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Summary

The ascertainment problem arises when families are sampled by a nonrandom process and some assump-
tion about this sampling process must be made in order to estimate genetic parameters. Under classical
ascertainment assumptions, estimation of genetic parameters cannot be separated from estimation of the
parameters of the ascertainment process, so that any misspecification of the ascertainment process causes

biases in estimation of the genetic parameters. Ewens and Shute proposed a resolution to this problem, in-
volving conditioning the likelihood of the sample on the part of the data which is "relevant to ascertain-
ment:' The usefulness of this approach can only be assessed by examining the properties (in particular,
bias and standard error) of the estimates which arise by using it for a wide range of parameter values and
family size distributions and then comparing these biases and standard errors with those arising under
classical ascertainment procedures. These comparisons are carried out in the present paper, and we also
compare the proposed method with procedures which condition on, or ignore, parts of the data.

Introduction

Perhaps the major initial aim of the successful series
of Genetic Analysis workshops, held regularly since
1982, was to calibrate various estimation procedures
and computer packages used in genetic epidemiology,
in particular by noting whether they give correct pa-
rameter estimates when used on artificial "data" calcu-
lated when the true parameter values are known (Mac-
Cluer et al. 1983, 1984, 1985). A further aim is to assess
the standard errors of these estimates. In line with this
procedure, which we strongly support, we present in
the present paper calibration properties of the ascer-
tainment-assumption-free (AAF) estimation method of
Ewens and Shute (1986a), as well as of analogous esti-
mation methods, when the data analyzed arise by ascer-
tainment sampling.

In any ascertainment procedure, the likelihood from
which parameter estimates are obtained is the condi-
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tional likelihood of the data (genetic, phenotypic, and,
if relevant, proband status) of the individuals in the fam-
ilies sampled, given the fact of ascertainment of each
family. This leads to a likelihood of the form

(1)L =I rl [Pm(asc~d)In(md)

where m denotes the number of children in each fam-
ily, d is the data in each family, n(m,d) is the number
of families in the sample having m children and data
d, Pm (asc, d) is the probability that a family having
m children is ascertained and has data d, and Pm (asc)
is the probability that a family with m children is ascer-
tained.
To calculate these probabilities we must assume some

model for the ascertainment process. The "classical"
model of Weinberg (1928) and Fisher (1934) employs
the concept of a proband, that is, an affected individual
who is assumed, independently of any other affected
sibling, to report with the disease. The classical model,
in its simplest form, assumes that the potential pro-
bands are the affected children in each family and that
each affected child, irrespective of its birth order or
which family it belongs to, has the same (unknown)
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probability nt of becoming a proband. Thus, given k
affected children in a family, this model assumes that

P(asclk) = 1 - (1 7n)k (2)

so that the denominator in (1) is

Pm(asc) = E Qm(k) [1 -(1 - p)k], (3)

where Qm(k) is the population probability that a fam-
ily having m children has k of these affected. Complete
ascertainment is the special case of (2) with i = 1,
while single ascertainment is the special case of (2) with
i 0.
The classical model was attacked in the early Euro-

pean literature as embodying unrealistic proband as-
sumptions (see Stene, in press), by Stene himself, by
Greenberg (1986), and by Ewens and Shute (1986a). It
nevertheless persists in many computer packages, and
in assessing the properties of the AAF estimation pro-
cedure we will assess also properties of the classical ap-
proach.

There are several variants of the classical procedure.
The most efficient uses as data the number of probands
in each family, leading to a term nIA(1 - Rt)K - A in the
numerator in (1), where K is the total number of affected
children in the sample and A is the total number of
probands. A far less efficient approach is to use as a
datum only the fact that each ascertained family has
at least one proband. This leads to a term of the form

1I [1 - (1 - n)k]n(k) (4)
k

in the numerator of (1), where n(k) is the number of
families in the sample having k affected children. Our
calculations show that use of (4), rather than use of
the binomial term ntA(l - t)K - A, decreases the
efficiency of parameter estimation by a factor of 50 or
100: these calculations are confirmed by Stene (in press).
Nevertheless, (4) is used in several computer programs,
for example, POINTER (Lalouel and Morton 1981, eq.
[3]).
An alternative classical approach, partly motivated

by the large standard errors which result from use of
(4), is to estimate genetic parameters assuming, respec-
tively, i = 1 (complete ascertainment) and - 0 (sin-
gle ascertainment) as limiting cases, in the hope of brack-
eting true parameter values. However (Ewens and Shute
1986b), these are not limiting cases. Complete and sin-
gle ascertainment are best thought of as corresponding
to

Prob (asclk) = const x ka, (5)

which a = 0 for complete ascertainment and a = 1
for single ascertainment. But it is quite possible for (5)
to hold with, for example, a = 2: this would occur
for data arrived at after two consecutive rounds of sin-
gle ascertainment. This appears to be approximately
the case for the data analyzed in Genetics Analysis
Workshop IV (Ewens et al. 1986), with one round of
ascertainment between families and physicians and a
second between physicians and Genetic Analysis work-
shop data collection. Clearly, the case a = 2, which
we describe as quadratic ascertainment, lies outside the
complete-to-single range.

It has been argued that quadratic ascertainment can
be allowed for under the classical scheme by allowing
negative values of x, for example, X = -1. There are
at least three reasons why we disagree with this view.
First, no value of it can make (2) a quadratic function
of k. Second, negative i values can only be used if the
inefficient likelihood contribution (4), rather than the
correct binomial formula, is used. Finally, the real prob-
lem, especially for Genetic Analysis workshop data,
is not that the data come exactly from a quadratic ascer-
tainment process but rather that they probably come
from complex ascertainment processes which cannot
be described by simple models such as that leading to
(2). The AAF method recognizes this and replaces (2)
by an arbitrary function am(k), whose mathematical
form is unspecified. Thus, no specific ascertainment
assumption is made under this approach. The gain in
universality of application must be balanced by a poten-
tial loss through an increased standard error in param-
eter estimates compared with those arising when, say,
complete ascertainment is the case and is correctly as-
sumed by the investigator. Part of the calibration of the
AAF approach, to which we now turn, is to calculate
this increase over a wide and representative range of
parameter values.

Likelihoods

We have denoted above the number of affected chil-
dren in a family by k. We also denote the number of
affected parents by g and use the symbol i as an index
to denote all the genetic data in a family.
Assuming complete ascertainment, the likelihood

used for parameter estimation is (1) Classical likelihood,
assuming complete ascertainment:

L 171171H171 Qm(k''.' I (6)
m k Ig L mi
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where Qm(kisg) is the population probability that a
family of size m has data {k,i,g} and Qm = I S E Qm
(k Sing). k i g

Assuming single ascertainment, the appropriate likeli-
hood is (2) Classical likelihood, assuming single ascer-
tainment:

Ls= [Il in l km i] (7)
m k i g L Qm

where Q* =E kQm(k) and Qm(k) = Qm(king).
k g

Ewens and Shute (1986a) show that the AAF likeli-
hood is (3) Ascertainment-assumption-free (AAF)
likelihood:

LAAF = ra[ I

dard error we mean the asymptotic values calculated
from an information matrix. We do not know at what
sample sizes these asymptotic values become reason-
ably accurate, but we suspect that for the models con-
sidered below several hundred families are sufficient.

Example

We illustrate the calibration of the AAF ascertain-
ment procedure by considering the estimation ofparam-
eters associated with a disease determined in part by
the genes at a single "disease susceptibility" locus S
linked to the HLA complex, with recombination frac-
tion R between this locus and HLA. The S locus admits
a susceptibility allele S and a normal allele s and the
penetrances of the three genotypes are:

genotype Ss
penetrance x

(8)

In effect, this likelihood uses the conditional probabil-
ity of the number of affected parents g and the genetic
information i in any family, given the number of affected
children k. An even more extreme form of condition-
ing, used by Winter (1980) and Risch (1984), used a
likelihood calculated from the conditional probability
of the genetic data i, given both g and k. This likeli-
hood is (4) Conditioning on all phenotypes (CAP)
likelihood:

LCAP = m" (k ' (9)

where Qm(k,g) = E Qm(k,i,g).
Our aim is to compare properties of estimates aris-

ing from the four likelihoods (6), (7), (8), and (9) over
a wide and representative range of parameter values.
To do this, some form of data must be assumed. We
follow here the approach of Morton (1984) and use
"deterministic" data, that is, n(m,k,ig) values which
are at their expected values for a specified choice of
genetic parameters, family size distribution, and ascer-
tainment procedure. Thus, we have not used simulated
data, since this would lead to a great increase in com-
puter time, although we hope to do so later. Thus, by
"bias" we mean, from now on, the asymptotic (large-
sample-size) bias with such "deterministic" data, by "un-
biased" we mean "asymptotically unbiased;' and by stan-

The population frequency of the disease allele is denoted
p. There are thus four unknown parameters-x, p, X,
and R-to be estimated. The population prevalence of
the disease, sometimes known and sometimes un-
known, is

and, clearly, when the prevalence is known, only three
parameters need be estimated.
We assume that the data relate to nuclear families

ascertained through affected children. The numbers k
of affected children and g of affected parents in each
family are known, while the genetic information in each
family is assumed to be the HLA haplotype sharing
pattern of the affected children. Each such pattern is
described by k and an index number i (a list of these
indices and the corresponding HLA sharing pattern
among affected sibs is given by Ewens and Clarke
[1984]). Since HLA haplotype sharing patterns of
affected children only are used, only families with two
or more affected children are ascertained.

Details of the calculation of Qm(ksgai), Qm, Qm(k),
and Qm(ksg) for this example (to be used in [6]-[9])
are given by Ewens and Shute (1986a) and are not
repeated here. The deterministic "data" used in the cal-
ibration depend on the numerical values of x, p, X, and
R. on the family size distribution, and on the true (but
unknown) ascertainment procedure. We consider vari-
ous parameter combinations and family size distribu-
tions below. So far as the true ascertainment scheme

Ss
Ax

ss
0.

p2X+2p(1 - p)X, (10)
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is concerned, we consider three cases: (i) complete
ascertainment, where the sample probability that a
family is in category (mkagi) is proportional to the
population frequency Qm(kg,i); (ii) single ascertain-
ment, where the sample probability is proportional to
kQm(kg,i); and (iii) quadratic ascertainment, where
the sample probability is proportional to k2Qm(kgi).

Results

We have estimated parameter values, using, respectively,
the four estimation procedures corresponding to the
likelihoods (6)-(9), using "deterministic" data corre-
sponding to complete, single, and quadratic ascertain-
ment ([i], [ii], and [iii] above), for approximately 30
parameter combinations, covering all possible values
of the parameters x, p, X, and R but focussing on those
values (e.g., small p) which are a priori likely in prac-
tice. We describe our initial conclusions in two ways,
first by displaying (in table 1) estimates for representa-
tive parameter combinations and second by summariz-
ing verbally the conclusions for all 30 combinations.

Table 1 gives the estimates of parameters for six rep-
resentative parameter combinations when the family
size distribution is

m
Prob

2
.6

3 4
.275 .125

Estimates are given when the prevalence (10) is known
and used in the estimation procedure and also when
it is unknown.
The main conclusion to be drawn from table 1 is

that, in all cases, the AAF approach yields unbiased
estimates of all parameters, while the classical approach
only yields unbiased estimates when the true ascertain-
ment assumption happens to be made. These conclu-
sions hold for all parameter combinations we consid-
ered. The standard errors of parameter estimates are,
as expected, smallest when the classical approach is
used and the correct ascertainment scheme happens to
be assumed in the analysis. However, the standard er-
rors of the AAF estimates are often not much larger
than those arising under the classical approach: when
the prevalence is known (the most common case in prac-
tice), the average increase in standard error, compared
with the classical complete ascertainment estimation
procedure for complete ascertainment "data", is about
15% for the values in all parameter combinations we
have considered, while for quadratic "data" the average
bias of the classical complete ascertainment estimator

is about 43%. One would surely accept an increase in
standard error of about 15% to protect against the pos-
sibility of a bias of this order.

Apart from the major conclusion noted in the last
paragraph, further, more specific conclusions may be
noted from table 1. First, when x is small the standard
errors of all estimators are larger than when x is large;
however, larger standard errors arise with large values
of p, X, and R than with small values. Second, the largest
standard errors (for all methods of estimation) tend to
occur for intermediate values of X, smaller standard er-
rors arising for small and large X. Finally, when the data
arise from a complete ascertainment process but single
ascertainment is assumed, then, when X < .5, x < x,
f5 > p, X > x, R < R. When the data arise from a single
ascertainment process but complete ascertainment is
assumed, x > x, fi < p, X < X, R > R. However, when
X > .5, all these inequalities are reversed.
The conclusions drawn from table 1 typify those for

all parameter combinations we examined- there are no
peculiar combinations for which contrary conclusions
apply.
Two remarks about the estimates arising when one

conditions on all affectedness data, using (9), are in
order. First, the standard errors of estimates of x are
often very large, particularly when the population prev-
alence is unknown, being often approximately 10/V\7n
when the prevalence is known and 501v'n when it is
unknown. With these values, one would need, respec-
tively, a sample of 400, and 10,000 families before con-
ventional plus and minus two standard deviation limits
lie within the values 0 and 1, which can in any event
be set 'a priori as natural limits for x.
The second comment concerns the standard errors

of the estimates of X in table 1. In a small number of
cases the standard errors of these estimates, when one
conditions on all affectedness information, are smaller
than the corresponding standard errors when one con-
ditions only on the affectedness status of the children.
Although there is no mathematical theorem known to
us preventing this occurring, it is quite unexpected in-
tuitively that it should. We propose to examine this
phenomenon elsewhere.
The conclusions just noted all apply if the family size

distribution is as given in (11). We checked that they
continue to apply for other family size distributions.
Table 2 lists parameter estimates corresponding to those
given for data set 1 and data set 2 of table 1, when
the family size distribution is

m
Prob

2 3 4
.3 .35 .35

(12)
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Table I

Maximum Likelihood Estimates of x, p, X, and R (with Standard Errors x \/W of Unbiased Estimators) for Various Parameter
Combinations (i.e., Data Sets), Various Ascertainment Processes, and Various Ascertainment Assumptions

A. Data Set 1: x = .50,p = .04, X = .08, R = .025

Data Likelihood x p x R

Prevalence unknown:
Complete ............. ................. (6) .50 (3.44) .04 (.48) .08 (.40) .025 (.38)

(7) .312 .074 .104 .001
(8) .50 (7.46) .04 (.84) .08 (.76) .025 (.66)
(9) .50 (31.4) .04 (1.09) .08 (.79) .025 (.77)

Single ................................. (6) .754 .024 .060 .042
(7) .50 (2.97) .04 (.44) .08 (.37) .026 (.36)
(8) .50 (6.74) .04 (.76) .08 (.70) .025 (.63)
(9) .50 (28.9) .04 (1.03) .08 (.73) .025 (.71)

Quadratic .............................. (6) 1.000 .019 .043 .060
(7) .752 .025 .059 .043
(8) .50 (5.96) .04 (.67) .08 (.64) .025 (.59)
(9) .50 (28.5) .04 (1.03) .08 (.69) .025 (.66)

Prevalence known (= .00387):
Complete ............. ................. (6) .50 (2.03) .04 (.16) .08 (.27) .025 (.30)

(7) .401 .045 .090 .017
(8) .50 (2.80) .04 (.18) .08 (.32) .025 (.34)
(9) .50 (13.5) .04 (.70) .08 (.74) .025 (.73)

Single ................................. (6) .630 .036 .069 .036
(7) .50 (1.87) .04 (.16) .08 (.26) .025 (.29)
(8) .50 (2.76) .04 (.18) .08 (.32) .025 (.34)
(9) .50 (12.0) .04 (.62) .08 (.68) .025 (.68)

Quadratic .............................. (6) .820 .034 .054 .053
(7) .645 .036 .068 .037
(8) .50 (2.71) .04 (.19) .08 (.32) .025 (.34)
(9) .50 (10.3) .04 (.63) .08 (.61) .025 (.63)

B. Data Set 2: x = .50,p = .04,x = .40, R = .025

Data Likelihood x p x R

Prevalence unknown:
Complete ..............................

Single .................................

Quadratic ..............................

(6)
(7)
(8)
(9)

.50 (9.00) .04 (.91)

.402 .046

.50 (9.71) .04 (.95)

.50 (38.4) .04 (1.23)

(6) .936
(7) .50 (7.83)
(8) .50 (8.54)
(9) .50 (34.0)

(6)
(7)
(8)
(9)

1.00
.940
.50 (7.36)
.5( (30.7)

.023

.04 (.83)

.04 (.86)

.04 (1.12)

.036

.024

.04 (.78)

.04 (1.01)

.40 (7.76)

.474

.40 (8.31)

.40 (10.0)

.211

.40 (6.78)

.40 (7.32)

.40 (9.03)

.162

.211

.40 (6.34)

.40 (8.06)

.025 (.85)

.019

.025 (.88)

.025 (1.46)

.045

.025 (.78)

.025 (.82)

.025 (1.27)

.050

.045

.025 (.75)

.025 (1.12)

(continued)
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Table I (continued)

B. Data Set 2: x = .50,p = .04, X = .40,R = .025

Data Likelihood x p R

Prevalence known (= .01616):
Complete .............................. (6) .50 (3.56) .04 (0.13) .40 (3.93) .025 (.26)

(7) .420 .042 .455 .022
(8) .50 (3.82) .04 (0.13) .40 (4.09) .025 (.27)
(9) .50 (22.0) .04 (1.09) .40 (9.02) .025 (1.32)

Single ................................. (6) .671 .041 .284 .030
(7) .50 (3.29) .04 (.13) .40 (3.69) .025 (.26)
(8) .50 (3.61) .04 (.13) .40 (3.88) .025 (.27)
(9) .50 (19.3) .04 (.97) .40 (8.14) .025 (1.19)

Quadratic ............................... (6) .890 .047 .177 .043
(7) .702 .041 .270 .031
(8) .50 (3.35) .04 (.13) .40 (3.62) .025 (.27)
(9) .50 (16.1) .04 (.82) .40 (7.10) .025 (1.03)

C. Data Set 3: x = .10, p = .04, X = .08, R = .025

Data Likelihood x p x R

Prevalence unknown:
Complete ..............................

Single .................................

Quadratic ..............................

Prevalence known ( = .00077):
Complete ..............................

Single .................................

Quadratic ..............................

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

.10 (1.70)

.061

.10 (3.86)

.10 (66.1)

.168

.10 (1.42)

.10 (3.44)

.10 (64.1)

.273

.170

.10 (3.16)

.10 (63.1)

.10 (.88)

.078

.10 (1.17)

.10 (7.67)

.127

.110 (.81)

.10 (1.17)

.10 (6.85)

.169

.133

.10 (1.16)

.10 (5.90)

.04 (1.16)

.078

.04 (2.30)

.04 (2.40)

.019

.04 (1.02)

.04 (2.04)

.04 (2.26)

.009

.019

.04 (1.86)

.04 (2.17)

.04 (0.28)

.047

.04 (.34)

.04 (2.08)

.035

.04 (.27)

.04 (.34)

.04 (1.86)

.029

.034

.04 (.34)

.04 (1.60)

.08 (.86)

.102

.08 (1.72)

.08 (1.66)

.059

.08 (.76)

.08 (1.54)

.08 (1.49)

.043

.059

.08 (1.42)

.08 (1.35)

.08 (.35)

.086

.08 (.40)

.08 (1.61)

.074

.08 (.34)

.08 (.40)

.08 (1.45)

.066

.073

.08 (0.40)

.08 (1.26)

.025 (.79)

.001

.025 (1.56)

.026 (1.75)

.041

.025 (.71)

.025 (1.41)

.025 (1.55)

.051

.041

.025 (1.36)

.025 (1.36)

.025 (.37)

.019

.025 (.41)

.025 (1.52)

.031

.025 (.36)

.025 (.41)

.025 (1.37)

.038

.032

.025 (.41)

.025 (1.21)

(continued)
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Table I (continued)

D. Data Set 4: x = .50,p = .09,X = .08,R = .025

Data Likelihood x p R

Prevalence unknown:
Complete ............. ................. (6) .50 (2.85) .09 (.80) .08 (.53) .025 (.58)

(7) .351 .134 .093 .000
(8) .50 (6.14) .09 (1.40) .08 (.79) .025 (1.03)
(9) .50 (24.7) .09 (2.30) .08 (.92) .025 (1.25)

Single ................................. (6) .740 .059 .057 .055
(7) .50 (2.46) .09 (.72) .08 (.51) .025 (.54)
(8) .50 (5.47) .09 (1.25) .08 (.76) .025 (.97)
(9) .50 (22.5) .09 (2.25) .08 (.90) .025 (1.13)

Quadratic . ............................. (6) .985 .046 .041 .077
(7) .738 .060 .055 .058
(8) .50 (4.78) .09 (1.09) .08 (.72) .025 (.91)
(9) .50 (20.5) .09 (2.18) .08 (.88) .025 (1.04)

Prevalence known (= .01060):
Complete .............. ................ (6) .50 (1.84) .09 (.40) .08 (.45) .025 (.41)

(7) .404 .101 .089 .012
(8) .50 (2.41) .09 (.42) .08 (.47) .025 (.45)
(9) .50 (11.4) .09 (1.23) .08 (.83) .025 (1.23)

Single ................................. (6) .628 .081 .070 .040
(7) .50 (1.70) .09 (.39) .08 (.44) .025 (.39)
(8) .50 (2.35) .09 (.42) .08 (.47) .025 (.44)
(9) .50 (9.85) .09 (1.06) .08 (.78) .025 (1.13)

Quadratic .............................. (6) .823 .073 .057 .059
(7) .643 .080 .068 .042
(8) .50 (2.27) .09 (.41) .08 (.46) .025 (.44)
(9) .50 (8.50) .09 (.91) .08 (.74) .025 (1.04)

E. Data Set 5:x = .50,p = .04, = .08,R = .12

Data Likelihood x p R

Prevalence unknown:
Complete ..............................

Single .................................

Quadratic ..............................

(6) .50 (4.89)
(7) .297
(8) .50 (12.9)
(9) .50 (56.6)

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

.727

.50 (4.37)

.50 (11.3)

.50 (52.4)

.976

.717

.50 (10.9)

.50 (49.2)

380

.04 (.76)

.079

.04 (1.42)

.04 (1.92)

.027

.04 (.70)

.04 (1.24)

.04 (1.85)

.021

.027

.04 (1.18)

.04 (1.79)

.08 (.61)

.118

.08 (1.71)

.08 (1.94)

.055

.08 (.57)

.08 (1.60)

.08 (1.87)

.038

.054

.08 (1.58)

.08 (1.82)

.12 (.60)

.090

.12 (1.32)

.12 (1.51)

.140

.12 (.56)

.12 (1.26)

.12 (1.44)

.156

.142

.12 (1.27)

.12 (1.39)

(continued)



Table I (continued)

E. Data Set 5: x = .50,p = .04,x = .08,R = .12

Data Likelihood X P R

Prevalence known (= .00387):
Complete ................. ............. (6) .50 (2.54) .04 (.33) .08 (.60) .12 (.60)

(7) .444 .035 .109 .100
(8) .50 (2.88) .04 (.35) .08 (.86) .12 (.78)
(9) .50 (25.4) .04 (1.24) .08 (1.80) .12 (1.50)

Single ................................. (6) .585 .044 .056 .142
(7) .50 (2.46) .04 (.32) .08 (.57) .12 (.56)
(8) .50 (2.85) .04 (.35) .08 (.85) .12 (.76)
(9) .50 (22.7) .04 (1.10) .08 (1.70) .12 (1.44)

Quadratic ...... .. .......... (6) .761 .042 .042 .156
(7) .597 .043 .056 .142
(8) .50 (2.81) .04 (.34) .08 (.83) .23 (.73)
(9) .50 (20.1) .04 (.96) .08 (1.61) .12 (1.39)

F. Data Set 6:X = .50,p = .09,x = .18,R = .12

Data Likelihood X P R

Prevalence unknown:
Complete ............................... (6) .50 (6.53) .09 (2.25) .18 (1.57) .12 (.95)

(7) .299 .170 .293 .054
(8) .50 (9.49) .09 (2.74) .18 (2.86) .12 (1.61)
(9) .50 (48.5) .09 (3.79) .18 (3.58) .12 (2.50)

Single ................................. (6) .756 .059 .106 .161
(7) .50 (5.97) .09 (2.11) .18 (1.43) .12 (.88)
(8) .50 (8.66) .09 (2.56) .18 (2.65) .12 (1.50)
(9) .50 (43.4) .09 (3.53) .18 (3.27) .12 (2.18)

Quadratic ............................... (6) .997 .048 .068 .188
(7) .737 .063 .103 .164
(8) .50 (7.82) .09 (2.38) .18 (2.42) .12 (1.39)
(9) .50 (39.4) .09 (3.31) .18 (3.02) .12 (1.92)

Prevalence known (= .01879):
Complete ............................... (6) .50 (1.89) .09 (.71) .18 (1.50) .12 (.58)

(7) .441 .073 .277 .105
(8) .50 (1.96) .09 (.82) .18 (2.08) .12 (.71)
(9) .50 (26.2) .09 (3.36) .18 (3.54) .12 (2.41)

Single ................................. (6) .530 .113 .113 .149
(7) .50 (1.87) .09 (.69) .18 (1.40) .12 (.56)
(8) .50 (1.95) .09 (.81) .18 (2.03) .12 (.70)
(9) .50 (22.6) .09 (2.96) .18 (3.18) .12 (2.13)

Quadratic ............................... (6) .646 .110 .086 .170
(7) .538 .114 .110 .152
(8) .50 (1.93) .09 (.80) .18 (1.96) .12 (.69)
(9) .50 (19.2) .09 (2.59) .18 (2.86) .12 (1.88)

NOTE.-See text for details. Family size distribution is (11).
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Table 2

Maximum Likelihood Estimates of x, p, X, and R (with Standard Errors x \/inof Unbiased Estimators) for Family Size Distribution (12)

A. Data Set 1: x = .50,p = .04, X = .08, R = .025

Data Likelihood x p R

Prevalence unknown:
Complete ............. .............. (6) .50 (2.95) .04 (.43) .08 (.36) .025 (.35)

(7) .311 .072 .105 .001
(8) .50 (6.81) .04 (.74) .08 (.71) .025 (.61)
(9) .50 (29.7) .04 (1.11) .08 (.74) .025 (.69)

Single .............................. (6) .747 .026 .060 .042
(7) .50 (2.55) .04 (.39) .08 (.34) .025 (.34)
(8) .50 (5.99) .04 (.65) .08 (.64) .025 (.58)
(9) .50 (27.5) .04 (1.06) .08 (.68) .025 (.64)

Quadratic ........................... (6) 1.000 .021 .043 .061
(7) .740 .026 .059 .044
(8) 50 (5.26) .04 (.57) .08 (.59) .025 (.55)
(9) .50 (25.6) .04 (1.02) .08 (.64) .025 (.60)

Prevalence known (= .00387):
Complete ............. .............. (6) 50 (1.90) .04 (.16) .08 (.26) .025 (.29)

(7) .384 .046 .092 .015
(8) .50 (2.97) .04 (.18) .08 (.33) .025 (.34)
(9) .50 (11.8) .04 (.60) .08 (.69) .025 (.66)

Single .............................. (6) .655 .036 .067 .038
(7) .50 (1.73) .04 (.16) .08 (.25) .025 (.28)
(8) 50 (2.90) .04 (.18) .08 (.33) .025 (.34)
(9) .50 (10.2) .04 (.52) .08 (.62) .025 (.62)

Quadratic ........................... (6) .868 .034 .051 .057
(7) .663 .036 .066 .039
(8) 50 (2.80) .04 (.18) .08 (.33) .025 (.34)
(9) .50 (8.83) .04 (.45) .08 (.56) .025 (.58)

B. Data Set 2: x = .50,p = .04, X = .40, R = .025

Data Likelihood x p X R

Prevalence unknown:
Complete ...........................

Single ..............................

Quadratic ...........................

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

(6)
(7)
(8)
(9)

.50 (7.89)

.388

.50 (8.63)

.50 (38.9)

.928

.50 (6.72)

.50 (7.45)

.50 (34.8)

1.000
.901
.50 (6.40)
.50 (30.6)

.04 (.81)

.045

.04 (.84)

.04 (1.16)

.026

.04 (.74)

.04 (.76)

.04 (1.06)

.042

.027

.04 (.69)

.04 (.96)

.40 (6.83)

.482

.40 (7.39)

.40 (9.13)

.213

.40 (5.84)

.40 (6.40)

.40 (8.09)

.155

.223

.40 (5.51)

.40 (7.05)

.025 (.74)

.019

.025 (.77)

.025 (1.32)

.043

.025 (.69)

.025 (.72)

.025 (1.16)

.052

.043

.025 (.67)

.025 (1.03)

(continued)
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Ascertainment Sampling Problem. II

Table 2 (continued)

B. Data Set 2: x = .50,p = .04,A = .40, R = .025

Data Likelihood x p R

Prevalence known (= .01616):
Complete ............. .............. (6) .50 (3.50) .04 (.12) .40 (3.83) .025 (.26)

(7) .397 .043 .472 .020
(8) .50 (3.89) .04 (.13) .40 (4.07) .025 (.26)
(9) .50 (19.1) .04 (.93) .40 (8.32) .025 (1.15)

Single ............................... (6) .725 .041 .260 .032
(7) .50 (3.13) .04 (.12) .40 (3.51) .026 (.26)
(8) .50 (3.59) .04 (.12) .40 (3.77) .025 (.26)
(9) .50 (16.4) .04 (.81) .40 (7.34) .025 (1.02)

Quadratic ........................... (6) .966 .047 .162 .049
(7) .738 .041 .260 .033
(8) .50 (3.24) .04 (.12) .40 (3.44) .025 (.26)
(9) .50 (13.8) .04 (.70) .40 (6.35) .025 (.91)

It is clear that the general conclusions of table 1 con-
tinue to apply: we have again checked this result for
a wide range of parameter combinations.

Because family size distribution (12) tends to empha-
size larger families more than does family size distribu-
tion (11), we would expect smaller standard errors of
(asymptotically unbiased) estimators to arise under (12),
for all methods of estimation. The effect of family size
distribution on bias appears to be quite complex, al-
though when the population prevalence in known,
larger biases uniformly arise for the family size distri-
bution (12). We would expect this conclusion since for
family size distribution (11) approximately 96% of fam-
ilies sampled have two affected children, so that assump-
tions about the ascertainment process are relatively
unimportant.
We considered next the effects of two other proce-

dures used in parameter estimation in ascertainment
sampling. The first of these concerns conditioning on
parental affectedness data. The AAF procedure de-
scribed in preceding sections is a specific case of the
procedure described by Ewens and Shute (1986a), where
the AAF procedure conditions on the "data relevant to
ascertainment." In the above it has been assumed that
these data concern the number of affected children in
each family, so that the AAF procedure described above
conditions (see [8]) on the number of affected children.
Some estimation procedures condition on data differ-

ent from that "relevant to ascertainment" (e.g., POINTER;
see Lalouel and Morton 1981). In these procedures the

conditioning is on parental phenotype, with the (rea-
sonable) aim of removing any potential bias due to fer-
tility differences between affected and nonaffected in-
dividuals. If ascertainment is through affected children
and the investigator conditions on parental phenotype
only, then the ascertainment problem will not be re-
moved and biased estimates will be obtained if an in-
correct ascertainment assumption is made.
The likelihood when conditioning is on the number

of affected parents is

L = H H H H [Pm(asckgi)/Pm(ascxg)]n(mkigi)m k g 1

(13)

where Pm(ascg) is the probability that a family of size
m has g affected parents and is ascertained. The condi-
tioning in (13) is not on the data "relevant to ascer-
tainment" if these data concern the number of affected
children in the family, and thus it can be expected to
lead to biased estimates under incorrect ascertainment
assumptions. We confirmed this by calculating deter-
ministic "data" from complete, single, and quadratic
ascertainment processes, assuming the family size dis-
tribution (11) and parameter values

x = .5, p = .04, X = .08, R = .025. (14)

These data were then analyzed using the likelihood (13),

383



Shute and Ewens

Table 3

Estimates of x, p, X, and R (True Values Given in [I14), Together with Standard Errors of Unbiased Estimates, When
Ascertainment Is through Children and Likelihood (13) (Conditioning on Parental Affectedness Status) Is Used

Data Likelihood (13) Assuming x P x R

Prevalence unknown:
Complete .................. Complete .50 (3.75) .04 (.95) .08 (.79) .025 (.62)

Single .349 .037 .080 .023
Single ..................... Complete .698 .046 .081 .028

Single .50 (3.28) .040 (.85) .08 (.73) .025 (.59)
Quadratic .................. Complete .931 .059 .084 .032

Single .697 .046 .081 .028

Prevalence known (= .00387):
Complete .................. Complete .50 (2.90) .04 (.21) .08 (.27) .025 (.30)

Single .322 .053 .092 .013
Single ..................... Complete .746 .032 .069 .036

Single .50 (2.49) .040 (.20) .08 (.26) .025 (.29)
Quadratic .................. Complete 1.000 .028 .057 .049

Single .743 .032 .069 .036

assuming, respectively, single and complete ascertain-
ment. The results are presented in table 3.
As expected, the genetic parameter estimates are bi-

ased when an incorrect ascertainment assumption is
made. When the prevalence is known, the biases in x
and p arising from (13) are larger than those arising
from the classical likelihoods (6) and (7). The standard
errors of unbiased estimates are slightly higher than
those arising from (6) and (7) when the prevalence is
known but considerably higher for p, X, and R when
it is unknown. However, as expected, these standard
errors are much smaller than those arising from the CAP
likelihood (9), which conditions on children in addi-
tion to parents. Similar results are obtained when "data"
arising from family size distribution (12) are analyzed
and when other parameter combinations are considered.
We finally considered estimation procedures which

ignore part of the data. Consider the data vector
(m,k,g,i). The only part of the data that gives informa-
tion of R is i. Suppose we decide that R is not of major
importance and that we want to estimate x, p, and X
only, ignoring i in the data. The data vector then be-
comes (m,kg) = £ (m,kg,i) and, similarly, Pm(kg)

= Pm(kagai).
Suppose, having estimated x, p, and , by using data

of the form (m,kg), that a separate estimation proce-
dure for R is carried out, using the estimated x, p, and
X values as "true" values. Is this method for estimating
x, p, X, and R any more or less accurate than the ap-

proach which estimates all four parameters simultane-
ously?
The likelihood equivalent to the AAF likelihood (8),

when i is ignored, is

m=I Qm(kg) n(mkg)

m k g L-~~

(15)

(the suffix "ii" denoting "ignoring i'), where n(m,kg)
= n(m,k,ig). Like the likelihood (8), (15) does not
depend on a specific ascertainment assumption, so the
estimates derived from it should be unbiased whatever
the true ascertainment process. Our calculations showed
that this is so. We now compare the standard errors
arising from this likelihood with the standard errors
obtained when i is used and R is also estimated.
The information matrix from which the variances

of the new estimates are obtained can be calculated using
deterministic "data" and (15) or by a simple subtrac-
tion of information matrices of likelihoods that have
already been examined. If we denote the information
matrices corresponding to use of (8), (9), and (15) by
1(8), 1(9), and 1(15), respectively, it is a simple conse-
quence of the identity

Qm(kg) Qm(kning) Qm(kig)
Qm(k) Qm(k) Qm(kg)
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that 1(15) = 1(8) - 1(9). Thus, there is less information
obtained by using the likelihood (15) than by using (8),
and the standard errors of the estimates of the former
should be larger than those of the "AAF" estimates aris-
ing from the likelihood (8).

This is verified by the results of table 4, which con-
siders both the case where the population prevalence
is known and the case where it is unknown. Table 4
shows the standard errors of the estimates of x, p, and
X arising from the likelihood (15), using "data" which
assumes the family size distribution (11) and parameter
values given in (14). The standard errors arising from
(15) are significantly larger than those arising from (8),
(table 1) (i.e., significantly larger than those arising when
i is used as part of the data). Thus, although x, p, and
X can be estimated without using the information con-
tained in i, the information in i is important in the esti-
mation of x, p, and X, as well as of R, particularly when
the population prevalence is unknown. Hence, estimat-
ing x, p, and X first and then subsequently estimating
R using the x, p, and x estimates as "true" values could
produce inaccurate estimates for all parameters, par-
ticularly for R (since R is estimated assuming poten-
tially inaccurate estimates of x, p, and X). Such a proce-
dure for estimating the four genetic parameters is
therefore not recommended.

Conclusion

The AAF method produces asymptotically unbiased
estimation of all genetic parameters, no matter what

Table 4

Standard Errors (x v'On) of Estimators Derived from the AAF
"Ignoring i" Likelihood (I5)

True Ascertainment
Process x p x

Prevalence known:
Complete........ 40.95 (7.46) 5.88 (.84) 4.27 (.76)
Single .......... 55.77 (6.74) 7.92 (.76) 4.09 (.66)
Quadratic ....... 41.48 (5.96) 5.93 (1.03) 3.81 (.59)

Prevalence unknown:
Complete ........ 4.15 (2.80) 1.64 (.18) 4.22 (.32)
Single .......... 4.13 (2.76) 1.55 (.18) 3.97 (.32)
Quadratic ....... 4.16 (2.71) 1.49 (.19) 3.76 (.32)

NOTE.-The numbers in parentheses are corresponding values from
table 1 (when i is not ignored). The family size distribution is (11),
and the true parameters are (14).

the ascertainment procedure might be. The price paid
for this universality of application is a modest increase
in standard error compared with cases where the true
ascertainment process is known and used in the esti-
mation of genetic parameters, averaging some 15% in
the wide and representative set of cases we have consid-
ered. However, biases often exceeding 50% are possi-
ble when an incorrect ascertainment procedure is as-
sumed. These conclusions apply for a wide range of
family size distributions.

Conditioning likelihoods on the number of affected
parents (in order to remove fertility deficit problems)
will not correct for ascertainment if ascertainment is
through children- indeed, biases in parameter estimates
are increased by this conditioning.
The effects of using subsets of the data to estimate

subsets of the parameters is considered. This method
leads to estimates with greatly increased standard errors.
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