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Summary Introduction

Thiamine-responsive megaloblastic anemia, also known
as "TRMA" or "Rogers syndrome," is an early-onset
autosomal recessive disorder defined by the occurrence
of megaloblastic anemia, diabetes mellitus, and senso-
rineural deafness, responding in varying degrees to thi-
amine treatment. On the basis of a linkage analysis of
affected families of Alaskan and of Italian origin, we
found, using homozygosity mapping, that the TRMA-
syndrome gene maps to a region on chromosome
lq23.2-23.3 (maximum LOD score of 3.7 for
D1S1679). By use of additional consanguineous kin-
dreds of Israeli-Arab origin, the putative disease-gene
interval also has been confirmed and narrowed, sug-
gesting genetic homogeneity. Linkage analysis generated
the highest combined LOD-score value, 8.1 at a recom-
bination fraction of 0, with marker D1S2799. Haplotype
analysis and recombination events narrowed the TRMA
locus to a 16-cM region between markers D1S194 and
D1S2786. Several heterozygote parents had diabetes
mellitus, deafness, or megaloblastic anemia, which
raised the possibility that mutations at this locus pre-
dispose carriers in general to these manifestations. Char-
acterization of the metabolic defect ofTRMA may shed
light on the role of thiamine deficiency in such common
diseases.
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Thiamine-responsive megaloblastic anemia (TRMA;
OMIM 249270 [http://www3.ncbi.nlm.nih.gov:80/
htbin-post/Omim/dispmim?249270]), first described by
Rogers et al. (1969), is an autosomal recessive disorder
with childhood onset. To date, clinical data from t12
families from various ethnic groups have been published,
and several other kindreds are known (Rogers et al.
1969; Cagianut et al. 1977; Viana and Carvalho 1978;
La Grutta et al. 1980; Haworth et al. 1982; Mandel et
al. 1984; Abboud et al. 1985; Rosskamp et al. 1985;
Grill et al. 1991; Morimoto et al. 1992; Akinci et al.
1993; Rindi et al. 1994; Schorderet et al. 1994). Most
of the TRMA patients, both boys and girls, originated
from consanguineous families or from couples whose
families had lived for many years in the same small vil-
lage, which is consistent with autosomal recessive in-
heritance. The cardinal clinical manifestations of the
syndrome are megaloblastic anemia, diabetes mellitus,
and sensorineural deafness, all of which respond in var-
ying degrees to the administration of thiamine (vitamin
B1), in pharmacological doses. The diabetes, which ap-
pears in childhood, is a novel category of diabetes mel-
litus and is non-type I in nature: in some cases, the
insulin requirement is reduced during thiamine therapy
(Borgna-Pignatti et al. 1989a; Rindi et al. 1992; Mandel
et al. 1993). Anti-insulin and anti-islet cell antibodies
are absent in patients (Borgna-Pignatti et al. 1989a;
Mandel et al. 1993; Rindi et al. 1994). In addition to
the cardinal findings for which the syndrome is named,
some patients show congenital heart disease and/or ar-
rythmias (Viana and Carvalho 1978; Mandel et al. 1984;
Abboud et al. 1985; Poggi et al. 1989), as well as ab-
normalities of the retina and the optic nerve (Mandel et
al. 1984; Borgna-Pignatti et al. 1989a; Rindi et al. 1994).
The pathophysiology of TRMA remains obscure but

is of considerable interest. In the present study, we have
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Alaska - Kindred 1

Italy - Kindred 2

24 25 29 28 30
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Israel - Kindred 3

Israel - Kindred 4
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1711 1712 1713 1714 3711 3710 3702 3709 3708 3707 3706 3706 3704

Figure 1 Pedigrees of the four TRMA kindreds. Kindreds 1, 3, and 4 are consanguineous. The symbol used for individual 3604 (kindred
3) indicates that, in addition to being an obligate heterozygote, this individual had diabetes and deafness. Blood samples and genotypes were
obtained for all numbered individuals (except 3604 [kindred 3] and 33 and 32 [kindred 1]). For clarity, subjects 9 (kindred 1) and 1312 (kindred
3) are represented twice, because they had multiple mates. Altogether, we had access to 11 patients and 56 healthy subjects.

used the homozygosity-mapping strategy (Lander and
Botstein 1987) to localize the TRMA gene to the long
arm of chromosome 1 (band lq23.2-23.3), using fam-
ilies of Alaskan, of Italian, and of Israeli-Arab origin.
This will serve as a first step toward the identification
of a gene that is important in thiamine metabolism and
that plays a role in the pathophysiology of diabetes,
deafness, and anemia.

Subjects and Methods

Families and DNA Preparation

Four unrelated kindreds of various ethnic origin, three
of which were consanguineous, were included in the
study. The family trees of all the kindreds are shown in
figure 1. Kindred 1 is a consanguineous family living in
a native village in coastal Alaska (E. J. Neufeld and
N. Buist, unpublished data). The ethnic background of
the villagers is part native Alaskan and part Russian

European. Kindred 2 is of Italian origin and initially was
reported as having thiamine-responsive anemia with
Wolfram syndrome, also known as "DIDMOAD
(diabetes insipidus, diabetes mellitus, optic atrophy,
and deafness) syndrome" (OMIM 223300 [http:
//www.ncbi.nlm.nih.gov:80/htbin-post/Omimldispmim?
223300]) (Borgna-Pignatti et al. 1989a). However, the
fact that additional DIDMOAD-syndrome patients did
not have anemia and did not respond to thiamine
(Borgna-Pignatti et al. 1989b; Schwingshandl and Bor-
kenstein 1989) contradicted this hypothesis and sug-
gested that the two patients had TRMA and not
DIDMOAD syndrome. For this pedigree, the parents
were not known to be related; however, the families had
lived on the same Venetian island for centuries. Kindreds
3 and 4 are two unrelated Israeli-Arab consanguineous
families (Mandel et al. 1984, 1993; Rindi et al. 1994).
These two families live in two close villages in northern
Israel. All the TRMA patients involved in this study had
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the triad of megaloblastic anemia, diabetes mellitus, and
deafness during the first years of life and responded in
varying degrees to thiamine treatment (Mandel et al.
1984; Borgna-Pignatti et al. 1989a; Mandel et al. 1993;
Rindi et al. 1994). Blood samples for genetic analysis
were collected after informed consent was obtained from
the subjects or their guardian, in accordance with the
guidelines of local institutions. DNA was prepared by
use of standard methods (Sambrook et al. 1989).

Genotype Analysis
Genomewide screening was performed on an auto-

matic sequencing machine using a panel of 374 micro-
satellite markers spaced at -10-cM intervals. The
marker set closely approximates Marshfield screening
set 8 (for a description, see http://www.marshmed.org/
genetics/). To construct extended haplotypes, genotyping
was performed by use of a nonradioactive-labeling pro-
cedure with the ECL system (Amersham), on the basis
of a horseradish peroxidase-mediated chemiluminescent
reaction, in accordance with the study by Vignal et al.
(1993).

Statistical Analysis
Two-point linkage analysis of the disease locus and

the genetic markers was performed by use of the MLINK
program from the FASTLINK optimized version of the
LINKAGE package (Lathrop et al. 1984). Owing to the
extreme inbreeding in the TRMA Alaskan family (kin-
dred 1) and Israeli-Arab family 3, which contain four
and six loops of consanguinity, respectively, special at-
tention was paid to the pedigree members declared to
be so-called loop breakers. The Italian family was con-
sidered to be nonconsanguineous and was analyzed in
this fashion with MLINK. An autosomal recessive model
with complete penetrance in both sexes and a frequency
of .001 for the disease allele was assumed. Since the allele
frequencies of the markers were not known for the par-
ticular population groups of the study, we estimated
population allele frequencies from the data. In test runs
of MLINK, we found this to be the most conservative
estimation of LOD scores (compared with results under
the assumption of equal allele frequencies). A sex-av-
eraged genetic map (Dib et al. 1996) was obtained for
the markers that were used in haplotype analysis
(fig. 2).

Results

Clinical Manifestations in TRMA Heterozygous Carriers

None of the obligate heterozygous parents presented
at childhood with the three cardinal features of the dis-
ease. However, in kindred 1, individual 7 had glucose
intolerance, treated through diet. Severe deafness had

been reported in three family members of kindred 2
(Borgna-Pignatti et al. 1989a). A common grandfather
(individual 21 in kindred 2) had adult-onset diabetes
mellitus and a hearing defect that required a hearing aid.
In kindred 3, individual 3604, who is the father of two
TRMA siblings, had an abnormal glucose-tolerance test,
high-tone hearing loss, and macrocytic anemia (Hg 10.2
g/dl) with a mean corpuscular volume of 102, at age 42
years. He died at age 45 years, during an acute asthmatic
attack.

Primary Mapping of the TRMA Locus in the Alaskan
and Italian Kindreds

A genomewide screen of the TRMA-affected kindreds
of Alaskan and of Italian origin (kindreds 1 and 2, re-
spectively; fig. 1) was performed. LOD scores were cal-
culated for each marker, which enabled us to exclude
up to 80% of the genome with LOD scores < -2. In
the initial screen, the only marker (D1S1679) with a
LOD score >3.0 was found on chromosome lq. Nearby
markers (D1S1653 and DlS2141) also gave positive
LOD scores, suggesting linkage to the disease within
these families. This finding suggested that the TRMA
locus maps to chromosome 1q at least in the Alaskan
and Italian families.

Confirmation of Linkage of the TRMA Locus to
1q Markers in the Israeli-Arab Kindreds

The next step was to check whether Israeli-Arab kin-
dred 3 was positively linked to the same markers
(D1S1679, D1S1653, and DlS2141). For this family,
positive LOD scores were obtained as well with these
markers, with marker DlS1679 giving the highest com-
bined LOD-score value. There was a broad maximum
likelihood (LOD >4 at a recombination fraction of
.03-.12) when data from kindreds 1-3 were combined.
Kindred 3 was not fully informative at this locus, but
two recombination events were noted in the informative
sibship.

Linkage then was verified in the Alaskan (kindred 1)
and Israeli-Arab (kindreds 3 and 4) families, by use of
17 microsatellite markers from the Genethon microsatel-
lite panel covering the same chromosomal region (Dib
et al. 1996). These markers were telomeric to markers
D1S1679, D1S1653, and D1S2141, on the basis of the
location database (http://cedar.genetics.soton.ac.uk/pub/
chroml/map.html). Two-point linkage analysis was per-
formed (Lathrop et al. 1984). Evidence for linkage to
this region was found in all kindreds tested. Positive
LOD scores were obtained for each marker. Marker
DlS2799 gave the highest combined LOD-score value,
8.1 at 0 = 0, for the three families (1, 3, and 4). These
data confirmed linkage of the TRMA locus to chro-
mosome lq and suggested genetic homogeneity.
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Haplotype Analysis and Recombination Events in the
Consanguineous Kindreds

Extended haplotypes were constructed, by use of the
17 microsatellite markers, for all subjects from the con-
sanguineous kindreds (1, 3, and 4). Results for each
informative individual are shown in figure 2. As expected
on the basis of homozygosity by descent, regions of ho-
mozygosity were observed in the genomes of all affected
individuals. Each of the eight subjects with TRMA was
homozygous for all loci between and including D1S2762
and DMM21&8. Affected individual 2405 (Israeli-Arab kin-
dred 4) was heterozygous at marker D1S194, owing to
a recombination event in the paternal haplotype. This
enabled us to define the centromeric limit of the interval
where the TRMA disease gene lies, at D1S194. As a
result of recombination events in both the maternal and
paternal haplotypes, affected individual 6 (kindred 1)
was heterozygous at marker D1S2786, enabling us to
define the telomeric limit of the guilty interval, at this
marker. Thus, we primarily defined the TRMA gene in-
terval to a region of 16 cM, extending between but ex-
cluding markers D1S194 and D1S2786, by homozy-
gosity mapping. As shown in figure 2, the disease-as-
sociated haplotype in the Alaskan patients (kindred 1)
bore no relation to the affected chromosome in the Is-
raeli-Arab patients (kindreds 3 and 4). However, hap-
lotypes in the Israeli-Arab patients from the two sub-
families of kindred 3 (patients 3711, 3708, 1713, and
1714) were identical. Comparison of this set of haplo-
types with haplotypes from patient 2405 (kindred 4)
showed two segments of shared haplotype (D1S2762-
D1S196 and D1S2851-D1S466) and two segments
where the haplotypes differed (D1S2768-D1S194 and
DlS431-DlS2658).

Discussion

This is the first linkage study of TRMA syndrome.
The gene for TRMA syndrome is located within a 16-
cM region on chromosome lq23.2-23.3. The present
data suggest genetic homogeneity for the disease. This
study emphasizes the power of a dense map of micro-
satellite markers, combined with homozygosity map-
ping, to map rare recessive disease-causing genes when
genetically isolated populations, consisting of large con-
sanguineous families, are available.
Three kinds of disease-associated haplotypes were ob-

served, suggesting the existence of different mutations
causing the disease in each family, with a founder effect
for each of the mutations. Alternatively, a single disease-
gene mutation might have arisen separately within each
family and might be the cause of the disease. Haplotype
analysis of additional TRMA families reported in the
literature may uncover linkage disequilibrium between

markers and the disease locus and may narrow the
critical interval (Hastbacka et al. 1992; Sirugo et al.
1992). The closely related haplotypes in Israeli-Arab kin-
dreds 3 and 4 may represent this type of linkage
disequilibrium.

It has been demonstrated recently that TRMA is con-
sistently associated with a subtle defect in thiamine
transport across cellular membranes and with impaired
intracellular pyrophosphorylation (Rindi et al. 1994).
These studies suggest that the TRMA syndrome repre-
sents a novel biochemical defect in thiamine metabolism.
A nuclear-gene defect in the thiamine-transport mech-
anism or in phosphorylation, causing thiamine defi-
ciency, could be the cause of the disease. The metabolic
defect in TRMA leads to a multisystem disorder. Inter-
estingly, similar clinical features are found in the more
common, autosomal recessive Wolfram syndrome
(Borgna-Pignatti et al. 1989a). Recently, a Wolfram-syn-
drome gene has been linked to markers on chromosome
4pl6 (Polymeropoulos et al. 1994), excluding the pos-
sibility that these two disorders are caused by defects in
the same gene. Another study proposed that a nuclear-
encoded defect in Wolfram syndrome is the inability to
repair mtDNA defects (Barrientos et al. 1996). Such a
mechanism also could underlie the pleiotropic features
of TRMA.
Numerous cases of mutations in genes, such as the

ataxia-telangiectasia gene (Swift et al. 1991; Athma et
al. 1996), that cause both recessive and dominant dis-
eases with more or less severe phenotypes of the same
disease have now been reported. In the present study, as
well as in other reports (Viana and Carvalho 1978;
Haworth et al. 1982; Mandel et al. 1984; Borgna-Pig-
natti et al. 1989a; Poggi et al. 1989), several obligatory
carriers and other family members exhibited some of the
clinical manifestations of TRMA, including diabetes
mellitus, deafness, or megaloblastic anemia. These find-
ings suggest the predisposition of TRMA heterozygotes
to these disorders and raise the possibility that this gene
defect could, with other genes, contribute to the heter-
ogeneity of diabetes mellitus, deafness, and megaloblas-
tic anemia.

In conclusion, the interval defined so far, which con-
tains the TRMA gene, lies on chromosome lq23.2-23.3,
in a region with no obvious candidate gene but in close
proximity to the genes for coagulation factor V, the se-
lectins, and FAS ligand (183-197 cM in the UniGene
map [http://www.ncbi.nlm.nih.gov/UniGene/l). Radia-
tion hybrid maps suggest that there are at least 100 genes
that lie in this region, on the basis of the UniGene map.
The syntenic portion of murine chromosome 1 (82-90
cM) contains no known genes for autosomal recessive
deafness, diabetes, or anemia. Thus, it seems probable
that a combination of positional cloning and candidate-
gene methods will be required for the identification of
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the TRMA gene itself. The genetic homogeneity ob-
served thus far, if confirmed in other families from dif-
ferent ethnic backgrounds, will facilitate the fine map-
ping of this locus. Analysis of additional families is now
underway. In view of the multisystem manifestations of
TRMA, it is conceivable that the identification of the
molecular basis ofTRMA may provide new insights into
the role of thiamine in common diseases in the general
population, such as type II diabetes mellitus, deafness,
and inherited and acquired bone-marrow disorders. It
is also conceivable that some patients without the triad
of anemia, deafness, and diabetes will have defects in
the TRMA gene. One immediate benefit of the mapping
effort to date is the potential for carrier screening and
prenatal diagnosis, by linkage of TRMA to microsatel-
lite-repeat markers spanning the region. This would en-
able thiamine administration during pregnancy, which
could ameliorate the serious complications of TRMA.
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