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Animal models show that developmental compensatory
mechanisms may promote neural and functional plasticity

P
reterm birth results in consider-
able disability, yet several reports
suggest recovery from injury in

developing brain. Developmental com-
pensatory mechanisms may promote
neural and functional plasticity, and
numerous experimental studies have
documented the brain’s ability to
engage in regenerative mechanisms to
potentially replace injured cells. We
review available evidence for recovery
from injury in models for the preterm
brain and offer hypotheses for targeting
time dependent molecular and cellular
repair mechanisms that have been
recently gathered from animal studies.
A better understanding of these adap-
tive cellular and molecular mechanisms
will help clinicians apply knowledge
derived from animal models to clinical
situations.

NEWBORN RODENT AS A GOOD
MODEL FOR PRETERM BRAIN
The many neurodevelopmental handi-
caps that very low birthweight infants
experience suggest that preterm birth
disrupts the genetically programmed
pattern of brain genesis. To develop a
clinically relevant model of the effect of
preterm birth on developing brain, one
must use an animal model that shows
that the injury imposed results in
neuropathological changes similar to
those found in preterm infants and
correlate these changes with beha-
vioural outcomes. As in the preterm
infant at the end of the second tri-
mester, neuronal generation in the
newborn rodent is complete in most
regions, axonal and dendritic branching
is robust, and synaptogenesis is just
beginning.1

Review of the literature suggests that
oxygen deprivation is a major cause of
neurodevelopmental disability in pre-
term infants.2 Although intraventricular
haemorrhage, periventricular leuco-
malacia, and ventriculomegaly are the
most commonly recognised and best
studied of these circulatory disturb-
ances,2 hypoxia is particularly prevalent
among very low birthweight infants and
is a common denominator of these
abnormalities.3

Models of both hypoxia-ischaemia
and hypoxia have been studied in new-
born rodents, and the former results in
focal injury to developing brain.4 In
contrast, the exposure of young animals
to hypoxia mimics global injury to the
preterm brain.5 Decreases in brain
weight, cortical volumes, and neuronal
size as well as ventriculomegaly have
been reported in neonatal rats and mice
exposed to periods of hypoxic injury.6 7

Dendritic spine development is impaired
after hypoxia in newborn rodents,8 and
a recent molecular analysis of the effect
of chronic sublethal hypoxia on devel-
oping mouse brain showed disruption in
those genes subserving synaptogenesis.9

Finally, animals exposed to chronic
hypoxia experience hyperactivity and
long term impairment of spatial mem-
ory abilities. Taken together, these data
suggest that chronic hypoxia results in
significant alterations in brain develop-
ment and maturation in the newborn
rodent model similar to those found in
very low birthweight preterm infants.

POSSIBLE CONTRIBUTION OF
POSTNATAL NEUROGENESIS TO
REORGANISATION OF BRAIN
AFTER INJURY
Multiple animal studies have shown
that the brain can reorganise patterns
of connections to recover from or
compensate for injury during develop-
ment,10 11 and this phenomenon of
plasticity has been variously attributed
to increases in neurogenesis and synap-
togenesis or to the reorganisation of
existing circuitry.12 13 Although it seems
plausible that neonates can reorganise
patterns of connections during the time
when these are still being refined,
whether or not recovery from injury
involves actual regeneration of nerve
cells and reconstruction of circuitry is
controversial.

Further, it has been known for many
years that certain regions of the post-
natal and adult brain contain neural
stem cells able to undergo constitutive
neurogenesis,14 but only relatively
recently has this phenomenon been
shown in a wide range of mammalian
species, including man.15 Although
neural stem cells are present throughout

the brain, only those in the forebrain
subventricular zone (SVZ) and the sub-
granular layer of the dentate gyrus
appear to undergo neurogenesis in vivo.
These two regions provide neurones for
the olfactory bulb and the dentate gyrus
respectively. In important recent experi-
ments, newly generated hippocampal
granule cells have been shown to
integrate themselves into pre-existing
circuitry, become electrically active, and
form synaptic connections.16 17

Postnatal neurogenesis is influenced
by both the external and internal
environment. Hippocampal neurogen-
esis declines with age and is suppressed
by stress.18 19 In contrast, the prolifera-
tion of hippocampal progenitors is
enhanced by oestrogens and by exercise,
and the survival of newly born neurones
is promoted by an enriched environ-
ment.20 21 The increase in neuronal
survival resulting from environmental
stimulation—that is, ‘‘early interven-
tion’’—protects neurones from injury
and is possibly due to increased
concentrations of neurotrophins in
the hippocampus.22 As environmental
enrichment improves spatial memory in
animal models, enhanced neurogenesis
and neuronal survival in the dentate
gyrus may increase the ability of an
animal to learn new information.

Neural stem cells of the postnatal
SVZs and the dentate gyrus may also
respond to a variety of noxious environ-
mental perturbations. In adult mice,
stem cells can reconstitute the whole
SVZ even after more than 90% destruc-
tion of this region.23 These progenitors
give rise to cortical pyramidal neurones
if there is massive apoptosis in the
cerebral cortex24 or to hippocampal
pyramidal neurones and striatal neu-
rones after experimental stroke in adult
rats.25 The newly generated neurones are
targeted to the injured site, suggesting
that neurogenesis is regulated by local
changes in gene expression after
injury.26 Finally, Nakatomi et al27 have
described extensive regeneration (up to
40%) of the hippocampal CA1 pyramidal
layer after ischaemia in adult rats, but
only after infusions of basic fibroblast
growth factor (FGF) and epidermal
growth factor in the cerebral ventricles.
As this degree of regeneration was
accompanied by substantial behavioural
recovery,27 elucidation of those mechan-
isms that mediate neural regenerative
events is critical for the development of
therapeutic strategies for injured brains.

Neural stem cells contain glial fibril-
lary acidic protein, an intermediate
filament typical of astrocytes.28

Astrocytes arise from radial glia, the

Abbreviations: FGF, fibroblast growth factor;
SVZ, subventricular zone
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mitotically active embryonic progenitor
cells that normally form the scaffolding
of the developing neuroepithelium.
Stretching an apical and a basal process
between the ventricular and the pial
layers, these cells generate cortical neu-
rones during embryogenesis. After cor-
ticogenesis is finished, the radial glia
gradually retract their ventricular pro-
cess, transforming into multipolar
astrocytes.

RADIAL GLIA MAY BE CRITICAL
FOR RECOVERY FROM INJURY IN
DEVELOPING BRAIN
Recent data have suggested that recov-
ery from injury in the preterm brain
may involve the reactivation of radial
glia in the germinal layers.29 In the days
after acute or chronic hypoxic insult,
there is increased cell proliferation in
both the SVZ and the dentate gyrus, and
the ‘‘reactive’’ cells that divide after
perinatal hypoxia appear to be pheno-
typically a form of radial glia.29

This abundance of radial glia may be
secondary to the increased proliferation
of pre-existing radial glia after injury
and/or to a reversion of their ‘‘involu-
tion’’ into astrocytes. Hence, after brain
insults, astrocytes may be able to ‘‘reju-
venate’’ and revert to radial glia, which
in turn may generate neurones as
shown in fig 1.

Radial glia express FGF receptors, and
several studies in vitro suggest that
FGF2 is necessary for the proliferative
expansion of these progenitors.30 FGF2
may also be important for regenerative
phenomena in the postnatal brain.
FGF2 concentrations are increased in
the recovery phase after neonatal
hypoxia, as is the expression of FGF
receptor 1 in the SVZ.29 Of note, FGF2
message and protein are increased after
hypoxia/ischaemia in the adult brain,
and adult Fgf2 knockout mice are unable
to mount a regenerative response in the
hippocampus after hypoxia/ischaemia.
Although these results suggest that an

increase in FGF2 expression may pro-
mote recovery after insults in the adult
rodent brain, the significance of the FGF
signalling pathway for functional recov-
ery in the neonatal period remains to be
elucidated.

In addition, genetic and environmen-
tal factors that influence neurogenesis,
such as the secretion of growth factors
and rodent ‘‘early intervention’’, most
certainly affect a variety of growth
processes. These include fibre sprouting
and synaptogenesis. Thus it will be
essential to discriminate from the
myriad of changing events those that
are critical to direct functional
recovery. Candidate genes that poten-
tially play a role in these phenomena
are those for growth factors, their
receptors, and intracellular transduction
events, those that regulate apoptosis,
and those neural stem cell transcription
factors that regulate lineage determina-
tion. Transgenic mice lacking or over-
expressing these molecules and exposed
to chronic sublethal hypoxia may repre-
sent good models for the adaptive
mechanisms of developing preterm
brain.

Recent clinical studies suggest
improvement in some measures of
cognitive function in preterm infants
across time. Modelling chronic sublethal
hypoxia in neonatal rats and mice
recapitulates the type of damage that is
present in premature infants and in
other conditions of chronic neonatal
hypoxia. These models may be useful
in testing mechanisms of recovery
and potential therapeutic strategies.
Primitive glial cells such as radial glia
may be able to generate new cells for
brain repair under conditions in which
mature cells are dying, raising hopes
that the postnatal brain may be able to
support neurogenic programmes after
injury. Future research is needed to shed
light on the mechanisms that promote
the proliferation of these cells, their
differentiation into neurones and glia,

and their proper integration into func-
tional neuronal circuitry.
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