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Diabetic tractional papillopathy: a new (and true) nosological
entity?

Partial restoration of vision was achieved following vitrec-
tomy in 15 of 17 eyes, ostensibly through removal of diabetic
fibrovascular proliferations from the nasal part of the optic
disc and relief of vitreopapillary traction which, for between
6 months and 6 years, had caused a reversible functional
impairment of the papillomacular bundle via stretching and
kinking of ganglion cell axons and additional or consecutive
eVects on their prelaminar blood supply. Eyes with such fea-
tures (that is, with traction primarily localised nasally on the
disc and unaccountably aVecting acuity without any associ-
ated disturbance of the central visual field) should be
subjected to early vitrectomy in order to prevent irreversible
long term damage to central vision. This is the recommen-
dation of Kroll and colleagues in a report which is published
in this issue of the BJO (p 261) and which merits the careful
attention of all ophthalmologists involved in the manage-
ment of diabetic eye disease. Indeed, some will already be
asking—if this entity is so common, how have I failed to rec-
ognise it for all these years?

Diabetic papillopathy (that is, disc swelling without any
tractional component) has proved diYcult to characterise
clinically1; similarly, defining the precise physiological basis
of visual loss in eyes with ischaemic/proliferative diabetic
retinopathy is frequently problematic. Biomicroscopic
signs of subtle but visually significant vitreomacular
traction, for example, may be hard to elicit given the diY-
culties in detecting the consequent minor distortions of the
transparent outer retina or the intraretinal disruption rep-
resenting tractional schisis; reports of visual benefit and
reversal of macular oedema after vitreous detachment2 or
after vitrectomy and peeling of the posterior hyaloid
membrane3–5 may bear witness to a “trampoline eVect”
across the macula in some eyes and may obviate the need
to invoke alternative mechanisms of recovery such as
physiological “vitreoperfusion”.6 7 Fluorescein angio-
graphy may also be less than definitive in diabetic eyes
since good correlation between the extent of enlargement
of the foveal avascular zone and the deficit in vision is
lacking.8 Attributing visual loss unreservedly to diabetic
tractional papillopathy, then, is no mean task and any criti-
cism of the achievements of Kroll and colleagues must take
this into account. Given that the changes in the appearance
of the optic disc after surgery may not be especially
informative,9 their case rests largely on the extent to which
other mechanisms of visual benefit from surgery were
excluded and on electrophysiological data. Regarding the

former, scrutiny of their exemplar fluorescein study fails to
inspire confidence since there are clear signs of macular
retinal traction and perifoveal dye leakage in the preopera-
tive illustration notwithstanding their stated exclusion cri-
teria. Furthermore, removal of mild to moderate vitreous
haemorrhage (that is, haemorrhage of less severity than the
level warranting exclusion from their study) may well have
had a significant influence on the visual benefit deriving
from surgery in some eyes; it would have been reassuring if
parallel “control” electrophysiological studies had been
undertaken in eyes undergoing vitrectomy for mild to
moderate vitreous haemorrhage wherein no vitreopapillary
traction was evident. More information on the state of the
vitreous in these eyes would also have been valuable—was
the vitreous attached or detached from the retina?

Electrophysiological data were lacking in six eyes,
restricted to visually evoked potentials (VEPs) elicited by
flash in eight eyes, and derived from pattern stimulation in
only three of the 17 eyes studied by Kroll and colleagues.
Contrary to their statement, only a small minority (that is,
not “most”) of the 17 eyes met their own evaluation crite-
ria that significant increases in acuity and VEP amplitude,
together with a decrease in VEP latency, resulted from
surgery—though this standard may be regarded as too
stringent. There was no apparent correlation between
visual benefit from vitrectomy and improved VEP
variables; indeed, the two eyes with the greatest rise in VEP
amplitude (and the highest absolute VEP amplitude values
postoperatively) enjoyed minimal visual improvement (and
had continuing poor vision) after surgery. However, it may
well be that changes in VEP latency are more reliable than
VEP amplitude changes,10 11 while more use of comparative
studies between the operated eye and the fellow eye (the
latter always showing a normal disc and flat retina in their
series) might have been helpful in defining normative VEP
values in these patients, in controlling for the influence of
blood glucose changes,10 and in demonstrating repeatabil-
ity independent of any surgical eVect. Extending the range
of investigational modalities12 might also have provided
more insight into the nature of the residual visual defect
seen in the operated eyes.

When contemplating vitreous surgery for proliferative
diabetic retinopathy, most attention has so far been
focused on vitreomacular traction and there is reason to
hope that techniques for better defining retinal structural
pathology13 will aid clinical evaluation in future. There is
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little doubt, however, that ganglion cell axons in severe
diabetic eye disease are potentially subject to a variety of
metabolic and ischaemic insults; an additional putative
mechanical factor is one we surely should not ignore, espe-
cially one operating at a point of known vulnerability of
axoplasmic transport.14 Whether Kroll and colleagues have
provided incontrovertible evidence of such mechanical
eVects through their report is open to debate; more
precisely specified and expressed studies are needed. In the
meantime, further extension of the indications for
vitrectomy in proliferative diabetic retinopathy should pro-
ceed with caution. For example, many eyes with nasal
ectopia of the macular neuroretina and underlying
pigment epithelium (as a result of fibrovascular contraction
nasal to the optic disc) retain excellent visual acuity—
perhaps the full thickness retinal ectopia is protective
against nerve fibre stretching and visual loss in such eyes.
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Paediatric pseudophakia—choosing the implant power

Posterior chamber lens implantation is increasingly em-
ployed in the management of paediatric cataract, some-
times in infants within a few weeks of birth. The need to
implant a lens of fixed power into an eye that is still grow-
ing creates a problem—what power lens should be
selected? This is especially a dilemma in infants under 18
months of age, the period of most rapid postnatal ocular
growth, during which there can be a substantial myopic
shift.

Using hand held instruments, reliable keratometry and
axial length measurements can be obtained in children,
and implant power calculations using adult formulas are
accurate in the paediatric eye.1 However, implanting a lens
at the calculated power risks significant myopia at ocular
maturity. The paediatric cataract surgeon therefore now
requires an additional “formula”, one that will predict the
final refraction for any selected lens on the basis of the
patient’s age.

An initial suggestion was to utilise a cross sectional study
of the refractive data in a normal population.2 The
objection to this approach is that the pseudophakic eye is
not normal in a variety of ways and may therefore grow
diVerently. For example, the cataract may have been one
manifestation of a wider ocular abnormality aVecting
growth. Given its important prenatal role in ocular
development, loss of the crystalline lens might also have an
eVect, and there is evidence that both amblyopia3 and the
physical properties of the implant4 may alter growth in
axial length. As happened for adult intraocular lens power
calculations, the most accurate formula is likely to derive
from a study of outcome, in this case of children followed
up until growth of the eye is complete. This requires many
years of follow up and adequate data are not yet available.

Long term follow up data are, however, already available
for aphakic paediatric eyes and have been used to derive a
theoretical model that surgeons could use to predict future
refraction at any age, and to develop a computer program

to make the required calculations.5 This is an important
step and in the future we can expect such a program will
become an integral part of the software in standard equip-
ment for calculating implant power, but it will be based on
pseudophakic not aphakic follow up data.

For the present, the requirement is for the accumulation
of data on the refractive changes in pseudophakic eyes and
a study by Flitcroft and colleagues in this month’s BJO (p
265) makes a useful contribution to that process. The
authors carried out a prospective observational study of
changes in refractive power, keratometry, and axial length
in 35 pseudophakic eyes.

An admitted problem is that follow up for many patients
was relatively short, a feature of most of the studies in this
field. It does cover the period when the eye is making its
most rapid growth, and during this time the pseudophakic
eyes studied showed axial elongation similar to that found
in normal eyes. A further report when these eyes have
reached maturity will be required to confirm the authors’
initial conclusions and advice on implant power selection.
In the interim it should be noted that the predictions of
final refraction in the younger children are based on the
presumption of continuing normal growth rather than
actual follow up.

Unlike some previous studies, Flitcroft et al do provide
detailed information for each patient and this is important.
As the numbers in individual series will never be large, the
most reliable formula is likely to be derived by meta-
analysis. In addition, other factors aVecting myopic shift
may be isolated—for example, amblyopia and the initial
postoperative refraction.3 Publication of full data for all
studies should enable earlier assessment of the impact of
such variables.

Information from animal and human studies confirms
the existence of visually directed control of growth in the
axial length of the eye, but its mechanism remains
unknown.6 7 With an implant of fixed power and good
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vision it is possible to speculate that the control system
might reduce the normal increase in axial length, and so
lessen the problem of myopic overcorrection.8 This would
be a serendipitous phenomenon to enjoy, and it may have
occurred in some cases.3–11 In the longer term, there is the
possibility that when we understand the control of postna-
tal growth of the eye we may learn to manipulate it, to
reduce the refractive problems inherent in implants of
fixed power.
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