, could be valuable as an aid in evaluating results on a small
sample of the possible trees—if no all-positive tree shows both the minimum 2Z(error?)
and minimum LS length, the ‘“best” tree has not been found. However, the converse
is not implied by the conjecture.

For comparison with the other statistics just discussed, we also calculated a
“0%sp” [4, 21] on the trees solved by least squares. However, we normalized to the
expected pairwise distances, rather than the observed, because least-squares estimates
were used. No algorism is known for finding the tree with the absolute minimum value
for any of these statistics save evaluation of all possible trees.

Spatial Model

The intuitive solution for the spatial model [24] is here referred to as the minimum-
path method. Edwards and Cavalli-Sforza presented it as the minimum evolution
method, implying that the best estimate of evolution might be the path invoking the
minimum amount of evolution. It is considered an approximation to the maximum-
likelihood solution for a Brownian motion/Yule process, but is independent of the
assumption of a Yule process. The populations are placed in a Euclidean space and
the pathway sought is the shortest net connecting the populations in that space. In
contrast to the least-squares method, here the process of solving any given structure
is iterative, and by successive approximations it finds the minimum length possible
for that particular tree.

The terminals are plotted in a Euclidean space at positions determined by the data
and are then fixed at these positions. The nodes are initially placed at the origin. At
each iteration, the coordinates of each node in turn are estimated by considering that
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node as the “Steiner point” for its three adjacent points [3]. This point is calculated
as a center of gravity with appropriate weights assigned to the three points. The deri-
vation of the appropriate weights and the original program from which ours is derived
are by Edwards (unpublished). Iteration proceeds until the desired degree of con-
vergence is obtained. Note that the minimum-path solution can be applied only to
unrooted trees: for each node three adjacent points are necessary to calculate its
coordinates; a root has only two adjacent points in a bifurcating tree and, therefore,
disappears into the straight line connecting the two points on either side.

The minimum length required for a particular network (here called minimum path
method [MP] length to distinguish it from our similar LS length) is the measure of the
goodness of that structure and is used to discriminate among the various trees. It

corresponds to
2N—3

MP length = 2 Siy (11)
where s, is the length assigned to the ¢th segment. Since these segment lengths arein a
Euclidean space, the minimum possible value of each is 0. Under these conditions,
equations (10) and (11) are identical. The shortest network will be ‘“stable” [3;
A.W. F. Edwards, personal communication] (i.e., will have no segments of zero length
except those generated by nodes coinciding with populations). Therefore, we consider
trees with zero length internal segments unacceptable unless caused by two nodes
coinciding with a population (a phenomenon we have not observed). Otherwise, the
tree with the lowest MP length among those evaluated is the “best.” As with the
statistics for the additive analysis, no algorism is known for finding the tree with the
absolute minimum MP length, save the evaluation of all possible trees.

The minimum-path method has one advantage over the least-squares method—it
can be used to estimate the gene frequencies of the ancestral populations. For such
estimations, the population coordinates are the square roots of the allelic frequencies,
each allele allotted a Cartesian axis. This is the same space in which the geometric
distances are calculated. However, we would be interested in such estimates only for
the better trees obtained, and the calculation of the minimum-path solution is faster
if the number of dimensions is reduced by a translation and rotation of the axes. This
is possible if there are more alleles than populations— populations are always rep-
resentable in only V — 1 dimensions, if they are originally in a Euclidean space of
higher dimension. In practice, an arbitrary coordinate system of V — 1 dimensions
is calculated from the pairwise distance matrix and does not require knowledge of the
original coordinates. Because the distance matrix is sufficient, it is possible to use any
distance matrix that can fit into a Euclidean space. When distances are calculated in
some fashion not involving a Euclidean space, a Euclidean space in which they fit has
no clear relationship to the gene frequencies, nor is it an “evolutionary space” or
“character space” as is obtained from the geometric transformation.

Fitch and Neel [4] state that only the geometric (their “root”) distances may be
used for minimum-path analyses. For their data this was true, but it is not generally
true. The only mathematical restriction in the use of the minimum-path method is
that the distance matrix be representable in a Euclidean space—a condition occa-
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sionally fulfilled by the A and C matrices. It is not generally apparent, a priori,
whether a distance matrix will fit into a Euclidean space, since this is determined by
inequalities. The triangle inequalities for the distances connecting any three points
(each distance must be greater than or equal to the absolute difference of the other two
and less than or equal to their sum) must hold, but they are not sufficient. An illustra-
tion requires at least four points and three dimensions. If the triangle inequalities hold
for all the subsets of three, four points can always be placed in three dimensions using
any five of the six pairwise distances. These then form two triangles with one side in
common. The sixth distance, which must connect the two “opposite” vertices to give
a general tetrahedral form, is then constrained to lie between, or to equal, a certain
minimum value and a certain maximum value. The lower limit on the sixth value
occurs when the two triangles lie in the same plane and are “superimposed”; the
upper limit occurs when they are in the same plane but adjacent. If the sixth distance
value is outside this range, no Euclidean representation is possible.

Comparisons of Models and Statistics

The two methods, least squares and minimum path, produce solutions that embody
different mathematical properties and hence are not comparable in the segment
lengths produced, or, necessarily, in the orderings of the trees. It has been shown [3]
that the least-squares method yields segment lengths too short to connect the popula-
tions in the space in which the minimum-path tree lies. This difference is reflected in
smaller values for the statistic LS length as opposed to the MP length. In fact, none
of the statistics described here are numerically comparable. Comparisons are possible
only among trees evaluated on the same distances by the same statistic. However, we
have compared the rankings of trees by the various statistics in two ways—by cor-
relations between them and by comparisons of the positions of the all-positive least-
squares solutions in the distributions.

Using several sets of data (some completely independent and some partially inde-
pendent), we have analyzed the distance matrices. In all cases, we have obtained
similar methodological results. We shall discuss the results of four independent sets
of data as representative. Data sets 1 and 2 are, respectively, a G and a Ds (based on
anthropometric measurements) distance matrix. Elsewhere we present the distances
and biological interpretations for these human populations on Bougainville Island
[15]. Data set 3 is a G-distance matrix [5] based on 11 loci for seven South American
Indian tribes. Data set 4 is an A-distance matrix for seven domestic cattle breeds
[6, 25]. Figure 2 gives the sets of distributions of trees evaluated according to the
methods and statistics just discussed for the first of these data sets. The distributions
for the other three data sets have been deposited with a documentation service and
are available on request.*

The distributions in figure 2 are complete in that all 945 trees for seven populations
were solved by least squares and minimum path. The distributions are then based on
the three separate statistics (Z[error?], “9,sp,” and LS length) for the least-squares
solution of the additive model and on the MP-length statistic for the minimum-path

* National Auxiliary Publications Service of American Society for Information Science, c/o CCM
Information Corp., 909 Third Avenue, New York, New York 10022,
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Fic. 2.—Distributions produced by different statistics on all 945 possible trees relating seven hu-
man populations on Bougainville Island. The data used and biological interpretations are presented
elsewhere [15] as set iv. The first three distributions are produced by three different statistics ap-
plied to the least-squares solution, the fourth by the MP length statistic applied to the minimum-
path solution (see text for description of methods and statistics). Since the values of the different
statistics are not numerically comparable, the range of each is arbitrarily divided into 100 intervals
along the abscissa; the number of trees in each interval is plotted on the ordinate. The darkened
points indicate those trees that had no negative segments when solved by least squares. The number
of negative segments is a property of the least-squares solution; the position of that tree is determined
by the statistics. Thus the same trees are marked in all distributions, even in the MP length distribu-
tion which is not based on least squares. The respective ranges of the statistics are Z(error?), 0.01375~
0.07015; “Y%sp,” 6.0773-15.013; LS length, 1.2701-1.8250; and MP length, 1.6522-2.1084.

solution. The darkened points in the histograms are the positions of the trees whose
least-squares solution had no negative segments. To facilitate comparison, these same
trees are also marked in the distribution according to MP length, even though it is
not based on the least-squares solution. We have not marked the trees lacking zero-
length segments in the minimum-path analysis since they are too numerous.

The most striking aspect of these distributions is the consistency of the form of
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each statistic’s distribution over the sets of data; all show forms similar to those in
figure 2. No formulas for the generation of these distributions exist, but these results
and others [6, 7] invite an attempt to derive such formulas. It is clearly desirable to
have the distribution functions, since the range of the statistic could then be estimated
from the distance matrix or from a small random sample of trees. It is especially
important to be able to compare a single tree with an expected minimum value when
it is impossible to examine all trees, as we shall discuss shortly.

The next most striking aspect of these distributions is the relative positions of the
all-positive trees. Our new statistic (LS length) yields a distribution with the all-
positive trees concentrated into the lower part of the distribution. In figure 2, for
example, two all-positive trees are among the three trees with highest Z(error?); how-
ever, when ranked by LS length, these same two trees are among the lowest 7%,. In
the distributions for the other data sets, the shift is equally obvious. We have ob-
served this shift in all cases where we have examined all the possible trees. The tree
with the lowest LS length has always been the all-positive tree with the lowest = (er-
ror?).

Table 1 gives the correlations of these various statistics obtained from the four
data sets. Each correlation is calculated using the values of the statistics for all 945
possible trees; however. we cannot consider the trees as independent and hence cannot
directly assign significance levels to these correlations. Each data set is independent,
however, and it is possible to consider these correlation coefficients as independent
estimates, calculate a mean and standard error, and base our conclusions on these.
In practice, we have calculated the mean z value, its standard error, and the ¢ value.
With the exception of the correlation of “%,sp” with MP length, all are significantly
different from zero. The “9,sp” statistic is highly correlated with Z(error?), much
more than visual comparison of the two distributions indicates; LS length and MP

TABLE 1
" CORRELATIONS OF STATISTICS USED TO RANK TREES
DaTta SETS
STATISTICS MEAN 5 SE
1 2 3 4

T(error?)-“OLSD” . L 962 |........ .840 .947 1.665 .227*
Z(error?)-LSlength................. .195 .514 .250 .536 0.405 .104*
Z(error?)-no. negative segments. . . ... 287 401 .329 .312 0.346 .028**
Z(error?)-MP length................ .366 577 305 | 0.452 .105*
“07sp”-LSlength................. .304 .465 .297 .630 0.466 .102*
“07SD”-no. negative segments. .. .. .. 341 | L. 1 .329 .334 0.348 004 ***
“OrSD”-MP length................ A44 317 | 0.403 .074
LS length-no. negative segments... .. .662 . 585 .560 .567 0.686 .038***
LS length-MP length....... ... ..... .822 .837 799 | 1.157 .033%**
No. negative segments-MP length...| .595 524 450 | 0.584 .058**

Note.—The data sets and statistics are described in the text except for ‘‘no. negative segments’ which is the total number
of negative segments in the least-squares solution of a tree. Except for MP length, all statistics are based on the least-squares
solution. The significance of the correlation coefficients is difficult to assess directly. However, since each data set provides
a completely independent estimate of the correlation between two statistics, we have calculated the significance levels by
means of a { test on the z values. Only the correlation between ““%.sp’” and MP length is not significantly different from
zero,

*P < .05, ** P < 01, *kk P <001,
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length are also highly correlated. Although of moderate value and not significantly
different from each other, the correlation of LS length is higher with the number of
negative segments than with X (error?). The remaining correlations are low to moder-
ate.

The high correlation of LS length and MP length is also shown graphically in
figure 3, using a set of six populations [15] representable in a Euclidean space using
both the A and G distance matrices. The similarity and the high linear correlation of
the results obtained by the two methods are obvious.

In all of these sets of populations, the most biologically (and in the case of the
cattle breeds, historically) meaningful trees have been those with lowest LS length.
These closely correspond to the all-positive trees with low Z(error?) and to the trees
with lowest MP length. The biological interpretations are published elsewhere, and
only the analyses of data set 3 require comment here. These analyses confirm the
biological results of Ward and Neel [5] obtained from the minimum-path analysis of
only some of the possible trees. Our complete analyses of their 3-loci and 6-loci dis-
tance matrices similarly confirm their results for those data sets. In all three cases,
the trees they illustrated [S] were not the trees we obtained as best, but were only
minimally different. We attribute this discrepancy partially to their not examining
all trees, and partially to our using distances that had been rounded off to three
figures. The differences are probably not statistically significant and are biologically
unimportant.

Since it is not obvious from the results presented here, it is worth mentioning that
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its value for the two statistics, LS length and MP length. Those trees that had all-positive least-
squares solutions are plotted as open circles. These plots demonstrate the high linear correlation of
the two methods using these two statistics.
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the form of the better trees is dependent on the data. Different sets of data subjected
to the same analyses yield different ‘“best” trees. This is obvious from the examination
of “good” trees from these distributions as shown in the papers cited.

Extension to Larger Numbers of Populations

The approach just described is limited to a small number of populations. With
more than seven populations, it is currently too costly and time-consuming to evalu-
ate all possible trees; it is only possible to evaluate a fraction of the total number of
different trees. The problem becomes that of choosing the set of trees most likely to
contain the best structures. With trees picked at random, the probability of finding
the best possible trees is directly related to the number evaluated. As the number of
populations increases, quite obviously the number of trees that can be evaluated in a
given amount of time decreases. Picking trees at random therefore gives increasingly
diminishing returns. Based on our analyses [6, 15], we have concluded that two meth-
ods of generating trees are very useful and largely free from subjective bias. More-
over, we feel they give a high probability of finding the best tree, although we cannot
yet quantify this probability.

First, we have used the method of cluster analysis [26] which divides the popula-
tions into the two clusters with the minimum within-cluster variance. Repeated ap-
plication of this method to each cluster produced by the previous cycle generates a
bifurcating tree. We use the several best clusterings at each cycle to obtain a family
of likely trees. These trees are then evaluated and compared. This method for cluster
analysis is well covered in the literature [4, 6, 26, 27].

Second, we have used a technique [6] which slightly alters these trees to produce
still more trees for evaluation and comparison. It is essentially the same method that
Cavalli-Sforza and Edwards used in their work (see the program for the minimum-
path analysis distributed by Edwards). It assumes that negative segments (zero-
length segments in the minimum path) are indeed the result of choosing an improper
topology and are the best places to alter the tree. In addition to these two methods,
likely trial trees should result from many other methods used to generate trees [27-30],
some of which can be adapted to produce families of trees rather than a single struc-
ture.

Because of its usefulness and the relationship it demonstrates between negative
segments and deviation from additivity, we present here some of the results obtained
with our program for successive changes of tree structure. Briefly, the program oper-
ates by searching the least-squares solution of a tree for negative segments. When a
negative segment is found, the topology of the tree is changed around that segment.
The new tree is then evaluated by least squares and the segment around which the
change was made is checked. If the segment is positive, the program then searches the
tree for negative segments, thus restarting the cycle with this new tree. If instead the
segment is still negative, the remaining possible topological change is made around
the segment, and the new tree evaluated by least squares. We have always found that
one of the three possible arrangements allows a positive solution for the relevant seg-
ment. This procedure ends when no negative segments remain.

Figure 4 shows the most convincing illustration of the usefulness of this method.
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F16. 4 —Improvement resulting from the application of the change subroutine. Each point on the
abscissa represents a different tree, each produced by the elimination of a negative segment from the
previous tree by changing the tree structure [6]. The statistical evaluations of each tree are given by
the four graphs according to their individual scales. The input tree (cycle 1) was a random tree for
19 human populations [15].

The starting point for this series of successive alterations was a random tree relating
19 populations on Bougainville [15]. These statistics decline steadily over the 29
cycles; only the total number of negative segments shows an irregular fluctuation.
The input tree was the worst or nearly worst tree found by all statistics. The all-
positive tree that resulted from this series was by all statistics very close to the best
obtained among the 270 trees examined; the relationships shown are also very similar
to those in figure 2 of Friedlaender et al. [15].

We have used this subroutine on many sets of data and many different input trees,
and have always obtained a similar improvement in the fit of the trees from successive
cycles. Usually, however, we find an all-positive tree in only a few cycles, and the
improvement is less dramatic than illustrated here. It is also possible, after once
arriving at an all-positive tree, to continue altering around segments less than a small
positive value. This occasionally gives other all-positive trees directly, but more com-
monly initially yields trees with negative segments, from which, in turn, other all-
positive solutions are occasionally found. There is, however, very erratic behavior of
the statistics, and occasionally closed loops of changes occur. A limited number of
such changes are useful, but the method is not systematic and is stopped after an
arbitrary small number of changes.
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DISCUSSION AND CONCLUSIONS

The distance measurements used here (4 and G) are very similar [6, 15] and have
produced results that are largely equivalent. We expect that other distance measure-
ments [11, 13] will show a similar high correlation with these distances. Therefore it
should be sufficient to use only one measure of distance.

Our analyses show that the statistics Z(error®) and “9,sp” are highly correlated,
as are LS length and MP length. Although most comparisons between statistics in
those two groups are significantly positive, it is nonetheless evident from the much
lower values that the pairs are quite different. It is interesting to note that the number
of negative segments is significantly positively correlated with all four statistics. Of
course, one cannot conclude from this which method should be used, but only one
statistic from each pair should suffice.

In deciding which method or statistic to use, additional information is required.
We prefer LS length and MP length because the results obtained have been in closer
agreement with historical data. This preference is supported by the initial results of
a simulation study [18] designed to study the errors involved in estimation of phylo-
genetic trees by these methods. Of the two similar methods (least-squares solution
using LS length and minimum-path solution using MP length), we prefer the former
for a very pragmatic reason: it has consistently taken less computer time. This ap-
pears to be the result of the very slow convergence, and hence large number of itera-
tions, for some particular networks. While it may be possible to improve the mini-
mum-path program, it remains the less efficient method for the present.

The method for changing topologies is very useful and demonstrates the likely
validity of the original assumption that negative segments are not true representa-
tions of evolutionary relationships. It may be that it will not be possible to represent
the correct relationships with an all-positive tree for some populations, but the basic
assumption of random processes, if valid, makes this unlikely.

At present there is no way to estimate the variance of the different statistics used
to rank trees. This is especially important as the original data are only estimates of
the gene frequencies of the populations. Therefore, interpreting the results requires
some caution. We reject the idea that a single best tree can adequately represent a
distance matrix. When we evaluate all possible trees, we see no statistical basis for
identifying a level of significance which would establish one or a small group of trees
as being better than the rest. The problem is even more acute when we analyze only
a fraction of all the possible structures, since we have no assurance in this case that
the trees from the lower end of the distribution have been evaluated. This problem
can be partly overcome by examining the several better trees obtained. We can then
consider most definitive those relationships which are constant in all trees, and con-
sider most indecisive and suspect those relationships which differ among the trees.

Because the distributions according to LS length are approximately “normal,” it
has been suggested (L. L. Cavalli-Sforza, personal communication) that a rough indi-
cation of the expected minimum value of the statistic LS length may be obtained by
considering the distribution to be normal. A few random trees could be evaluated
and used to estimate the mean and variance. The number of trees is known and hence
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the extreme values could be estimated. While this involves several approximations,
it is worth future investigation, since we might then have some assurance that we
were basing our conclusions on trees from the lower end of the total distribution,
even though only a small fraction had been evaluated.

Cavalli-Sforza and Edwards originally presented precise models of evolution;on the
basis of these they developed estimation procedures. Since estimation by maximum
likelihood has been shown to be practically impossible, they found it necessary to fit
these models to real data by approximate estimation methods, which are not com-
pletely satisfactory because they must rely on intuition to obtain solutions. A quanti-
tative estimation of the errors involved in using these methods will have to be ob-
tained from simulation studies, now in progress [18]. In practice, frequent deviations
from the original models occur (e.g., our use of the minimum-path solution for addi-
tive distances). It is encouraging to note, therefore, that the various applications of
these methods to population data [3, 6, 15] have given results that agree well with the
known histories and relationships of the various groups. These studies provide a prag-
matic basis for using these methods to estimate microevolutionary relationships and
to quantify relative amounts of divergence among populations.

When additional information about the populations being studied confirms the
likely validity of the assumptions underlying the models, the trees reconstructed by
these methods are estimates of the phylogenetic relationships of the populations. In
situations where the original assumptions do not hold, we cannot reconstruct and
represent the actual evolutionary history of the populations with trees, but instead
we can consider the trees as synthetic representations of genetic similarities.*

SUMMARY

The examination of the various methods and criteria for evaluating evolutionary
trees based on genetic distances shows that all are positively correlated. Comparison
of the results with the known relationships in the various sets of data indicates that
two methods are more likely to give biologically correct results—the minimum-path
method which uses a minimum evolution criterion, and the least-squares method
when a minimum evolution statistic is also used. These results provide a pragmatic
basis for the application of these methods to populations of unknown relationships to
elucidate their evolutionary or genetic relationships.
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