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Summary

I here consider the question of when to formulate a likelihood over the whole data set, as opposed to con-

ditioning the likelihood on subsets of the data (i.e., joint vs. conditional likelihoods). I show that when
certain conditions are met, these two likelihoods are guaranteed to be equivalent, and thus that it is gener-

ally preferable to condition on subsets, since that likelihood is mathematically and computationally sim-
pler. However, I show that when these conditions are not met, conditioning on subsets of the data is
equivalent to introducing additional df into our genetic model, df that we may not have been aware of. I
discuss the implications of these facts for ascertainment corrections and other genetic problems.

Introduction

A genetic model usually involves a population that is
subdivided in several different ways, e.g., family size,
mating type, number of affected children, etc. Moreover,
not every individual of interest in a population is neces-
sarily ascertained (i.e., comes to our attention). In many
genetic applications, we may naturally view our data
as being first broken down into subsets and then fur-
ther divided into categories within each subset. For ex-
ample, consider a set of nuclear families being prepared
for segregation analysis. We may break them down first
by sibship size and then consider how many children
are affected within families of each sibship size. Here,
the sibship sizes represent the subsets, and the number
of children affected represent the categories within each
subset. Or families might be broken down by parental
mating type (subsets) and then by number of affected
children (categories within a subset).

In such a situation, we have a choice about how to
formulate the likelihood of whatever model we are in-
vestigating: We can either formulate the likelihood over
the whole data set or condition the likelihood on the
subsets of the data. The likelihood conditioned on sub-
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sets is usually simpler to formulate and less cumber-
some to work with, and it may correspond more closely
to how we perceive the problem at hand. But it is not
always obvious which formulation is "better" and when.

In this paper I will show that, under certain condi-
tions, the two likelihoods are guaranteed to be equiva-
lent, in the sense of yielding identical maximum likeli-
hood estimates (MLEs) of the parameters of interest.
Yet, using the more cumbersome formulation (the likeli-
hood over the whole data set) would require estimating
additional parameters, which we are not generally in-
terested in. This clearly represents unnecessary work,
so in this situation it is preferable to use the simpler
likelihood, the one conditioned on subsets.

However, in other circumstances, the two likelihoods
are not equivalent. As a general rule, the likelihood con-
ditioned on subsets will use less of the information avail-
able in the data set and will produce estimates with
greater variances (and therefore standard errors) than
will the likelihood over the whole data set. Which likeli-
hood we choose will then depend on several factors,
which will be discussed below.
The point is not to construct two equivalent likeli-

hoods but to determine when two likelihoods are in
fact equivalent.

Model and Notation

For the reader's convenience, the notation introduced
here is also summarized in Appendix A.



Conditioning on Subsets of Data

Model

We consider a general population which is partitioned
into W subsets. We define Qu as the probability that
a member of the population is in subset u: Qu =
P(subset u), for u = 1, . . . , W. Since this is a partition,
every member of the population is a member of one
and only one subset, and E Qu = 1.

Probabilities

The subset u contains I(u) categories. We define pui
as the conditional probability for a population mem-
ber to be in category i, given that member is in subset
u: pui = P(category ijsubset u). (In what follows, we
will write simply I for I(u), unless clarity requires more
explicitness.)

Thus, the Qu are probabilities of being in subset u;
the pui are conditional probabilities of being in cate-
gory i, given one is in subset u; and the product Qupu
is the probability of being in category i of subset u.

Ascertainment

What complicates the model is that not all popula-
tion members end up becoming observations, because
not all members are ascertained. By definition, we will
allot to category i = 0 of each subset all those mem-
bers that are not ascertained. Thus, puo = P(not ascer-
tainedIsubset u).

Therefore, whereas pPui = 1, the sum pui

equals 1 - puo, which in turn equals P(ascertainedl
subset u). We call this second sum pu; thus pu is summed
not over all i but only over i = 1, . . . , I(u).
To correct the conditional probabilities pu: for ascer-

tainment requires dividing by the probability of being
ascertained. Within a subset, the probability of being
ascertained is simply pu, as above, so the corrected
probability becomes

P(category ilsubset u, asc'd) = P
PU

(1)

Viewed over the entire data set, however, the proba-
bility of being ascertained is P(asc'd) = 1 - EQupuo
= EQupu. Now the corrected probability becomes

u

P(subset u, category ilasc'd) = Pu . (2)
>Qupu

We use a parallel notation for observation: nui is the
number of observations in subset u, category i. For con-
venience, nu represents the total number of observa-

tions in subset u: nu = fnui; and n represents the
.i= 1

total number of observations in the entire data set:
n= E nu.

u

Let 0, which may be a vector, represent the parame-
ter(s) of the model. We begin quite generally by letting
both the population subset probabilities Qu and the
conditional probabilities pui be functions of 0. We will
be explicit about this, writing Qu(0) and pui (0) for
these probabilities.

See Appendix A for a concise summary of the no-
tation.

Likelihoods

We now indicate how to formulate the two different
likelihoods described in the Introduction. For the likeli-
hood over the whole data set, which we will call L1,
we take each probability Qupui and raise it to the num-
ber of families observed in that subset category. To cor-
rect for ascertainment we use the same denominator
as in equation (2). The resultant likelihood, L1, is

Hj L, [Qu(0)Pu,(0)]nui
L1(0) - [yQu(0)pu(0)]n

u

To form the likelihood conditioned on subsets, which
we call L2, we create a separate likelihood for each sub-
set. Each of these separate terms has a denominator
as in equation (1). Then the separate likelihoods are
multiplied together to yield L2:

H [Pui(0)]nui
L2(0) = J i= 1

u [Pu(0)]nu
(4)

Note that the subset probabilities Qu(0) appear in the
likelihood over the whole data set (equation [3]) but
not in the likelihood conditioned on subsets (equation
[4]).

Equivalence

The equivalence result to be proved here states that
although L1 and L2 do not yield identical estimates of
0, Li can be modified so as to give the same estimates
of 0 as L2 does. This modification consists of introduc-
ing W - 1 separate, unconstrained parameters "tu'"
into the model. These parameters tu appear as terms
multiplying the Qu(0) terms. It is easiest to write them
as W new parameters with one constraint. Only W -
1 parameters are needed because the likelihood is un-
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changed if all tvalues are multiplied by a constant. When
the t's are included, Lj(0) becomes

subset u, given that it has been ascertained, i.e., given
that it is in the data set. Thus, we have shown that

Li(0) = L2(0) * f(0), (8)
(5)

By definition, two likelihoods are equivalent if they
yield identical MLEs. That is, we are saying not only
that LI(0,t) and L2(0) yield the same MLEs of 0
asymptotically-or for "perfect" data that fit the
parameters exactly- but also that no matter what the
data are, the MLE of 0 found from equation (5) will
equal that found from equation (4).
The reader who is not interested in the proof may

safely proceed to the next section, Applications, or to
the example in Appendix C.

Equivalence Result

Li(0) in equation (3) and L2(0) in equation (4) are

not equivalent in the sense just defined, but Li(0,t) in
equation (5) and L2(0) are equivalent.

Proof.-We assume that the likelihoods are regular,
i.e., that each likelihood is (at least) twice differentia-
ble in the region -around its maximum at 0. The argu-

ment starts with the likelihood conditioned on subsets,
L2, and then investigates how Li (0) in equation (3)
needs to be modified so as to yield the same MLE (0)
as L2(0) does. We proceed in three steps.

Step 1.-We first show that LI(o) can be written as

the product of L2(0) and a multinomial likelihood,
which we call f(0). To do this, rewrite equation (3) as

follows:

[QU(O)pU(0)y'u rHrI [pui(O)]"Ui
LI(0)

u

(6)=[EQ(0)pU(0)]n n [pU(0)]"U
u u

The second term on the right of equation (6) is identi-
cal to L2(0); the first term on the right is a new term,
which we will call f(O). Note that f(0) is in turn the
product of W terms ,Bu(O), raised to powers nu, as

follows:

f(0) = u[I3(0)]nu, where Du(0) = Qv(0)pM(0)

(7)

Thus,f(e) is a multinomial likelihood. Eachllu(n)
represents the probability that an observation falls into

where f(0) is as defined in equation (7).
Step 2.-We next show that Lj(0) and L2(0) will not

in general yield the same MLEs of 0. As is customary,
we work with the log likelihoods. (The only time the
log likelihood is not defined is when the likelihood is
zero, and we can always find a sufficiently small region
around the maximum where the likelihood is not zero.)
From equation (8), we have

log Li(0) = log L2(0) + log f(0) (9)

The MLE of 0 found from L2 must satisfy (8/80i) log
L2(A) = 0, for all i; and, similarly, the MLE of 0 from
L1 must satisfy (8/80,) log L1(6) = 0 for all i. Thus,
for these two MLES 0 to be equal, it follows from equa-
tion (9) that (8/8 Oi) logf(6) must equal 0 for all i as

well, at that same value of 0. However, this will not
in general be the case (although it may hold for certain
well-specified values of the data; see Appendix C for
an example).
We have shown that Li (0) and L2 (0) do not neces-

sarily yield the same MLE of 0. Thus, they are not in
general equivalent.

Step 3.-We then show that when W - 1 uncon-

strained additional "nuisance parameters" tu are intro-
duced into Li(0), creating Li (0,t) as in equation (5),
Li (0,t) and L2 (0) yield the same MLE 0. We introduce
W - 1 new terms ti into f (0) and hence into the likeli-
hood over the whole data set, Li (0). We do this by
inserting t, into the numerator of each D,3 and modify-
ing the denominator accordingly:

(10)t= Qu(0)pu(0)tu
VOPVOt

Recall that there is one constraint on the t terms, so

that although W t's appear in equation (10) they repre-

sent only W - 1 independent parameters. Now the
likelihood over the whole data set becomes

rH [Qu(0)pu(0)tu]nu rHH [pui(0)]nui
~~~U I

Li(0,t) = [FQu(0)pu(0)tu]n [pu(0)]nu
U U

(11)

ri Hr [Qu(O)pui(0)tu]nui
Ll(0,t) = u .
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As in equation (6), the second term on the right of equa-
tion (11) is identical to L2 (0), whereas the first term
on the rightf (0, t), is a function of both 0 and t. Now
equation (9) becomes

log Li (0,t) = log L2 (0) + log f(0,t) . (12)

As discussed earlier, there must be exactly one constraint
on the ta's; for example, we could arbitrarily set ti to
unity. There must be W - 1 unconstrained es so as
to match the W - 1 j3 values. (In cases where other
constraints on 0 allow it, since the Ix's represent the
ratios of the Qu(0) pu(0) terms to each other, each to
will simply be estimated at whatever value is needed
to make Di3 equal the observed nfu/n. Also see Appen-
dix C.)
We then estimate the ta's along with 0, even though

they are not themselves of any meaning or interest to
our model. When we do this (see Appendix B), we find
that L1 (0,t) and L2 (0) yield the same 0, for all values
of the observed data.

Intuitively, this works because the es introduce
sufficient df so that the D's can be made to match the
observed proportions na/n. See the example and ap-
plications below for further explanation. For a formal
proof of step 3, see Appendix B.

Applications

The equivalence result proved above may seem re-
mote when viewed in the abstract. We present here two
applications in human genetics. These should help to
clarify the implications of the equivalence result. In ad-
dition, Appendix C presents a simple numerical exam-
ple involving tossed coins and balls in urns.

1. Application: Family-Size Distribution

In an earlier work, I considered the effects of the popu-
lation family-size distribution (FSD) on a segregation
analysis (Hodge 1985). There I defined the "separate-
multinomials" likelihood as that formulation of the
likelihood which treats each family size as representing
a separate multinomial distribution and the "grand-
multinomial" likelihood as that which treats the entire
data set as representing one distribution. I showed that
these two likelihood formulations are equivalent, in the
same sense as used here, if and only if the population
FSD is completely unknown.

I will show now that this earlier work represents a
special case of the equivalence result presented here.

The separate-multinomials likelihood is the same as the
likelihood conditioned on subsets (L2), and the grand-
multinomial likelihood is the likelihood over the whole
dataset (Li). The subsets represent different family
sizes, with categories representing the configurations
of affected and unaffected individuals within each given
family size. The subset probabilities Qu(0) represent
the FSD in the population. Moreover, we assumed that
the FSD is independent of the genetic parameters 0. That
is, each QU (0) is really just QU. Therefore, we can sim-
ply view each QU as being one of the nuisance param-
eters t,,. The single constraint is the fact that the Qu
terms must sum to unity. The conditional probabilities
pui(0) represent, for example, the probability of i
affected children, given a u-child family. (More gener-
ally, pui (0) is the probability of the ith configuration
of affected and unaffected individuals, given that the
family is in size class u).
The equivalence result presented here tells us that

when the FSD is unknown, the likelihood conditioned
on subsets (i.e., on family sizes) will yield the same esti-
mate of 0 as the more cumbersome likelihood does over
the whole data set. This is because the W - 1 nuisance
parameters are already present in the model. Thus, we
may as well use the more tractable likelihood condi-
tioned on subsets, as it makes no difference in the esti-
mation of 0. This result is useful in human genetics,
where we generally do not know the FSD with certainty,
if at all.

However, it also follows that if we do know some-
thing about the distribution of family sizes, i.e., the
QU's, then this additional knowledge will represent ad-
ditional constraints on the tu's, and the two formula-
tions of the likelihood will not in general yield the same
estimates of 0. Ewens et al. (1986) have shown that the
resultant differences in estimates of 0 are generally not
large, but the point is that the MLEs of 0 are not mathe-
matically identical when anything is known about the
FSD. Clearly, if we were in fact interested in the FSD,
then the FSD parameters would be incorporated in 0,
and the above analysis would not be relevant, since the
QU s would no longer be independent of 0.

2. Application: Conditioning on "That Part of
the Data Relevant to Ascertainment"

Background. -Ewens and Shute (1986) have proposed
a method of ascertainment correction which is ex-
tremely nonparametric or assumption free. Unlike the
classical Weinberg model of ascertainment (Weinberg
1928; Morton 1959), this approach makes no assump-
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tions about equality of ascertainment probabilities or
independence of ascertainment events. In fact, it cir-
cumvents the whole concept of probands and simply
defines the probability that a family of a certain type
is ascertained (since the family is the basic unit of genetic
study). For the moment, we limit this discussion to fam-
ilies of the same size. However, the Ewens and Shute
method is not limited to single family sizes. We will
deal with the issue of different family sizes below, in
connection with equation (16). Ewens and Shute parti-
tion the data conceptually into the part "relevant to
ascertainment;' which they denote di, and the part not
relevant to ascertainment, denoted d2. Thus, by defini-
tion, all families with the same value of di have the
same probability of being ascertained, which we de-
note a(di) for the moment. For example, if we are
studying nuclear families, we might determine that the
"number of affected children" represents that part of
the data relevant to ascertainment; then di would
equal the number of affected children.
The nonparametric nature of this approach arises

from the fact that we do not need to know what the
values of the a(di)'s are, because Ewens and Shute
show that if the a(di )'s are unknown, then the likeli-
hood of the genetic parameters is the same as if one
simply conditioned on the value of di.

Rather than reiterate all their work, we will now ex-
press it in terms of "subsets" and "categories." We will
show that Ewens and Shute's approach utilizes a spe-
cial case of our equivalence result and then point out
some limitations of the assumption-free approach.
Each value of di represents a subset u, whereas fur-

ther breakdowns of the data by d2 are to be viewed as
categories within a subset, i. To continue the example
with nuclear families, if u represents the number of
affected children, then i represents whatever else is con-
tained in the data: affectedness status of the parents,
linkage information if there is any, etc. The parameters
of interest, 0, are still genetic (gene frequency, pene-
trance, recombination fraction, etc.) but explicitly ex-
clude ascertainment. The population subset probabili-
ties Qu (0) of subset u do in general include 0 and do
not correspond to the nuisance parameters tu as they
did in the FSD application.

Instead of a(di), we write au to denote the probabil-
ity that a family is ascertained, given it is in subset u.
Thus, within each subset u, the probability of not be-
ing ascertained is puo(O) = 1 - au. The likelihood over
the whole data set is

HFn[Qu(0)pui(0)au]nui U = 1i ... w
LI(0) = u

[Qu(0)pu(0)]au]nu i = 1, ..., I(u)
u

(13)

The likelihood conditioned on subsets is

n nl [Pu,)nul,
L2(0) pu

H(pu)nu u Pu
U

nui
. (14)

Ewens and Shute prove that equations (13) and (14) yield
the same estimate of 0. We see that this is a special case
of our equivalence result, with the au in equation (13)
taking the place of the parameters tu. However, we also
see that the equivalence of equations (13) and (14) holds
only when the ascertainment probabilities are com-
pletely unknown, without any constraints.

Limitations to the Ewens and Shute approach to correcting
for ascertainment. -As Ewens and Shute point out, using
equation (14) is the same as conditioning on "that part
of the data relevant to ascertainment;' i.e., condition-
ing on the subsets. Since this part of the data may con-
tain a good deal of genetic information, (e.g., numbers
of affected children), an obvious criticism of the method
is that one is "conditioning out" much of one's data.
However, the point of the equivalence between equa-
tions (13) and (14) is that if we do not know the au
values, then we may as well condition on u; we will
get precisely the same likelihood anyway. Thus, if we
really do not know anything about ascertainment be-
yond the fact that it depends in some way on the value
of U, this criticism is not valid.

However, the other side of the coin is that if we do
in fact know something more about ascertainment than
that, then conditioning on subsets u will lose that addi-
tional information. We consider two examples of this
situation. The first is straightforward: Assume again
that the ascertainment probability for a family depends
only on the number of affected children, so that we
define our subsets by "number of affected children." In
this situation, although we do not know the actual value
of the ascertainment probabilities au, we might well
still believe that this probability should increase as the
number of affected children increases, i.e.,

au < av for u < v . (15)

However, incorporating an assumption such as for-
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mula (15) into the likelihood would represent additional
constraints on the au and would therefore invalidate the
equivalence of equations (13) and (14). In other words,
by using equation (14) and conditioning on subsets, we
are unable to incorporate additional information or as-
sumptions such as formula (15). The only way to in-
corporate formula (15) is to go back to the likelihood
over the whole data set (equation [13]) and estimate
the au along with the genetic parameters, 0. This same
caveat would apply for any other assumptions we might
want to include about relationships among the proba-
bilities a>.
The second example is more subtle. In our recapitu-

lation of Ewens and Shute's results above, we ignored
the issue of family size. However, most data sets con-
tain more than one family size. Here is how the family-
size issue enters the discussion. (We continue to illus-
trate the situation where di, that part of the data rele-
vant to ascertainment, consists of the number of affected
children.) Recall that the probabilities pui represent
P(configuration u of parental phenotypes, marker data,
etc. i affected children). These probabilities in fact
depend on the total sibship size, not just on the number
of affected children. (For example, for a recessive dis-
ease P(1 affected parent 1 affected child) is lower in
a five-child family than in a one-child family.)
One solution -i.e., one way to allow for the FSD-

would be to incorporate the population FSD into the
Pui, as follows:

P(configuration u i affected children) =

EP(u i aff. children, s) P(i aff. children s) P(s) (16
2P(i s) P(s)

Here, s represents sibship size and P(s) is the popula-
tion probability of an s-child family, i.e., the FSD. How-
ever, this solution is impractical. We do not generally
know the FSD accurately, and Ewens and Asaba (1984)
have shown that the estimation of genetic parameters
is quite sensitive to the FSD when the latter is used in
the likelihood; that is, parameters may be asymptoti-
cally biased if an incorrect FSD is used.
The simpler, more obvious solution to the FSD prob-

lem is to redefine our subsets so as to break them down
by sibship size as well as by number of affected chil-
dren. To be explicit, rather than defining the subsets
as u = 1 denotes 1 affected child, u = 2 denotes 2
affected children, etc., we use the following:

u = 1 denotes two-child families with one
affected child;

u = 2 denotes two-child families with two
affected children;

u = 3 denotes three-child families with one
affected child; and, in general,

u = v denotes s-child families with a affected
children, where v = s(s - 1)/2
+ a - 1.

(17)

This solution is in fact what Ewens and Shute do, since
they condition on sibship size as well as on number
of affected children; see, for example, their equation
(6). The disadvantage is that this solution results in con-
ditioning on a much larger number of subsets than we
may have anticipated-and hence in introducing that
many more nuisance parameters tu or df. For exam-
ple, say our maximum sibship size is five. Then by the
scheme in equation (17), the total number of subsets
is 14, not five.
To put this another way: Recall that every subset has

its own probability of ascertainment, au or tu, and that
we cannot constrain these probabilities in any way. Now,
a reasonable constraint which even a fairly assumption-
free ascertainment theory might want to encompass is
that the probability of ascertainment for a family should
depend on the number of affected children but not ad-
ditionally on the number of unaffected children. In other
words, a reasonable constraint is that P(family ascer-
tained i affected children, s) should equal P(family
ascertained i affected children), without the s. How-
ever, we cannot incorporate even this constraint into
the Ewens and Shute method. P(family ascertained
1 affected child, s = 2) and P(family ascertained 1
affected child, s = 3) represent ascertainment proba-
bilities for two different subsets and cannot be con-
strained to be equal.

Discussion

In this paper we have examined two different formu-
lations of the likelihood and have shown that they are
not in general equivalent, in the sense of yielding the
same estimates of 0. The likelihood over the whole data
set, L1 (0) in equation (3), tends to be more cumber-
some, and the likelihood conditioned on subsets, L2
(0) in equation (4), tends to be simpler to work with.
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We have also shown that if a sufficient number of "nui-
sance parameters,' tu, are present in or are introduced
into the model-so that instead of Li (0) in equation
(3) we have L1 (0,t) in equation (5)-then L1 (0, t) and
L2 (0) are equivalent. In these situations, there is no
reason not to use the simpler formulation L2 (0). How-
ever, in situations where the tu terms are not present,
the more cumbersome Li (0) will, in general, yield
more information (in the sense of lower variances of
the estimates) than will L2 (0). The user will need to
decide, in each particular case, whether the gain in in-
formation is worth using the more awkward formu-
lation.

I have shown that L1 (0,t) in equation (5) is equiva-
lent to L2 (0) in equation (4) if and only if there are
W - 1 independent ts; that is, the presence of W -
1 t's represents a necessary and sufficient condition for
equivalence between equations (5) and (4). However,
we have not ruled out the possibility that some other
modification of Li (0) in equation (3) might also lead
to a likelihood that is equivalent to L2 (0). For exam-
ple, we could modify Li (0) with linear combinations
of the es; this would also lead to equivalence as long
as the matrix of linear combinations had dimension
W - 1. However, it is difficult to imagine a situation
in which we would choose to do this.
The tu's may seem artificial. The point, however, is

not that we deliberately choose to introduce W - 1
t terms into a likelihood but that when we condition
on subsets, this is in fact equivalent to introducing these
t's, and we need to be aware of this fact.

It can be shown that in large samples the MLEs of
0 found from Li and L2 will approach each other
asymptotically. However, this paper is concerned with
estimates in finite samples.
An interesting special case occurs when there is no

ascertainment aspect to the model, i.e., when there is
no distortion due to ascertainment. For example, con-
sider the situation in which all observations in each sub-
set are ascertained, i.e., where Puo = 0 and therefore
PU = 1 for all u. The likelihood over the whole data
set simplifies considerably, since the denominator be-
comes unity. That is, Li (0) in equation (3) becomes

L(0) = IH [Qu(0)pu_(0)]nu(
= H 13u(0)nu * rlrJ pui(0)nui

U U I

The first term on the right in equation (18) is the mul-
tinomial termf(0), and the second term equals the likeli-
hood conditioned on subsets, L2 (0). (See equations [6]

and [7].) In equation (18), the 0i (0) terms equal the
Qu(0)'s. However, despite this simplification, the gen-
eral results still hold; that is, the two likelihoods Li and
L2 are not in general equivalent. Again, W - 1 t terms
must be introduced into each Du in order to ensure
equivalence (see equation [10]):

Di(0 t) Qu(0)tu
V

The other special case worth mentioning occurs when
the subset probabilities Qu do not depend on 0. This
condition alone does not affect the equivalence result.
In fact, as we have already seen, the FSD example dis-
cussed above represents an example in which the sub-
set probabilities are independent of 0. However, when
the Qu's are constant with respect to 0 and there is no
ascertainment aspect to the model (as in the above para-
graph), then the two likelihoods, Li (0) and L2 (0), are
always equivalent. This is because f(0) in equation (7)
is now not a function of 0 at all. Therefore, from equa-
tion (8), Li (0) and L2 (0) differ only by a constant
(with respect to 0), and so they will yield the same MLE
of 0.
Ewens and Shute (1986), Greenberg (1986), and

others have shown that when we assume an incorrect
mode of ascertainment, we may introduce substantial
biases (also asymptotically) into our estimates of genetic
parameters. In contrast, Ewens and Shute's nonpara-
metric method of conditioning on that part of the data
relevant to ascertainment yields asymptotically unbi-
ased estimators. On the other hand, of course, when
the classical ascertainment model is correct, it is prefer-
able, because it yields smaller standard errors of the
estimates than the Ewens and Shute method does. Note,
too, that the Ewens and Shute method is more appro-
priate (i.e., results in less loss of information) in some
situations than in others; see Ewens and Shute (1986)
and Shute and Ewens (1988) for a more detailed dis-
cussion.

In situations in which we do not know the ascertain-
ment model but in which the Ewens and Shute method
yields unacceptably large standard errors, it may be
worthwhile to develop methods of ascertainment cor-
rection that fall between the classical one and the non-
parametric approach ofEwens and Shute. Such methods
would require using the more cumbersome likelihood
over the whole data set, Li, but would permit us to
incorporate some constraints into the likelihood. Fur-
ther research will be needed to determine how feasible
this approach may be.
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In summary, then, if we condition on W subsets of
the data, we need to know that this is equivalent to
having W - 1 nuisance parameters or additional df
in the model. Whether this fact is desirable depends
on other factors. On the one hand, ifthose df correspond
to information that we really do not have, then there
is no disadvantage to conditioning on subsets. On the
other hand, if they correspond to information that we
do in fact possess or to assumptions that we would be
willing to make, then we need to evaluate for each par-
ticular situation how severe the subsequent loss of in-
formation is (as measured by increased standard errors).
This is what Ewens et al. (1986) did for the FSD prob-
lem. If the loss is too severe, then we may wish to con-
sider using the more cumbersome but more informa-
tive likelihood over the whole data set, Li.
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Appendix A
Summary of Notation and Relationships

Qu = P(subset u), u = 1, ...,W

w
E QU=1

u = 1

pui = P(category i subset u), i = 0, 1 . . ., I(u)
Puo = P(not ascertained subset u)

I(u)

iEo pui = 1

I(u)

PU = ppui = 1 - puo = P(ascertained subset u)
. = 1

nui= number of observations in subset u, category i

I(u)
nu = nui = number of observations in subset u

i = 1

n = I nf = total number of observations in data set
0 = parameter(s) of the model

Appendix B
Proof That When W - I Unconstrained Terms t.
Are Introduced into Li, as in equations (5) and
(10), the Two Likelihoods Li and L2 Are Equivalent

Introduce a parameterization from (0,t) to (0,4), based
on the relationship in equation (10). Thus, f(0,t) be-
comesf(13)-see equation (7)-so equation (12) can be
written as

log L1 (0,4) = log L2 (0) + logf(13). (Bi)

The parameter 0 no longer appears in f; therefore, Li
and L2 in (Bi) must yield the same MLE of 0. QED.
Note, however, that this technique works only if the

reparameterization (transformation) is well defined and
one to one, i.e., if the Jacobian of the transformation
is nonzero. These conditions are met if and only if there
are as many independent es as there are 13's, i.e., W -
1 independent es.
To see that the existence of W - 1 es corresponds

to the transformation being welll defined and one to
one, note from equation (10) that the es must satisfy
the following relationship:

tu _ 1u/(QuPu)to, BU/(>Pu). u = 1, ...
., W.

E t- E [13(QvPv)]
v v

(B2)

As written, equation (B2) does not have a unique solu-
tion. This is because there are W ts, but equation (B2)
actually represents only W - 1 equations. (Subtract-
ing the sum of the first W - 1 equations in equation
[B2] from unity yields the Wth equation.) However, put-
ting one additional linear constraint on the es does pro-
vide a unique solution. For example, that constraint
could be Et, = 1; then equation (B2) would yield

1u/(QuPu)
tu = -E [Pv1(Qvpv)]

For another example, the constraint could be ti = 1;
then equation (B2) would yield

_ u/(QuPu)
tu i(Qipl )

Clearly, however, putting more than one constraint on
the es would overdetermine them.
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Appendix C
Simple Numerical Example

The Model

This example involves a coin and two urns. The coin
lands heads with probability 0 and tails with probabil-
ity 1 - 0: The urns contain red and green balls in differ-
ent proportions: 0 red and 1 - 0 green in the first urn,
20 red and 1 - 20 green in the second urn, where 0
< 0 < .5. All sampling is with replacement. Define a
trial as follows: Toss the coin. If it comes up heads,
draw two balls from the first urn; otherwise, draw two
balls from the second urn. Each set of two balls be-
comes part of our sample only if it contains at least
one red ball; this aspect of the example represents ascer-
tainment. We do not know how many sets were dis-
carded because of failing to be ascertained. However,
we do know which urn each set of two balls was drawn
from. The random variable we observe is the number
of red and green balls in each ascertained set of two
balls. The parameter we wish to estimate is 0.

Notation

The model contains two subsets (W = 2), corre-
sponding to whether the coin comes up heads or tails
and hence to whether the two balls are drawn from the
first or second urn. Thus, Q1 (0) = 0 and Q2 (0) =
1 - 0. Any given set of two balls is unascertained
(i = 0) if it contains no red balls; otherwise, it is in
category 1 or 2 if it contains one or two red balls, respec-
tively. Thus, the pui represent the probabilities that a
set of two balls will contain i red balls, conditioned
on which urn the set was drawn from. For u = 1, Pij
= (i2) 0 (1 - 0)2 - , whereas for u = 2, p2, = ( ) (20)i
(1 - 20)2 - i. The probability pu that a set of two balls
will be ascertained, given it is in subset u, is 1 - (1
- 0)2 for u = 1 and 1 - (1 - 20)2 for u = 2. The
likelihood over the whole data set (equation [3]) is

Lj(0) = Oni (1 -O)n2 A

{0[1-(1 -0)2] + (1 -0)[1 -(1 -20)2]}In
(Cl)

whereas the likelihood conditioned on subsets (equa-
tion [4]), is

A

where A = [20(1 - 0)]nll [02]n12 [2(20)(1 - 20)]fl
[402]n22 in both equation (Cl) and equation (C2).

Numerical Example

We have 101 ascertained sets of two balls, 20 from
the first urn and 81 from the second. Among the 20
sets from the first urn, 15 contain one red ball and five
contain two red balls; and among the 81 sets from the
second urn there are 27 sets with one red ball and 54
with two. Thus, nil = 15, n12 = 5, n2l = 27, n22 =
54; nli = 20, n2 = 81; and n = 101. These are the
numbers that go into equations (Cl) and (C2).
Illustration of Equivalence Result

Let 02, Of, and 01 denote the MLEs of 0 found by
maximizing, respectively, L2 (0) alone, f(0) alone, and
Li (0). By maximizing L2 (0) in equation (C2) using
these numerical data, we obtain 02 = .4 exactly: Thus,
the two 0i terms, as in equation (7), become

013(02) = 0[1 - (1 - 0)2]
= 308

0[1 - (1 0)2] + (1 - 0)[1 - (1 - 20)2] *

(C3)

(1 -0)](10)-(1-20)2] 1
0202)= 2+(-)[-l-02= 1- pi (0)= .692.

However, we can show that this solution in equation
(C3) does not maximize Li (0), by the following
reasoning. Recall from equation (9) that if equation
(C3), which maximizes L2, is to maximize Li as well,
it must also maximize f(0). By equation (7), f(0) is a
multinomial likelihood. Since there are no other con-
straints on 0, this multinomial likelihood is maximized
when 13u (0) = nfl/,n, for u = 1,2; that is, D1i (of) must
equal 20/101 = .198, not .308 as in equation (C3);
similarly, 132 (Oj) must equal .802, not .692. Therefore,
for these data, as in general, the two likelihoods (Cl)
and (C2) will not yield identical estimates of 0. In fact,
maximizing Li (0) in (Cl) yields 01 of approximately
.381, as opposed to .40.
Observe how introducing the t's changes the situa-

tion. We insert ti and t2 into the 1's, so that equation
(C4) is replaced by 01(0,t) = 0[1 - (1 - 0)2]t I/{0[1 -
(1 - 0)2]tl + (1 - 0) [1 - (1 - 20)2]t2}, and a similar
modification of 12(0) results in 2(0,t). The likelihood
over the whole data set (equation [Cl]) becomes

(C2) Li(0,t) = [13l(0,t)]n, [132(0,t)]n2 * L2(0)L2(0) =
[1 -(1 0)2]ni [1 -(1 -20)2]n2 5 (C4)
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with 1i (0,t) and 12(0,t) as in the previous sentence and
L2(0) as in equation (C2). Maximizing equation (C4)
with respect to 0 and t now yields 0 = .40; the MLEs
of the t's depend on which constraint we choose. For
example, if we set ti = 1, then t2 = 1.8; if we con-
strain t1 + t2 = 1, then Ii = .3571 and t2 = .6429.
The reader can confirm that these MLEs of 0 and t
do yield Di = ni/In = 20/101 and 0B2 = n2/n =
81/101, as required if L1 and L2 are to be equivalent.

In summary, then, for the numerical data as given,
the MLE of 0 is approximately .38 when the likelihood
over the whole data set (equation [Ca]) is used but equals
.40 when the likelihood conditioned on subsets (equa-
tion [C2]) is used. Both estimators are asymptotically
unbiased, but the former has the smaller asymptotic
variance (Ewens et al. 1986). On the other hand, if we
change the model by introducing the tu terms, as in
equation (C4), then both estimates of 0 equal .40.
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