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Summary

When nuclear families are sampled by an ascertainment procedure whose properties are not known, biased
estimates of genetic parameters will arise if an incorrect specification of the ascertainment procedure is
made. Elsewhere we have put forward a resolution of this problem by introducing an ascertainment-
assumption-free (AAF) method, for nuclear family data, which gives asymptotically unbiased estimators no
matter what the true nature of the ascertainment process. In the present paper we extend this method to
cover pedigree data. Problems that arise with pedigrees but not with families—for example, the question of
which families in a pedigree are “ascertainable”™—are also considered. Comparisons of numerical results for

pedigrees and nuclear families are also made.

Introduction

The ascertainment problem has been described in ear-
lier papers in this series (Ewens and Shute 1986b; Shute
and Ewens 1988). It arises because some assumption
must be made about an ascertainment process in analyz-
ing the data it leads to, and an incorrect assumption
will lead to biased estimates of genetic parameters. The
classical ascertainment procedure of Weinberg (1928)
and Fisher (1934) potentially suffers from this defect.
In our earlier papers we proposed a resolution of this
problem for the case of nuclear families, and in the pres-
ent paper we extend this to the case of pedigrees and
note also various problems with pedigrees not present
with nuclear families.

For nuclear families, the ascertainment problem is
overcome by conceptually dividing the data d in any
family into two components, di and d2. The compo-
nent d is that part of the data “relevant to ascertain-

ment” (so that two families with the same d; have the.

same probability of being ascertained), while d; is that
part of the data “not relevant to ascertainment.” In an
earlier paper (Ewens and Shute 1986b) we show that
asymptotically unbiased estimation of genetic param-
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eters is obtained, no matter what the (unknown) ascer-
tainment procedure might be, by using as likelihood
the expression L, defined by

L=IIIITII [Pm(asc,dl,dz)/Pm(asc,dl)]"('”4142),

m di d2
(1)

where #n(m,d1,d>) is the number of families in the sam-
ple having m children and data {d1,d2}. In effect, this
likelihood is the conditional probability of the data,
given the values of the data relevant to ascertainment—
i.e., (d1)—from each family.

Use of this ascertainment-assumption-free (AAF)
likelihood results in a loss of information due to the
conditioning on d1 and hence leads to standard errors
of parameter estimates larger than those arising when
the true ascertainment process happens to be correctly
assumed. When a procedure for the estimation of
genetic is chosen, there must be a trade-off between
(a) the bias in the estimates under the “classical” ap-
proach if the ascertainment assumptions made under
this approach do not hold and (b) the increase in stan-
dard errors of the estimates when the AAF likelihood
(expression [1]) is used. The extent to which one is
confident about knowing the true ascertainment pro-
cess will be important in making this choice, as are the
typical values (assessed by Shute and Ewens [1988]) of
the sizes of these biases and standard errors.

The claim has been made that a disadvantage of the
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new approach is that one has to be able to specify what
part di of the total data is relevant to ascertainment.
However, this specification is necessary under every
ascertainment procedure. If di is the number of
affected children in the family (as is often the case),
likelihood (1) arises, in effect, by one’s assuming some
arbitrary probability a,,(d1) that a family with m chil-
dren, d; of whom are affected, is ascertained. The clas-
sical method assumes a specific mathematical form

P(ascldi) = 1-(1 —m)d1 (2)

for this probability, for some unknown parameter 7.
Use of this function, however, still implies a specific
choice of di, and the AAF approach arises simply by
replacing the specific (and often unreasonable) mathe-
matical function (2) by the arbitrary probability
am(d1). We return to this point later in discussing
pedigrees. These comments remain true even for par-
ticular cases of the classical procedure, in particular
the cases 1 = 1 (complete ascertainment) and 7 = 0
(single ascertainment), when (2) takes the forms

P(asc|d;) = const, const X di, (3)

respectively.

Our aim is to find the analogue of (1) for data from
pedigrees and to examine various questions of ascer-
tainment sampling that arise for pedigrees but not for
nuclear families. We will also compare numerical prop-
erties of estimators from pedigrees with those from fam-
ilies.

Theory for Pedigrees

We write the data for any pedigree in the form {M,
D1, D). M is a vector describing the structure of the
pedigree, including the number of families contained
in the pedigree, how they are related, the number of
children in each of them, and also which of these fami-
lies are within the geographical area in which the ascer-
tainment sampling takes place. D; describes all the
pedigree data that are relevant to ascertainment, and
D3 is all the remaining data (phenotypic and geno-
typic). For example, if pedigrees are ascertained through
affected girls living in a certain area, then Dj is the
number of affected girls living in that area. We define
the following terms: Pm(asc,A) = the probability that
a pedigree having structure M is ascertained and is of
type A (A describes the data contained in the pedigree);
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Om(A) = the population probability that a pedigree
having structure M is of type A; and Pu(asc|D1) = the
probability that a pedigree having structure M and data
D is ascertained. These definitions imply that
Pum(asc, D1,D2) = Qwm(D1,D2)Pm(asc|D1) , (4a)
Pum(asc,D1) OwMm(D1) Pm(asc|D1) ,  (4b)

DZ;' Om(D1) Pp(asc|D1) . (4c)

Pm(asc)

The likelihood for a sample of pedigrees is now

— n(M,D1,D2)
L = IA} g Dl'I2 [PM(asc,Dl,Dz)/PM(asc)] 1,02

-nnon Qwm(D1,D2) Pu(asc|Dq)]"M.D1,D2)
M b1 D2 );, Om(#)Pm(asc|i)

’

(5)

where 7n(M,D1,D;) is the number of pedigrees sampled
that have structure M and data (D1,D3), i runs through
all Dy values, and the product involving M covers all
possible structure vectors. In this expression, the prob-
abilities Pn(asc|D1) and Pn(asc|i) are specified func-
tions (analogous to [2]) of ascertainment parameters
under the classical approach or are a set of free
parameters (analogous to the a,(i) for nuclear fami-
lies) under the AAF approach.

Thus, if, under the classical approach, we assume
complete ascertainment (so that P(asc|i) = const), likeli-
hood (5) becomes

L = ITTTIT [Qu(D1,D2)/ £ Qu(i)]MPrb2)
(6)

while if we assume single ascertainment (for which
P(asc|i) = const X i), (5) becomes

L =ITTLII [DIQM(DI,DZ)@ i QM(i)]"(M'Dl'DZ).
(7)

Under the AAF approach, no specification of am(i) is
made and am(7) is estimated along with the genetic
parameters. Theory analogous to that in one of our
earlier papers (Ewens and Shute 1986b) then shows that,
as for nuclear families, estimation of the am(:) values
separates from estimation of genetic parameters and
that the latter are found by using the likelihood L,
defined by
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L= II} Dl'[1 Dl'I2 [PM(asc,D1 ,D2)/Pu(asc,D1 )] n(M,D1,D2) |
(8)

which is the direct analogue of (1). A formula more
useful for computation is

L = TTITIT [Qm(D1,D2)/ Qu(D1)]MP1.02)
9)

Use of (8) leads to estimates of genetic parameters that
are free of any specific ascertainment assumption but
that will have an accompanying increase in their stan-
dard errors, compared with those arising from (6) and
(7). As with nuclear families, a trade-off between (a)
the bias possible through incorrect use of (6) or (7) and
(b) the increase in standing error using (8) might deter-
mine the approach used, depending again on the de-
gree of confidence we have in our knowledge of the true
ascertainment procedure.

We remark that, as with nuclear families, it is not
a valid criticism of the AAF procedure that it requires
one to specify the data relevant to ascertainment. This
specification must also be made under the classical ap-
proach (see, e.g., the probabilities [6] and [7]) and in-
deed under any approach. We do, however, agree that
in practice it might be very difficult to make this
specification. The theory in one of our earlier papers
(Ewens and Shute 1986b) shows that asymptotically
unbiased estimates will arise if one conditions, if possi-
ble, on the affectedness status of all individuals, al-
though this will imply large standard errors of estimates
of absolute penetrance values.

An Example

We illustrate the theory with a very simple (and very
unrealistic) example which is free of the complexities
of a more realistic case. In this way the properties of
the AAF method can be highlighted, as well as various
problems specific to pedigrees but not to families. Ap-
plication of the theory to the more realistic segregation
analysis model of HLA-linked diseases is currently be-
ing examined.

Consider a disease that is determined by the genes
at a single disease susceptibility locus S, admitting a
susceptibility allele S and a normal allele s. The
penetrances for the three possible genotypes are known,
and are here assumed to be
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genotype SS Ss ss

penetrance 7 1 0

The objective is to estimate the population frequency
p of the disease allele S by using data deriving from
pedigrees. We shall use the simplest pedigree in all the
following work, again to highlight the points at issue.

Consider two brothers (Bl and B2) and their unrelated
wives (W1 and W2), yielding family 1 and family 2.
Suppose there are two children in each family (C1, C2,
C3, and C4), the sex of whom is irrelevant. The par-
ents of the two brothers (G1 and G2) are not observed,
although their existence is of course required for vari-
ous calculations. All other individuals in the pedigree
are observed. For simplicity, all pedigrees in the sample
are assumed to have this structure, so we discard the
suffix M (in the formulas of the previous section) in
our calculations.

The four “independent” individuals in this pedi-
gree are G1, G2, W1, W2, and we assume that each
of these is independently S8, Ss, ss, with respective prob-
abilities p2, 2p (1 — p), and (1 — p)2. Given this, we can
calculate the probabilities for the joint genetic consti-
tutions of all individuals observed. Knowing the pene-
trances of the disease, we can also calculate the proba-
bilities of each of the 28 sets of affectedness statuses
of the eight individuals observed. The population prob-
ability of the pedigree having affectedness status configu-
ration j is denoted Q(j) (where j = 1, ... 256 is an
index of the 28 affectedness statuses), such that

Q(1) = Prob {W1, W2, B1, B2, C1, C2, C3,
C4 all affected}

Q(2) = Prob {W1, W2, Bl1, B2, C1, C2, C3
affected; C4 not affected}

Q(256) = Prob {no one affected} . (10)

These are all functions of p and can be computed easily.

Now assume that a pedigree is ascertained through
affected children and that all the sibs, parents, aunts,
uncles, and cousins of the affected individuals are ex-
amined. In this case, the data relevant to ascertainment
(D1) is (in a way made more precise below) the num-
ber of affected children in the pedigree and D> consists
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of the remaining data, namely, the affectedness status
of parents, aunts, uncles, and (possibly) cousins.

The first problem specific to pedigrees but not to nu-
clear families concerns the location of the families. The
pedigree under consideration consists of two distinct
families, so it is possible that the families live in geo-
graphical areas remote from each other and that ascer-
tainment is possible through only one family, the other
family not being within the geographical scope of the
investigation. Such a case will obviously result in differ-
ent probabilities of ascertainment than those arising
when it is possible for the pedigree to be ascertained
through either family. In the following calculations we
shall consider both of these cases. It is possible also
that the investigator—or the computer program he is
using—might incorrectly specify which families are
ascertainable. We consider below all four possible com-
binations.

A. Ascertainment through One Family Only

If ascertainment is possible through only one family
of the pedigree (say, family 1), then D; (that part of
the data relevant to ascertainment) is the number of
affected children in the family (which we denote K;)
and D; (the data not relevant to ascertainment) is all
the remaining affectedness data in both families. D,
consists of {K2,D3}, where K3 is the number of affected
children in family 2 and D3 is the affectedness data in
both sets of parents. We thus write {D1,D;} as
{K1,(K2,D3)}. We suppose initially that the investiga-
tion correctly allows for the fact that ascertainment is
possible only through family 1.

We consider data arising from three different true
ascertainment schemes: (i) complete ascertainment—
where the probability of ascertainment is independent
of the number of affected children, K1, in the ascer-
tainable family (family 1); (ii) single ascertainment—
where the probability of ascertainment is proportional
to Ki; and (iii) quadratic ascertainment—where the
probability of ascertainment is proportional to Ki. In
the case of nuclear family data, complete and single
ascertainment define limiting cases if the probability
of ascertainment is defined as in (2). However, it is pos-
sible to devise a quadratic process of ascertainment in
which the probability of ascertainment of a family is
proportional to the square of the number of affected
children in that family, i.e. (see [3]), P(asc|d1) = const
x di. This quadratic case cannot be described by (2)
and is outside the limits defined by the single-to-
complete range. This problem has been discussed fully
by use elsewhere (Ewens and Shute 19864; Shute and
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Ewens 1988). The 1985 Genetic Analysis Workshop
presented data of an HLA-linked disease that appears
to have been gathered using a type of “quadratic” ascer-
tainment process (Ewens et al. 1986). It is therefore
reasonable to consider the quadratic case as a possible
type of ascertainment process for pedigrees as well as
for families.

The method we use for finding properties of differ-
ent estimation procedures, for the three forms of data
above, was suggested by Morton (1984) and was used
by us for family data (Ewens and Shute 19865, 1988).
A particular value of the parameter p is chosen and
one of the ascertainment schemes (i)—(iii) given above
is assumed to hold. The mean of each #(D1,D;) com-
bination is calculated for this value of p and the chosen
ascertainment process, assuming a sample of »# pedi-
grees. The data are now taken to be exactly as these mean
values. These data are now inserted, as the n(D;,D;)
values, in each of the likelihoods (6), (7), and (9), and
the maximum likelihood estimates are calculated. The
values obtained are the asymptotic (i.e., large-sample-
size) mean values of the maximum likelihood estimates
of p, and a standard information-theory formula gives
the asymptotic standard error of each asymptotically
unbiased estimate. From now on we often omit the word
“asymptotic” when referring to biases and standard
errors arrived at in this way.

In the example we consider, the likelihoods (6), (7),
and (9) simplify, on putting

2 2
Q = Z ZO DZ3 Q(KI,KZ,D3) )

Ki=1 K3=
and
Q" = QK1 =1)+2Q(K1=2)
with
QK1 =j)= Kzi;o ng 0(.K2,D3) ,
to

2

2
_ n(K1,K2,D3)
L= KEII Kzrgo g Q(K1,K2,D3)/Q ’
(1)

for the case where complete ascertainment is assumed,
to



Ascertainment Sampling Problem. III

L = ﬁ ﬁ I1 [K Q(K K»>.D )/Qx-]n(Kl,KZ,D3)
T k=1 K2=o0 D3 | IRVDRDUS ,

(12)

when single ascertainment is assumed, and to

z 2 (K1,K2,D3)
L= KEI Kzl'lo DH3 [Q(Kl,Kz,D3)/Q(K1)] 5

2
= A1 H[Q(I,KZ,D3)/Q(K1=1)]"(1,K2,D3)

K2=0 D3

X

[Q(Z,Kz,D3)/Q(K1 = 2)]"(2“”33’ ) (13)

for the AAF approach.

We thus have three possible true ascertainment
processes ([i]-[iii], given above) and three estimation
procedures (corresponding to [11]-[13]), namely, clas-
sical assuming complete ascertainment, classical assum-
ing single ascertainment, and AAF. There are thus nine
different combinations of true and assumed ascertain-
ment schemes to be examined. For each of these com-
binations the maximum likelihood estimate of p can
be obtained, along with the accompanying standard
error of unbiased estimates; the results are shown in
table 1 for the case where the true value of p is .1.

The main conclusion that we draw from table 1 is
that, as in the case of nuclear families, the classical
method gives correct estimates only if the correct ascer-
tainment process is assumed, while the AAF method

Table |
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always gives unbiased estimates, no matter what the
true ascertainment process.

The ratio of AAF standard errors to standard errors
derived from the classical method tends to be smaller
for pedigree data than for nuclear family data. For ex-
ample, when the data are derived from a complete ascer-
tainment process, the ratio of these standard errors for
pedigrees is 1.08, compared with 1.19 for nuclear fami-
lies. Similarly, when the data are from a single ascer-
tainment scheme, the ratio is 1.30 for nuclear families
and 1.13 for pedigrees. Hence, when a trade-off is made
between the potential estimation bias arising by using
the classical method (which assumes either complete
or single ascertainment) and increased standard error
in the AAF method, there is not as large a sacrifice of
information in the conditioning process implied by the
AAF method when using pedigree data as opposed to
nuclear family data. As a result one might be more in-
clined to use the AAF method to analyze pedigree data.

The last column in table 1 gives the standard errors
of the unbiased estimates for nuclear families (Ewens
and Shute 1986b) under the same true and assumed
ascertainment scheme combinations as are considered
for pedigree data. It is of interest to compare the stan-
dard errors of the estimates from the nuclear family
data and those of the pedigree data, since in both in-
stances ascertainment occurs through one particular
family. Should we expect that a pedigree containing two
families will contain twice as much information as one
nuclear family? Since the inverse of the variance is used
as a measure of information, then doubling the infor-

Maximum Likelihood Estimates and Standard Errors of the Unbiased Estimates of p, (True Value .l), Using Likelihoods
(11)~(13), for “Data” from Three True Ascertainment Processes (10), Correctly Assuming Ascertainment Is Only through

Family | in the Pedigree

True Ascertainment Process and Likelihood ) se(p) x Vi p se(p) x vn (Nuclear Families)

Complete ascertainment:

(11) (Assumes complete) . . .......... .. ... ... .. .1000 2324 .1000 .3402

(12) (Assumes single) ........... ... .. ... ... .. .. .0816 . .0641 .

(13)(AAF) ... .1000 2504 .1000 .4057
Single Ascertainment:

(11) (Assumes complete) . . ....... ... ... ... 1197 c. .1407 ce

(12) (Assumes single) . ......................... .1000 .2184 .1000 .3009

(13) (AAF) .ottt e .1000 2565 .1000 .3910
Quadratic ascertainment:

(11) (Assumes complete) . . ........ ... 1501 .2009

(12) (Assumes single) .......... ... ... ... .. ..... .1287 R 1534 R

(13) (AAF) .o .1000 .2403 .1000 .3699

NotEe.—Nuclear family data are from Ewens and Shute (1986b).
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mation is equivalent to halving the variance (or to divid-
ing the standard error by \/'2). Table 1 shows that, ex-
cept for one case (when single ascertainment is true
and assumed), all the standard errors of p when the
pedigree data are used are less than 1//2 times those
when only nuclear family data are used. In these cases
the pedigree contains more than double the informa-
tion of the nuclear family, suggesting that it is more
beneficial to obtain pedigree data than to double the
sample number of nuclear families. Thus, for the esti-
mation of p in this model (but not necessarily for esti-
mation of other parameters in more complex models),
there is more information contained in two related fam-
ilies than there is in two unrelated (or independently
ascertained) families. However, in the case of single
ascertainment, a pedigree appears not to contain as
much information on p as do two nuclear families. This
presumably occurs because there must be at least one
affected child in each nuclear family if both families
are to be ascertained, whereas a pedigree only requires
one affected child in the two families comprising the
pedigree if the pedigree is to be ascertained. This biases
the type of families (and pedigrees) in the sample as
compared with families in the population as a whole.
The extra information from families implied by this fact
presumably outweights the extra information provided
by the pedigree structure.

It is interesting to note that, in the above example,
the size of the biases when pedigree data are used are
approximately only one-half the size of the biases aris-
ing when nuclear family data are used (shown in table
1). Since a pedigree contains more information than
anuclear family, knowledge of how the pedigree is ascer-
tained is relatively less important than similar knowl-
edge on a nuclear family. Hence, as expected, making
an incorrect assumption about ascertainment of a ped-
igree results in smaller biases than if an incorrect as-
sumption is made about the ascertainment of a nuclear
family.

B. Ascertainment through Both Families

If ascertainment of a pedigree is possible through both
families in the pedigree, then the data relevant to ascer-
tainment (Dj) is the number of affected children in
each family of the pedigree, i.e., D1 = {K1,K2}. Dz is
all the remaining affectedness data of the pedigree (i.e.,
the affectedness status of the parents in both families).
The pedigree can be ascertained only if it contains at
least one affected child; so K1 + K22>1. We suppose ini-
tially that the investigator correctly notes that ascer-
tainment is possible through both families. We now con-
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sider three true ascertainment schemes: (i) complete
ascertainment—where the probability of ascertainment
of the pedigree is independent of the number of affected
children in the pedigree; (ii) “single” ascertainment—
where the probability of ascertainment is proportional
to the total number of affected children in the pedigree
(K1 + K3); and (iii) “quadratic” ascertainment—where
the probability of ascertainment is proportional to
(K1 + K2)2. Note that our definitions of “single” and
“quadratic” ascertainment make an assumption that
might be unreasonable in practice, namely, that the
probability of ascertainment depends on K; and K3
only through their sum, K; + K;. Consider the case of
a pedigree with two affected children. If K1 =Kz =1
(K1 + K2 = 2), then it is possible from a practical point
of view that the pedigree will be less likely to be ascer-
tained than if K; = 2 and K = 0 (with, again, K1 + K3
= 2), since, in the latter case, family 1 may seek medi-
cal aid because it has two affected children, whereas,
in the former case, knowledge that a cousin is affected
by the same disease as one of their own affected chil-
dren might not cause either family to feel concerned
enough to seek advice. Thus it is possible that different
weightings for the probability of ascertainment for these
two cases apply; ascertainment estimation procedures
allowing for this will be investigated in a later paper.
In the present paper the definitions presented above will
be assumed. If the investigator correctly assumes that
ascertainment can be through either one or both fami-
lies in the pedigree, he will use the following classical
likelihoods for estimating p from pedigree data.

Classical Likelihood Assuming Complete Ascertainment

Under a complete ascertainment scheme P(asc,D1,
D;)—i.e., P(asc,K1,K2,D2)—and P(asc) are propor-
tional to Q(K1,K2,D;) and

) 2
Q= K12=0 K22=0 DZZ Q(K1,K2,Dz) ,
K1+K22>1

respectively, so that the likelihood used, when one as-
sumes complete ascertainment, is

2 2

— n(K1,K2,D2)
L= KEO Kzr-—!o lD_£ Q(K1>K2,D2)/Q i4
K1+K221 ( )

Classical Likelihood Assuming Single Ascertainment

If the investigator assumes a single ascertainment pro-
cess, P(asc,K1,K2,D) and P(asc) are proportional to
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(K1 + K2)Q(K1,K2,D2) and QF, respectively, where
O*=0(K1+K2=1)+2Q(K1+K2=2)+ 3Q(K1 +
K2=3)+4Q(K; + K2 = 4) with

QK1 +Ky=j)=

The likelihood then becomes

[(K] + KZ)Q(KI,Kz,Dz)] n(K,K2,D2)
(15)

2
L= 1O 1
K1=0K2=0 Q*

D2

Two approaches to estimation are possible under the
AAF approach. The first is the more conservative one,
in which the investigator assumes only that ascertain-
ment depends on {K1,K3} in some unspecified manner.
Under the second approach the investigator is willing
to assume that ascertainment depends, albeit in an
unspecified way, on K1 + K. These approaches lead
to likelihoods (16) and (17) below, respectively.

AAF Likelihoods

(a) Conservative.—The likelihood is

2 O(K1,K2,Dy)| "K-K1:02)
11, [ 2

O(K1,K2) (16)

O(K1,K3) = 332 Q(K1,K2,D2) .

(b) Ascertainment Depends on K1 + Kz.—The likeli-
hood is

2 2 n(K1+K2,D2)

L= Klno KZIIO g [Q(I;I’KZ,I?Z)] » 17)
K1+K221 ’ Q( 1+ 2)

where
QK1 +K3z)= Q(K1,K%) .

Ki+K)=K1+K2

As before, there are three possibilities ([i]-[iii], as
given above) for the true ascertainment process, and
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Table 2
Maximum Likelihood Estimates and Standard Errors of
the Unbiased Estimates of p (True Value .1), Using
Likelihoods (14)—(17), for Three True Ascertainment
Processes (14), Correctly Assuming Ascertainment Is
through Both Families in the Pedigree
True Ascertainment Process
and Likelihood p se(p) x Vr

Complete ascertainment:

(14) (Assumes complete) .......... .1000 2519

(15) (Assumes single) ............. .0653 R

(16) (AAFa) .................... .1000 .3120

(17)(AAFb) .................... .1000 3111
Single ascertainment:

(14) (Assumes complete) .......... 1431 ...

(15) (Assumes single) ............. .1000 2184

(16) (AAFa) .................... .1000 .3027

(17) (AAFb) . ... .. ... .. ... .1000 .3012
Quadratic ascertainment:

(14) (Assumes complete) .......... 2085

(15) (Assumes single) .. ........... 1543 .

(16) (AAFa) .................... .1000 .2890

(17) (AAFb) .................... .1000 .2868

now there are four estimation procedures, correspond-
ing to the likelihoods (14)-(17). Deterministic data are
calculated as described above, and from these the esti-
mates and their standard errors, corresponding to the
12 combinations of various true and assumed ascer-
tainment processes, may be calculated. The results are
given in table 2 for the case p = .1.

Asin the case of ascertainment through family 1 only,
it is only when the true ascertainment scheme is cor-
rectly assumed that the classical method produces un-
biased estimates. Both AAF approaches provide unbi-
ased estimates, irrespective of the true ascertainment
scheme. Note that, in contrast to the case when ascer-
tainment is possible through one family only, here the
asymptotic biases for pedigree data are approximately
the same as or slightly higher than those for nuclear
families. This shows that, in contrast to the previous
case, a correct specification of the ascertainment pro-
cess is as important for pedigree data as for nuclear
family data.

So far as standard errors of unbiased estimators are
concerned, the loss of information in the conditioning
process leading to the AAF procedures implies that AAF
estimators have standard errors higher than those for
the classical approach when the correct ascertainment
scheme happens to be assumed. This increase is, how-
ever, not large, and one may often be prepared to ac-
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cept this increase in the interests of having parameter
estimates that will always be asymptotically unbiased.
Note also that, as expected, the standard errors of the
estimators derived from the conservative likelihood,
(16), are larger than those of the estimators derived from
(17).

Incorrect Assumptions about the Number
of Ascertainable Families

What happens to the estimates in the previous sections
if the investigator now makes an incorrect assumption
about whether ascertainment is possible through one
or both families in the pedigree? There are two possi-
bilities. The first arises when ascertainment is truly pos-
sible through both families in the pedigree but the in-
vestigator assumes that only one of the families is
ascertainable. It is in a way inconceivable that this er-
ror can be made, since the investigator should notice
pedigrees ascertained through the assumed nonascer-
tainable families. We nevertheless consider this case be-
cause data collected by one person are often analyzed
by another, who may be unaware of the true ascertain-
ment process and who may use a “black box” com-
puter program using one or other of the likelihoods,
(11)—(13). Note in this connection that these likelihoods
in effect only use a subset of all families (those where
K1 > 0) and that the above problem will not be high-
lighted by an error message from the computer.

Table 3

Maximum Likelihood Estimates and Standard Errors of
the Unbiased Estimates of p (True Value .1), Using
Likelihoods (11)—(13), for Three True Ascertainment
Processes (14), Incorrectly Assuming Ascertainment Is
Possible through Only One Family in the Pedigree

True Ascertainment Process

and Likelihood? p se(p) x Vi

Complete ascertainment:

(11) (Assumes complete) .1000 .3218

(12) (Assumes single) . . . .0816 ..

(13) (AAF) ........... .1000 .3467
Single ascertainment:

(11) (Assumes complete) .1505

(12) (Assume single). . . . .1285

(13) (AAF) ........... 1372
Quadratic ascertainment:

(11) (Assumes complete) 2225

(12) (Assumes single) . . . 1967

(13) (AAF) ........... 1919

Shute and Ewens

We follow the procedures indicated above to assess
properties of estimators in this situation. The results
are given in table 3. We note that all estimation proce-
dures (except for the complete-ascertainment case) re-
sult in biased estimates, since the assumption of one
ascertainable family omits information connected with
the second family in the pedigree. In an earlier paper
(Ewens and Shute 1986b) we have shown that the AAF
method must condition on (at least) all the data rele-
vant to ascertainment to produce unbiased parameter
estimates, but in the present paper, owing to the inves-
tigator’s choice of ascertainment assumption, the likeli-
hood conditions on only a subset of the data relevant
to ascertainment. Thus, biased estimates are produced
in this case, even under the AAF method. This obser-
vation is relevant to our earlier remarks concerning
specification of the data relevant to ascertainment.

We now turn to the case where only one family is
ascertainable but the investigator or his computer pro-
gram assumes that it is possible for both families in
the pedigree to be ascertained. For reasons analogous
to those outlined above, properties of estimators in this
case should also be examined. The conclusions reached
are illustrated by the numerical values shown in table
4. The conservative AAF procedure always leads to
asymptotically unbiased estimators. The less conser-
vative approach does not do so, since it does not condi-

Table 4

Maximum Likelihood Estimates and Standard Errors of
the Unbiased Estimates of p (True Value .1), Using
Likelihoods (14)-(17), for Three True Ascertainment
Processes (10), Incorrectly Assuming Ascertainment Is
Possible through Both Families in the Pedigree

True Ascertainment and Likelihood? p se(p) x vV
Complete ascertainment:
(14) (Assumes complete) .. ....... 1210
(15) (Assumes single)............ .0816 .
(16) (AAFa) . .................. .1000 .3094
(17) (AAFb) . .. ... .ol .1000 R
Single ascertainment:
(14) (Assumes complete) .. ....... .1431 ...
(15) (Assumes single)............ .1000 2184
(16) (AAFa) . .................. .1000 .3027
(17) (AAFb) . .. ... oo .1000 .3012
Quadratic ascertainment:
(14) (Assumes complete) . ........ 1772
(15) (Assumes single)............ .1287 R
(16) (AAFa) ................... .1000 2925
(17) (AAFb) ... ....... ... ..., .0950 R

2 Both families ascertainable.

2 Only one family ascertainable.
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tion on all the data relevant to ascertainment. Of the
classical approaches, only in the case where single ascer-
tainment is correctly assumed are asymptotically unbi-
ased estimators obtained.

We note from tables 3 and 4 that, in some cases,
asymptotically unbiased estimators are achieved by clas-
sical estimators (even though these tables refer to cases
where the data relevant to ascertainment are not cor-
rectly specified). The reason for this is discussed in de-
tail by one of us elsewhere (Shute 1988).

Conclusion

The methods described here suggest a possible resolu-
tion to the ascertainment problem for pedigree data by
extending the methods that we have published elsewhere
(Ewens and Shute 1986b), that is, by conditioning the
likelihood contribution from each pedigree on that part
of the data in the pedigree that is relevant to ascertain-
ment. We agree that in practice it might be difficult to
identify this part of the data; however, this is a difficulty
common to every ascertainment correction procedure.
The ultimate choice of the method used for estimating
genetic parameters will depend on the size of bias or
standard error the investigator is willing to accept and
on his knowledge of the true ascertainment procedure.
While the example used here to illustrate the theory
is not realistic, it gives information concerning the rela-
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tive sizes of these biases and standard errors and about
various problems that can arise when sampling pedi-
grees (rather than nuclear families). A more realistic
example, considering HL A-linked diseases, will be con-
sidered in a later paper.
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