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Abstract
Aims—To study the eVect of prenatal glu-
cocorticoid treatment on endothelial ni-
tric oxide synthase (eNOS) expression in
rats with congenital diaphragmatic hernia
(CDH).
Methods—CDH was induced in fetal rats
by thematernal administration of nitrofen
on day 9.5 of gestation. Dexamethasone
was administered on days 18.5 and 19.5
before delivery of the fetuses on days 20.5
and 21.5. Pulmonary eNOS protein ex-
pression was studied by western immuno-
blotting and immunohistochemistry.
Results—On day 20.5, eNOS expression
was significantly reduced in CDH pups
compared with normal control rats. Dex-
amethasone treated CDH pups had eNOS
concentrations equivalent to those of nor-
mal animals. By day 21.5, however, there
was no detectable diVerence in eNOS
expression between the experimental
groups.
Conclusions—eNOS is deficient in near
term (day 20.5) CDH rats. Dexametha-
sone restores eNOS expression in these
animals to that seen in normal rat lungs.
At term, the precise role of eNOS in the
pathophysiology of CDH remains uncer-
tain.
(Arch Dis Child Fetal Neonatal Ed 1998;78:F204–F208)
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Congenital diaphragmatic hernia (CDH) con-
tinues to have an unacceptably high mortality
due to the lethal combination of pulmonary
hypoplasia and pulmonary hypertension.1 Pul-
monary hypertension is characterised by per-
sistent and severe hypoxia associated with duc-
tal shunting from the pulmonary circuit to the
systemic circulation.2 In CDH a combination
of factors contribute to its occurrence. A
reduced and excessively muscularised pulmo-
nary vascular bed exhibits abnormal vascular
reactivity, resulting in profound vasoconstric-
tion and refractory hypoxaemia.2 3 Various
treatments aimed at improving pulmonary
hypertension have entailed ventilatory
strategies such as hyperventilation and permis-
sive hypercapnia, vasodilators, and extracor-
poreal membrane oxygenation (ECMO).4 5

The mechanisms responsible for abnormal
vascular reactivity in CDH are not completely
understood. During fetal life, the pulmonary
vasculature is a high pressure bed with minimal

blood flow through the lungs. However, at
birth, pulmonary vascular resistance decreases
and blood flow increases as the lungs take over
the function of gaseous exchange from the
placenta.6 The pulmonary vascular endothe-
lium is of vital importance in the perinatal
regulation of pulmonary vascular tone and
blood flow.7 It releases a host of vasodilator and
vasoconstrictor substances which, acting in a
paracrine manner, stimulate the contraction or
relaxation of adjacent vascular smooth muscle
cells.7 Nitric oxide (NO) is believed to have a
pivotal role in the transition of the pulmonary
circulation from fetal to neonatal life.8 A potent
vasodilator, it is generated in the pulmonary
vascular endothelium through the action of the
enzyme, endothelial nitric oxide synthase
(eNOS).9 10 NO diVuses into adjacent smooth
muscle cells where it increases cellular concen-
trations of cyclic guanosine monophosphate
thus producing vaso-relaxation.9 10 As the
pulmonary circulation in some neonates with
CDH fails to adapt or sustain the physiological
transition to extrauterine life, it has been
suggested that NO may be deficient in CDH.
Inhaled NO treatment has been instituted as a
specific pulmonary vasodilator in CDH pa-
tients as a means of treating pulmonary hyper-
tension related crisis with varying clinical
results.11–17

Glucocorticoids have an important role in
the regulation of normal lung development and
exert profound maturational eVects on the
developing fetal lung.18 Antenatal corticoster-
oid treatment is now well established as a
means of preventing respiratory distress syn-
drome in premature newborns.19 In experimen-
tal CDH animal models, antenatal glucocorti-
coids improve surfactant biochemical
immaturity, increase lung compliance, and
enhance lung morphology.18–23 The eVect of
this pharmacological intervention on the pre-
vention or treatment of pulmonary hyperten-
sion in CDH remains unknown.The aim of the
present study was to evaluate the eVect of
antenatal glucocorticoids on eNOS expression
as a marker of pulmonary vascular reactivity in
the lungs of rats with congenital diaphragmatic
hernia induced by nitrofen.

Methods
CREATION AND TREATMENT OF CDH

Timed pregnant Sprague-Dawley rats (Charles
River UK, Ltd) (vaginal plug positive = day 0)
were given 100 mg nitrofen (Zhejiang Chemi-
cals, China) by gavage on day 9.5 of gestation
(term = day 22) to induce left sided CDH in
fetal rats.24 Control animals received olive oil.
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Antenatal dexamethasone ( David Bull Labo-
ratories Warwick, UK) 0.25 mg/kg or an equal
volume of physiological saline was adminis-
tered by maternal intraperitoneal injection on
days 18.5 and 19.5. Pregnant rats were
terminally anaesthetised using halothane on
days 20.5 and 21.5 of gestation. Fetal pups
were given a lethal dose of sodium pentobarbi-
tal 100 mg/kg intraperitoneally to prevent air
breathing and hypoxic stress before delivery by
caesarean section. We studied the ipsilateral
lungs as although the vascular abnormalities
associated with CDH are known to be bilateral,
they are more severe on the ipsilateral side.25

Alterations in the ipsilateral lung are therefore
likely to be representative of events occurring
in both lungs.26 Animals were divided into four
experimental treatment groups (fig 1).

WESTERN IMMUNOBLOTTING

Individual lungs were stripped of all extra pul-
monary tissue, flash frozen immediately in liq-
uid nitrogen, and stored at −70° C until they
were studied. The lungs were homogenised in
10 mM TRIS-HCl (pH 7.4) and 100 mM
NaCl and centrifuged at 5000 × g for 3 minutes
at 4° C. Protein assays were performed on the
supernatant fluid by the method of Lowry
using bovine serum albumin to obtain standard
curves.27 Lung samples were then boiled in lysis
buVer containing 42 mM TRIS (pH 6.8), 48
mM sodium dodecyl sulphate, 7% glycerol,
and 5% â-mercapto ethanol for 3 minutes.
Lung protein (100 µg) was loaded into

individual wells on a 7.5% polyacrylamide gel,
separated by sodium dodecyl-polyacrylamide
gel electrophoresis and then electrophoretically
transferred on to a polyvinyldiflouride mem-
brane (ICN Pharm Ltd, Oxfordshire, UK).28

The membrane was then incubated with a
solution of 5% non-fat milk in 10 mM TRIS
pH7.4, 100 mM NaCl, and 0.1% Tween 20
(blocking buVer) for 1 hour to prevent
non-specific binding of antibody, followed by
an overnight incubation with a specific murine
monoclonal antibody for eNOS (Transduction
Laboratories, Kentucky, USA). After 6 five
minute washes a 1 hour incubation with a sec-
ondary peroxidase labelled rabbit anti-mouse
antibody (Sigma Aldrich Co. Dorset, UK) was
performed. eNOS protein expression was visu-
alised using a 1 minute incubation with chemi-
luminescent reagents (Amersham UK, Ltd.)
and exposure to photo sensitive film (Amer-
sham UK Ltd.). Western blots were quantified
by laser densitometry using Image Quant soft-
ware on a Personal Densitometer (Molecular
Dynamics UK). eNOS expression for each
specimen was reported as mean (SEM)
percentage (compared with the eNOS expres-
sion in olive oil and physiological saline treated
control lungs).

IMMUNOHISTOCHEMISTRY

Cryostat lung sections (8 µm thick) were cut
and the sections post-fixed in 1% formalde-
hyde for 1 minute, and acetone for 5 minutes.
Sections were incubated with 2% bovine serum

Figure 1 Experimental protocol: NS = physiological saline, Dex = dexamethasone, OO = olive oil.

Figure 2 Western blots representative of five independent experiments showing pulmonary eNOS expression on days 20.5 and 21.5 of gestation:HSEC
human suspended endothelial cells (positive control for eNOS).
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albumin in TRIS buVer (pH 7.6) to reduce
non-specific binding of antibody and then with
a specific murine monoclonal anti-eNOS anti-
body (Transduction Laboratories, Kentucky,
USA) for 1 hour followed by two washes in
TRIS buVer (pH 7.6). This was followed by
incubation with a secondary monoclonal biotin
labelled rabbit anti mouse “link” immu-
noglobulin (Sigma Aldrich Co. Dorset, UK)
and a streptavidin/horseradish peroxidase com-
plex (DAKO Ltd. Bucks, UK). Staining for
eNOS was visualised using a cobalt enhanced
3,3’ diaminobenzidine chromogen (Sigma
Aldrich Co. Dorset, UK). To confirm antibody
specificity, control sections were subjected to
all the above steps with omission of the primary
anti eNOS antibody.
The unpaired t test was used to determine

statistical diVerence between the groups. A p
value of < 0.05 was considered significant.

Results
WESTERN IMMUNOBLOTTING

The results of five independent experiments
and a representative western blot are shown in
figs 2 and 3 for day 20.5. CDH lungs showed a
significant reduction in eNOS protein expres-
sion compared with controls (p=0.03). In con-
trast, the lungs of CDH rats treated with
dexamethasone showed eNOS expression
equivalent to that seen in the lungs of normal
animals (p=0.02 vs CDH treated with physi-
ological saline). Nitrofen physiological saline–
non CDH pups had intermediate eNOS
expression which were lower than but not sta-
tistically diVerent from olive oil physiological
saline normal controls (p=0.07).
The results of five independent experiments

and a representative western blot are shown in
figs 2 and 3 for day 21.5. There were no diVer-
ences in eNOS protein expression between any
of the experimental groups studied.

IMMUNOHISTOCHEMISTRY

eNOS immunoreactivity was localised to the
endothelium of pulmonary arteries of varying
size in all the lungs studied (fig 4). Large hilar
vessels showed the greatest intensity of staining
compared with the smaller peripheral arteri-
oles. There were no obvious diVerences in the

intensity of staining between the groups. eNOS
immunoreactivity was also detected in the
bronchial epithelium, but no diVerences were
observed between the experimental groups.
Detailed morphometric analysis was not per-
formed.

Discussion
Pulmonary hypertension in combination with
pulmonary hypoplasia continues to present a
major obstacle to the successful management
of CDH. Despite advances in neonatal inten-
sive care, the current mortality associated with
this condition remains as high as 50%.5 29 30 An
improved understanding of the natural history
and pathophysiology of CDH together with the
availability of antenatal diagnosis has led to
fetal intervention in an eVort to rescue lung
growth and maturation. Recently, antenatal
glucocorticoid treatment has been shown to
improve biochemical immaturity, increase lung
compliance, and enhance lung morphology in
experimental CDH animals.20–23 The eVect of
this treatment on the pulmonary vascular bed
in CDH has not been studied.
In this study, we used the nitrofen induced

CDH rat model which reproduces many of the
pathologic hallmarks of CDH seen in people.
The diaphragmatic defect is induced early in
gestation during the embryonal phase of lung
development producing lungs which are mark-
edly hypoplastic, surfactant deficient, poorly
compliant and display hypermuscularisation of
the pulmonary vasculature.20–24 31 32

Nitric oxide is believed to have a pivotal role
during the transition of the fetal pulmonary
circulation to extrauterine life.8 Experimen-
tally, inhibiting NO production before birth
can prevent the normal postnatal increase in
pulmonary blood flow.8 33 Clinically, inhaled
NO has been administered as a specific pulmo-
nary vasodilator to CDH patients with varying
clinical response.11–17 An eNOS deficiency in
CDH has been investigated by previous
authors.20 26 34 eNOS activity is normal in CDH
lambs, suggesting that a deficiency is not
implicated in this late gestational animal
model.34 In contrast, studies in CDH rats have
yielded conflicting results.20 26 35 In our study,
we showed that eNOS was deficient in CDH
rats at 20.5 days of gestation. This agrees with
the findings of a previous study.26

We noted that dexamethasone treated CDH
rats had eNOS concentrations restored to
those seen in the lungs of normal olive oil con-
trols. This suggests that antenatal steroids may
enhance endothelium dependent vasorelaxa-
tion in fetal CDH rat lungs before term. How-
ever, at term (day 21.5 ), we were unable to
show an absolute deficiency of eNOS, and
dexamethasone had no additive eVects on its
expression. Supporting these findings, immu-
nohistochemistry revealed no qualitative diVer-
ences in eNOS immunoreactivity in the large
and small pulmonary arteries between experi-
mental groups. These findings therefore agree
with those of another study which showed nor-
mal eNOS mRNA expression at 21.5 days in
CDH rats.20 A fetal eNOS deficiency near term
(day 20.5) may reflect an inadequate priming

Figure 3 Results of five independent western blot experiments showing pulmonary eNOS
expression on days 20.5 and 21.5 of gestation. Results are expressed as mean percentage
(SEM) compared with eNOS expression in normal controls given olive oil and
physiological saline. On day 20.5 of gestation, CDH rats given physiological saline showed
reduced eNOS expression compared with normal controls (OO-NS) (* p=0.03).CDH rats
treated with dexamethasone had significantly higher eNOS concentrations than CDH
fetuses given physiological saline (** p = 0.02) and equivalent to that seen in the lungs of
normal controls (p=0.8).
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of the fetal pulmonary vascular bed for extrau-
terine life, as NO is known to have an
important role in the regulation of fetal pulmo-
nary vasoreactivity.7 By restoring eNOS expres-
sion at this time point, steroid treatment may
improve the haemodynamic eVects of fetal
eNOS deficiency. However, at term the precise
role of eNOS deficiency in CDH rats remains
uncertain and this partly may explain the

varied clinical response to exogenous NO
treatment in people with CDH.11–17 An imbal-
ance or deficiency in eNOS may perhaps exist
postnatally due to overwhelming vasoconstric-
tor influences and parenchymal CDH abnor-
malities. Antenatal glucocorticoids may ad-
dress this imbalance by modulating
vasoregulatory pathways and enhancing lung
maturation.20–23 31 36

Notably, we also showed eNOS immunoreac-
tivity in the bronchial epithelium. This supports
the findings of an earlier study that noted
immunolocalisation within the ciliated bronchial
epithelium of newborn rats.37 Thus NO may
have an important role in modulating bronchial
smooth muscle tone as well as vascular reactivity
during the transition to neonatal life.
Glucocorticoids have profound maturational

eVects on the developing fetal lung. These
eVects include enhanced alveolar diVerentia-
tion, thinning of alveolar septae and capillary
walls, and upregulation of surfactant
production.18 38 The mechanisms through
which steroids produce these eVects remain
incompletely understood. They may occur as a
result of the direct activation of glucocorticoid
receptors or through the downstream paracrine
or autocrine eVects of growth factors.39–42

The precise regulation of eNOS expression
and activity has yet to be determined. eNOS
gene expression can be upregulated by shear
stress and hypoxia.43 Oestrogen may also
upregulate eNOS expression through the acti-
vation of oestrogen receptors.44 Basic fibroblast
growth factor and transforming growth factor
â 1 can increase eNOS mRNA and protein
expression.45 46 Both growth factors can be sus-
ceptible to glucocorticoid modulation.47 48 It is
conceivable, therefore, that corticosteroids
influence eNOS expression in the developing
fetal lung which involves complex epithelial
mesenchymal interactions.49 This process may
be more complicated in pathological condi-
tions such as CDH related lung hypoplasia
where the mechanisms causing abnormal
pulmonary growth and diVerentiation are
incompletely understood.
In summary, antenatal glucocorticoid treat-

ment can enhance the expression of eNOS in
the lungs of fetal CDH rats near term. This
could have implications for the therapeutic
manipulation of fetal pulmonary vascular reac-
tivity and may reduce the risk of pulmonary
hypertension developing in the lungs of ne-
onates with antenatally diagnosed CDH. Fur-
ther studies are required to understand the
regulatory mechanisms governing eNOS ex-
pression and NO activity in congenital dia-
phragmatic hernia.
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