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During the last few years there has been a flurry of interest in complex models
for qualitative attributes, where complex signifies that affection may be caused in
two or more ways [1-3]. These models have in common the prediction of variable
recurrence risks among families with given parental phenotypes. Segregation
analysis has heretofore covered only a few cases [4, 5]. The present paper ex-
tends segregation analysis to three complex models under two modes of ascertain-
ment.

THEORY

Let Ohik be the probability of a mating of genotypes j and k when h parents
are affected (h - 0 1, 2). Let Mik be the risk for affection when parents are of
genotypes j and k. (In this paper, we suppose that children are enumerated after
onset is complete, so that risk of affection may be equated to incidence.) Then,
under complete selection, the probability of r affected among s sibs for an affection
independent of birth order is

P(r; s, h) - () 1 jk mjkr (1 - mjk)ar (1)
r j,k

where 00 1. Under incomplete selection, the probability of ascertaining a sibship
with r affected is 1- (1 )r, where 0 < tc 1 is the ascertainment probabil-
ity, assumed constant. Note that

S

EZ () m,1.f(M 1 Mjk) 8 [1 - ( 1 - )r] =j1 -(1 mJk7T)8
r=0 r

(cf. [5, eq. 3]). Therefore,

( ;) [1 - (1 - .T)r] E hik mjkr (1 - mlk)s
P(r; s, h, rT) . (2)

- E, Ohik ( Mik)0"
j,k
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COMPLEX SEGREGATION ANALYSIS

Among families with s children, r of whom are affected, the probability that the
(s + 1 )st child will be affected is

X 4hJk mik"+ (1 - m,k)R-r

Q(r; s, hs) = 2,kChjk mJkr (1 -mik)8r
j,k

Equations (1-3) hold for any model, however complicated, which defines 4hjk and
mjk independently of birth order. Equations (1) and (2) are fundamental to anal-
ysis of family data, while equation (3) forms the basis for genetic counseling.

It is not difficult to derive 9phj under general assumptions, but, in practice, the
solution for random mating, with fertility of affected independent of genotype, is
most important. Except for parents of unspecified phenotype (h- ?), it is not
necessary to assume that fertility of affected is normal, only that all genotypes of
affected are equally fertile. Then, if pj is the frequency of genotype j in the general
population, the probability that an affected parent (or individual) would have
genotype j is a pjfj/A, where fj is the probability that genotype j be affected
and

A = pjfj
j

is the incidence. Similarly, the probability that a normal parent (or individual)
would have genotype j is cj = pj(1 - fj)/(l - A). Thus, the two assumptions of
random mating and uniform fertility within the phenotypes normal and affected
allow us to write

4hik =Cj Ck (h = 0)
=cjak (h-=1) (4)
= ajak (h =2)

PjPik (h =?),

where only the last result assumes equal fertility of normal and affected. If fertility
is severely reduced by affection, the analysis should take h = 0 rather than h- ?
although for a rare trait the two results cannot differ by much.
Models which assume that different loci act independently on fj are called dis-

continuous. Models which assume that different loci act independently on some
other variable, termed liability, which is not linearly proportional to fj, are called
quasi-continuous. Sex effects may be incorporated into the pj and m,k but will be
ignored in this paper.

Model 1. The Generalized Two-Allele Single Locus

Consider a gene G with frequency q which determines risks t + z, td + z, and z
in the genotypes GG, GG', and G'G', respectively, where d is the dominance of
G, t is the penetrance of GG, and z is the frequency of nonheritable (sporadic)
cases (table 1). The 3 X 3 matrix of risks mik is
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t + z

t + td + 2z
2

td + z

t + td + 2z
2

t + 2td + 4z
4

td + 2z
2

td + z

td + 2z
2

z j

(5)

Maximum-likelihood analysis conveniently takes the parameters A, d, t, and x -
z/A, which constrain the gene frequency

-td±+/t2d2+A(1 x)( -2d) t if d71 112,t > 0

q= -_(1-2d)t ' d / >

A(1 -x)/t, if d =1/2,t > 0,

0 A, d, t, x 1, and t + z . 1. Under incomplete selection, there is virtually
no information about A, which must be estimated from other evidence [6].
We define the rank of a hypothesis as the number of parameters to be estimated.

The most important special cases of rank 2 are

No phenocopies
G dominant
G recessive
G additive
GG completely penetrant

The most important special cases of rank 1 are:

No phenocopies, GG completely penetrant
G dominant, completely penetrant
G additive, completely penetrant
No phenocopies, G additive
G recessive, completely penetrant
No phenocopies, G recessive
No phenocopies, G dominant

(x =O)
(d= 1)
(d =O)
(d- 1/2)
(t 1- z)

(x =0,t= 1)
(d=1, t=1 z)
(d 1/2, t 1- z)
(d 1/2, x =0)
(d- 0,t 1 -z)
(d =0, x =0)
(dr= 1,x=0)

A hypothesis may be said to be better than an alternative of the same rank if it
has a smaller likelihood-ratio criterion,

(6)X2(L) 2 E nsrh ln (nsrhllesrh)
8,r,h

(Barrai et al. [6]), where n,,h and e8rh are the observed and expected numbers of
sibships of size s with r affected from k affected parents, and the sum is over all
nonzero values of nwrh and e8rh. By definition, e8rh -- n8h P(r; s, k), where n81h is
the observed number of families of size s with k affected parents and P(r; s, h)
is given by equation (1). The quantity
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L II P(r; s, h)'Isrh
s,r,h

is called the likelihood and in the limit for large samples, approaches the multi-
normal form ce-X2/2. The hypothesis which maximizes L in a large body of good
data gives the best basis for genetic interpretation and counseling.
A hypothesis may be said to be appreciably better than an alternative of lower

rank if its likelihood-ratio criterion is smaller by at least 4. However, only if the
one hypothesis is a special case of the other can statistical significance be asserted
(e.g., if the hypothesis that d 0 with A known and t, x iterated simultaneously
gives x2 20, and the subhypothesis that d- 0, t 1 with A known and x
iterated gives x2 = 25, then the difference of 5 is distributed in large-sample
theory as X2, with P = .025).

Discontinuous models may be generalized further in two directions: we may
assume that any one of n loci can independently produce affection (the genetic-
load model) or that two or more loci interact (epistasis). The first situation can
be resolved for rare recessive genes by consanguinity analysis and, more generally,
by finer phenotypic discrimination-ideally at the level of protein structure. The
possibility of analyzing epistasis is remote in man unless the effect of each locus
can be recognized separately (as for the Lewis-secretor interaction).

Model 2. Beta Distribution of Risk

A reasonable and convenient generalization of complex models is the distribu-
tion introduced by Gini [7] and Skellam [8], which assumes that the recurrence
risk m varies among families with h affected parents according to the beta density,

f (m) (6 - 1)! M1-1(1-M)t-r_l, (7)

0 <1 < g and 0 < m < 1, where the symbols have the same meaning as in Mor-
ton et al. [3] but different from Morton [4]. Then the Gini-Skellam distribution
of r affected in families of size s is

{s

(r + 1)I(s -r + {- )(8)

(S+ e 1)
s

The population incidence (the probability that the first child be affected; the
mean affection risk) for families with a given value of h is

A=f1mf(m) dm-
0
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Also, given h, the segregation frequency (the probability that the sib of an affected
singleton be affected; the mean recurrence risk) is

f1 m2 f(m) dm
0

fI mf(m)dm 5+1
0

These are the special cases s = r 0 and s r 1 of the probability that the

next child is affected after s sibs have been born, r of whom were affected:

fl f(m) Mr+l(j - m)8-rdm +
Q(r; s) = -9

fl f (m) mr ( 1-m)8-rdmm + s
0

Thus, we may substitute A and T for the parameters,

T -A

(see [3]). Under incomplete selection, the distribution of r affected becomes

[i-(1- 7.)r](r+ 1) (s-r±+ --1)
P(r; s, g, ) 8 (10)

,~~~~~[ s r] + -

With incomplete selection, the estimation of A for given h is more difficult under
model 2 than for a specific discontinuous or quasi-continuous hypothesis. There-

fore, model 2 is most useful for parents of unspecified phenotype or under com-

plete selection.

Model 3. The Polychotomized Normal Distribution of Liability

Falconer [1] considered an additive liability scale, normally distributed, one

tail of which determines affection. This type of variation has been called quasi-
continuous [9]. In the original derivation of Falconer's model, the phenotypic
liability had a sharp threshold for affection. This seemed implausible to Edwards
[2], who introduced a different model which allowed the risk to exceed unity.

Smith [10] showed that Falconer's model could be derived by assuming a normal

distribution of genetic liability, acted on by a cumulative normal risk function

representing environmental liability. This removed any lingering doubts about the

adequacy of Falconer's model to represent affection caused by additive genetic
liability. Attempts to fit both Falconer's and Edwards's models to actual data

revealed no advantage in the latter (Morton et al. [3]). Together with the device

of polychotomizing the normal distribution, which makes it possible to replace
multiple integration by summation, Smith's derivation of Falconer's model makes
it the method of choice to represent quasi-continuous variation.
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Let a normal distribution of genetic liability f(x) be partitioned into n nonover-
lapping classes, the kth of which has limits Llk < L2k and therefore probability

pk= Q(tL,7) Q(L2k) (Y Pk -12(1
k

where

Q(x) f oo e-t22 dt./72 7rTx
Let Lk (Lik + L2k)/2. Assume that the genetic liability within this class is a
constant, which we take to be

xk -Lk for- so < Llk, L2k < oc
f(Llk)/Q(Llk) for L2k 00
- J(L2k)/Q(L2k) for Llk =- o.

The standardized normal deviate Xk corresponds, in the distribution of genetic
liability with variance T, to Xk VT, where T is the heritability. The standardized
deviation of Z, the threshold for affection, is

xi Z-X (12)k -\/1 - T
[10, table 1]. Therefore, the incidence in the population is

A - YPk Q(X`) Q(Z),

and the probability of liability class k among affected individuals is

ak -PkQ(Xj)IA.
(Note that the symobls T, x, and Z have different meanings for models 1 and 3,
but A is always the incidence.) Similarly, the probability of liability class k among
normals is

Ck =Pk [1 - Q(x )]/(I -A).
If one parent belongs to class j and the other to class k, the mean genetic liability
of the children is (xi + Xk) N/T74, and the mean deviation of the threshold is

Z-(xj + Xk) \T/4
/1- T/2

This defines the risk of affection

Mik = Q xk (13)
With these definitions of p, a, c, and m, we may use the equations of the first
section to perform a segregation analysis of Falconer's model. For the calculations
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to be accurate with large s, we must use many classes: we have taken n = 52
(corresponding to 50 equally spaced classes from -4 to +4 and the two terminal
classes) with the approximations of Hastings [11] to evaluate Q(x') at

-4 + .16(k-1) < xi, < -4 + .16k, for k =1, 2, .. ., 50:
X51 = f(4)/Q(4), P51 Q(4)
X52 = -f(4)/Q(4), P52 = Q(4).

It is convenient to estimate the parameters A and T, the population incidence
and the heritability, respectively; note that A applies to the general population
and not merely to a specific value of h as in model 2.

Inbreeding Effects
Let the incidence be A + BF, where F is the coefficient of inbreeding and B

is the genetic load. Morton [12, eq. 17] provided for quasi-continuity the ap-
proximation

B AT (Z2+ 1)/2, (14)

where T is the heritability and Z the threshold for affection. As A approaches zero,
the ratio B/A becomes large and incapable of discriminating between mutation and
segregation loads. For the generalized two-allele single locus, we have

B=q(l - q)t (1- 2d) = qt- (1 x)A. (15)

The B/A becomes large as q, x approach zero [13].

TABLE 1

THE TWO-ALLELE MODEL

Genotype GG GG' G'G'

Index, j....................1 .. 2 3
Frequency, pj ................... q2 2q(1-q) (1-q)2
Probability of affection, fj ........ t + z td + z z

NOTE.-Risk in panmictic population, A = q2t -+ 2q(I - q)td + z.

For any genetic model, complex segregation analysis predicts the effects of
inbreeding. This provides an independent test of the model, which is of little power
unless the inbreeding effects are large.

Affection in Relatives
In the most important case for genetic counseling, ego is the sib or child of a

proband and equation (3) gives his risk. Sometimes more remote relationship is
involved. If R is the coefficient of relationship, model 3 gives as the recurrence
risk (i.e., the probability that ego is affected, given a proband of relationship R)
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Q(R) --K ak Q(Xk), (16)k

where

Z - Xk R y'T
kc - 2T

(Smith [10]).
For the single-locus model, two coefficients are required, the relationship R and

the probability of double identity by descent K, where K = 0 for unilineal
relatives, i for sibs, and A~for double cousins. The recurrence risk, if neither
proband nor ego is inbred, is

Q(R, K) aj Pk fk. (17)
j,k

Here, Pik is an element of the matrix P - (1 - 2R + K)To + 2(R - K)T1 +
KT2, where the T. matrix is the conditional probability of k, given j, when there
are exactly n alleles identical by descent, and

-q2 2q(1 -q) (1-q)2

To = q2 2q(1 - q) (1 )2 ,

_q2 2q(1-q) (1-q)2

q 1lq 0 ]

T, = 0
q 21(-q)/2 |

O q1 q

and
0 0

T., 0 1 0

O 0 1

(Li [14]; Elston and Campbell [15]). (The matrices To, T1, T2 correspond to
Li's 0, T, I, respectively, and have no relation to the parameter T used in models
1, 2, and 3.) Thus, segregation analysis predicts recurrence risks in more remote
relatives which provide an independent test of the genetic model, although with
less power than the first-degree relatives used for segregation analysis.

DISCUSSION

Limited experience suggests that discrimination between discontinuous model 1
and quasi-continuous model 3 will often be difficult. Dominance and a high ratio
of recurrence risk to incidence favor model 1. Lack of dominance and a low or
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moderate ratio of recurrence risk to incidence suggest quasi-continuity but do not
rule out a discontinuous model, which, with more parameters, is necessarily more
flexible. Strong evidence for quasi-continuity requires that goodness-of-fit be no
better for a discontinuous model with three parameters than for a quasi-continuous
model with two. We doubt that such evidence is often feasible, and a decision may
have to be suspended until more refined techniques of observation recognize major
gene effects, leaving a residual which must come more and more to approximate
quasi-continuity, even if the relevant familial factors are nongenetic.

Although the mode of inheritance may remain in doubt, complex segregation
analysis leads to useful estimates of recurrence risks for genetic counseling. Here,
models with a significantly poor fit to the data are rejected. Among the remainder,
models with a minimum number of parameters are preferred and, among these,
the models with the best fit to the data. When two or more models of the same
rank fit about equally well, in the absence of any firm decision about the mode of
inheritance, all relevant predictions may be used as a guide to genetic counseling.
For example, if three acceptable models predict .09, .11, and .13 for a particular
risk category, we might give the risk as "between .09 and .13" or, more simply, as
"about .1 1.,"
Complex segregation analysis provides more powerful tests of genetic hypotheses

and more reliable recurrence risks than can be obtained when sibships of different
compositions are pooled. The equations of this paper have been incorporated into
a computer program COMSEG, a description of which is available from the
authors. Application of these methods to various bodies of data will be published
separately [16, 17].

SUMMARY

Segregation analysis has been extended to several complex models for qualitative
attributes under two modes of ascertainment, providing a basis for genetic counsel-
ing.
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Annual Meeting
American Associatioii of Physical Anthropologists

The forty-first annual meeting of the American Association of Physical
Anthropologists will be held at the University of Kansas, April 12-15, 1972.
Inquiries and requests for the special abstract forms should be directed to
Dr. AI. H. Crawford, Department of Anthropology, University of Kansas,
Lawrence, Kansas 66044.

Deadline for abstracts is January 1, 1972.
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