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Role of NF-êB in immune and inflammatory responses in the
gut

Summary
NF-êB is a pleiotropic transcription factor with key
functions in the intestinal immune system. NF-êB family
members control transcriptional activity of various pro-
moters of proinflammatory cytokines, cell surface recep-
tors, transcription factors, and adhesion molecules that are
involved in intestinal inflammation. The perpetuated acti-
vation of NF-êB in patients with active inflammatory
bowel disease suggests that regulation of NF-êB activity is
a very attractive target for therapeutic intervention. Such
strategies include antioxidants, proteasome inhibitors,
inhibition of NF-êB by adenoviral IêBá expression vectors,
and antisense DNA targeting of NF-êB. These approaches
will hopefully permit the design of new treatment strategies
for chronic intestinal inflammation.

Introduction
Much recent research has focused on the regulation of
cytokine gene expression by transcription factors in the
mucosal immune system. In this review we will discuss the
role of the transcription factor nuclear factor êB (NF-êB)
in immune and inflammatory responses in the gut.

Members of the NF-êB family of transcription
factors
Nuclear factor êB (NF-êB) designates a group of
transcription factors defined in part by their ability to bind
a specific DNA sequence first identified in the enhancer of
the immunoglobulin ê light chain gene.1–6 In mammals the
NF-êB family consists of several proteins including
NF-êB1 (p50; precursor protein: p105), NF-êB2 (p52;
precursor protein: p100), p65 (RelA), c-Rel (Rel), and
RelB which share the so-called Rel homology domain.
Furthermore, Rel proteins such as dorsal, Dif and Relish
have been identified in Drosophila. The roughly 300-
amino-acid N-terminal Rel homology domain of NF-êB
family members mediates DNA binding, dimerisation, and
interaction with an inhibitor protein called IêB.7 8

NF-êB can be found in the cytoplasm of most cells as an
inactive complex with unprocessed precursor proteins
(e.g. p105) or IêB (e.g. IêBá) proteins.1–6 Activation of
cells with various stimuli then initiates a signalling cascade
that finally leads to the disruption of the inactive complex
and the release of NF-êB (fig 1).9–11 In lymphocytes,
NF-êB can be released by stimulating cells with various
agents such as lipopolysaccharide (LPS), phorbol 12-
myristate 13-acetate (PMA), phytohaemaglutinin (PHA),
immunoglobulin receptor-crosslinking, interleukin 2, and
crosslinking of surface CD3 or CD28. Upon activation,
NF-êB translocates into the nucleus and binds to DNA.
The prototypical NF-êB is a heterodimer composed of the
p50 and p65 subunits and the latter is the most frequent
component of active NF-êB in humans. p65 containing
complexes bind with high aYnity to the consensus DNA
sequences 5'-GGGPuNNPyPyCC-3' (p65/p50) or 5'-
GGGPuNPyPyCC-3' (p65/c-Rel) leading to activation of
transcription.12 13 In addition to the p50/p65 heterodimer,
many other heterodimers or homodimers (e.g. p50) of
NF-êB/Rel family members have been described. Interest-

ingly, homodimers of the p50 subunit are constitutively
present in nuclear extracts of lymphocytes. Their
function, however, remains to be determined as p50 lacks
a transactivation domain.

The IêB family
The IêB family of proteins includes IêBá (MAD-3, pp40),
IêB-â, IêBã/p105, Bcl-3, IêBä/p100, and IêBå.14–17 These
proteins are characterised by multiple5–7 repeated se-
quences of 33 amino acids, termed SWI6/ankyrin repeats,
which seem to be responsible for the interaction with the
Rel domain of NF-êB. IêB proteins are organised as
tripartite molecules consisting of (i) an N-terminal domain
required for proteolytic degradation, (ii) a central domain
with ankyrin repeats required for interaction with NF-êB,
and (iii) a C-terminal domain (called PEST domain)
which is essential for sequestration of NF-êB in the
cytoplasm. The precursor proteins of p50 and p52, termed
p105/IêBã and p100/IêBä, contain in addition to the Rel
homology domain ankyrin repeats and thus are structurally
and functionally related to the IêB family. For instance, the
precursor of p50 (p105) contains at its N-terminal domain
p50 and in its C-terminal half seven ankyrin repeats.18–20

This protein sequesters p65, c-Rel and proteolytically
released p50. Although the p50 releasing protease of p105
has not yet been identified, an ATP dependent ubiquitin
system for p105 has been proposed.

IêB proteins exert multiple functions including preven-
tion of nuclear translocation of NF-êB. The inhibition is
based on the interaction between the C-terminal ankyrin
repeats of IêB and the Rel homology domain of NF-êB.
The IêBá and IêBâ proteins preferentially inhibit NF-êB
complexes containing the p65 and c-Rel subunits.
Interestingly, some IêB proteins have been found in the
nucleus. This fact suggests that these proteins do not nec-
essarily reside as an anchor in the cytoplasm to fulfil their
function. In fact, the IêB-like protein Bcl-3 can function as

Figure 1 Members of the NF-êB/IêB families. After activation of the
cells IêB is degraded and NF-êB can translocate to the nucleus.
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transcriptional coactivator after association with p52 on the
DNA although Bcl-3 has been shown to inhibit p50
containing complexes.21 22 Furthermore, it has been
proposed that IêB proteins are able to strip oV DNA bound
NF-êB.

Transcriptional regulation of NF-êB and IêB genes
p105 and p100 are constitutively expressed but their
mRNA levels are increased in response to signals activating
NF-êB, such as treatment with PMA, interleukin 1 (IL-1),
and tumour necrosis factor (TNF). There is some evidence
for autoregulation of NF-êB activity as the promoters of
p105, c-Rel and Bcl-3 contain cis-acting êB motifs.23 24 In
contrast, the transactivating p65 subunit is not induced by
NF-êB and the p65 promoter does not contain NF-êB
binding sites.25 However, NF-êB activation relies primarily
on a rapid post-translational mechanism. Finally, it should
be mentioned that NF-êB upregulates transcription of its
inhibitor IêBá most likely due to its binding to êB sites at
the IêBá promoter.26

Signal transduction pathways leading to NF-êB
activation
Several unrelated stimuli like phorbol ester, TNF, IL-1,
IL-18, LPS, and ultraviolet light have been shown to acti-
vate NF-êB, which is in agreement with the pleiotropic
roles of NF-êB in many diVerent cell types and tissues.
Activation of NF-êB by IL-1, TNF and IL-18 requires
binding of cytokines to their specific cell surface receptors
(fig 2). For instance, TNF binds to its receptor and leads to
activation of TNF receptor associated factor (TRAF) pro-
teins via a receptor associated adaptor protein called TNF
receptor associated death domaine (TRADD). At the
moment six members of the TRAF protein family are
known (TRAF 1–6). TRAF2 is required for NF-êB activa-
tion via TNFR1 (75 kDa) and TNFR2 (55 kDa). In con-
trast, TRAF5 is also involved in NF-êB activation by other
members of the TNF receptor family and TRAF6 partici-
pates in NF-êB activation via IL-1.27 Furthermore, TRAF
proteins interact directly with the cytoplasmic tails of two
other TNFR family members (CD40 and CD30).28 29

TNFR1 mediated NF-êB activation also requires the
serine-threonine kinase RIP, which is associated with
TRAF proteins and interacts with the respective receptor
complex via TRADD.30 TNF signalling also activates JNK
(stress activated protein kinase) and Fas associated protein
with a death domaine (FADD) which leads to apoptosis via
a caspase-8 initiated cascade (fig 2).31–33

Members of the TNF receptor (TNFR) superfamily
interact via their cytoplasmic tails with TRAF proteins
which serve as adaptor proteins to recruit NIK, a specific
NF-êB inducing kinase.34 In addition to the TNF
signalling pathway, the IL-1 and IL-18 initiated signalling
pathways lead to the activation of NIK. However, in the
case of IL-1 NIK is activated through TRAF6 and IRAK
(serine-threonine kinase) and a similar activation mech-
anism of NF-êB has been recently suggested for IL-18 (fig
2). NIK is classified as MAP kinase kinase kinase (MAP3k)
and was identified as TRAF2 interacting protein.35 A
serine-threonine kinase previously known as CHUK was
shown to associate with NIK and IêBá in mammalian
cells.36 Based on its property to phosphorylate IêBá
CHUK was named IKKá (IêB kinase á).37 At the next step
of the cascade IKKá associates with IêBá and phosphory-
lates the latter at serine 32 and serine 36. The modified
IêBá is then specifically degraded via the ubiquitin/
proteasome pathway and the active NF-êB dimer can
translocate into the nucleus and bind to its cognate target
sequence (fig 3).38 39

Genes regulated by NF-êB
NF-êB is a key regulator of the inducible expression of
many genes associated with immune function in the gut.
For instance, NF-êB plays an essential role in the
transcriptional regulation of many cytokine genes (e.g.
IL-1, interferon (IFN) ã, IL-2, IL-6, IL-8, IL-12p40) in
lymphocytes, epithelial cells and monocytes. The role of
NF-êB in IL-2 gene expression has been extensively stud-
ied in the past. Stimulation of T cells via the CD28 path-
way leads to activation of NF-êB and subsequent binding
to the CD28 response element (CD28RE) of the IL-2

Figure 2 NF-êB signal transduction pathways initiated by IL-1, TNF
and IL-18. Whereas TNF activates NIK via TRADD and RIP/TRAF2,
IL-1 and IL-18 use IRAK/TRAF6 to activate NIK. NIK in turn
activates IKKá which causes phosphorylation of IêB. Next, IêB is
ubiquitinated and degraded via the proteasome pathway. Finally, NF-êB
translocates into the nucleus and binds to its target DNA sequences.

Figure 3 Targeting of the NF-êB activation pathway in intestinal
inflammation. While alkylating agents and antioxidants may block protein
kinases, antisense DNA can inhibit translation of p65. In addition,
corticosteroids lead to blockade of p65 and adenoviral expression vectors
could deliver genes whose products inactivate NF-êB.
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promoter.40 Interestingly, such elements were also found
upstream of the IL-3 gene and IL-8 expression is also
regulated by NF-êB in response to CD28 co-
stimulation.41 42 This suggests a common pathway of CD28
stimulated cytokine expression in T cells involving NF-êB.
However, the potential role of NF-êB in immune modula-
tion in the gut is not only limited to cytokine gene regula-
tion. In fact, NF-êB has been shown to have an important
function in the regulation of a variety of genes encoding
transcription factors and cell adhesion molecules (table 1).
For instance, the binding of NF-êB, activating transcrip-
tion factor-2 (ATF-2) and high mobility group I(Y)
(HMG-I(Y)) to the E-selectin promoter is necessary for
the expression of the respective gene.43 44 Furthermore,
NF-êB regulates the expression of genes for the trans-
porter associated with antigen processing (TAP-1), the
proteasome subunit latent membrane protein 1 (LMP-1)
and the MHC class II invariant chain,45 46 proteins with
essential functions for antigen presentation. Thus, NF-êB
seems to be a key regulator of immune cell function.

NF-êB itself is extensively up- and downregulated by a
wide variety of exogenous stimuli that modulate immune
function, thus providing a positive or negative feedback
mechanism. For instance, NF-êB transactivates the induc-
ible nitric oxide (NO) synthase promoter in response to
LPS giving rise to increased production of NO, a substance
that is strongly upregulated in the inflamed intestine,47

which in turn has been reported to inhibit NF-êB
activation in endothelial cells.48 49 Interestingly, various
other substances clinically used to treat patients with
chronic intestinal inflammation, including IL-10, sulpha-
salazine and immunosuppressive drugs such as cyclosporin
A and glucocorticoids, have been reported to inhibit
NF-êB activation.50–55 74 Whereas corticosteroids repress
NF-êB activity by inducing IêBá protein production and
complex formation with NF-êB p65, the inhibitory
mechanisms of IL-10 on NF-êB activation have not been
fully delineated. However, IL-10 knockout mice with
chronic intestinal inflammation have activated NF-êB
p65.56 Furthermore, a phosphorothioate oligonucleotide
antisense to the p65 translation start site suppresses colitis

in these mice indicating an important role for IL-10 in
controlling NF-êB activity in the gut.

Lessons from NF-êB/IêB gene knockouts
Recently, the targeted disruption of various genes encoding
NF-êB subunits has been described. These knockout mice
revealed severe defects in immune function further
supporting a key regulatory role for NF-êB in the immune
system. Interestingly, the phenotype of these mice diVered
strikingly depending on the disruption of the respective
NF-êB subunit. For instance, mice lacking the p50 subunit
(NF-êB1) developed normally but had severe defects in
immune cell function.57 B cells of these mice had an
impaired ability to produce antibodies and to proliferate
upon LPS challenge. Furthermore, p50 −/− mice were
highly susceptible to bacterial infections with staphylococ-
cus and listeria. If compared with p50, the phenotype of
p65 (RelA) knockout mice was even more dramatic. These
animals died during embryonic development, most likely
because of extensive apoptosis of cells in the liver.58 Analy-
sis of NF-êB regulated genes (GM-CSF, IêBá) revealed a
loss of inducibility in the p65 knockout mice and cultured
T cells from these mice showed strikingly reduced
proliferative responses, underlining the functional
importance of NF-êB p65 for appropriate immune
function.

Mice lacking RelB developed normally until days 8–10.
Subsequently, however, they showed a complex pathologi-
cal phenotype, which is the result of multiple defects in the
adult immune system.59 RelB −/− mice displayed T cell
mediated inflammation of multiple organs and had
impaired cellular immunity. Mice lacking c-Rel developed
normally with no haemopoietic cell abnormalities.60 Inter-
estingly, mature T and B lymphocytes of c-Rel −/− mice
had an impaired responsiveness to mitogenic stimuli like
anti-CD3 or anti-IgM, respectively. Furthermore, in
unchallenged animals immunoglobulin production was
impaired. The proliferative block upon áCD3 and áCD28
stimulation of T cells disappeared after addition of
exogenous IL-2, suggesting that c-Rel is necessary for high
level IL-2 production.

In addition to knockout studies of NF-êB family mem-
bers, several groups have focused their attention on the IêB
family. IêB knockout mice displayed constitutively high
nuclear levels of NF-êB, giving rise to a dramatic
phenotype of these animals. Mice lacking IêBá, although
apparently normal at birth, died approximately seven days
later.61 Their phenotype showed small spleens and
thymuses, skin defects and increased granulopoiesis. In
addition, upregulated expression of some NF-êB regulated
genes (G-CSF and VCAM-1, as defined in table 1) was
observed. Taken together, the diVerent phenotype of
knockout mice of the NF-êB/IêB families indicates the
unique function of each individual family member and
shows that there is no simple redundancy among these
proteins. Furthermore, the generation of NF-êB/IêB defi-
cient mice has provided strong evidence for a key role of
NF-êB in controlling multiple steps of immune cell func-
tion such as apoptosis, cytokine production and chronic
inflammation.

Role of NF-êB in the mucosal immune system
Dysregulated cytokine production and signalling mecha-
nisms by epithelial cells, mucosal lymphocytes and macro-
phages have been implicated in the pathogenesis of both
Crohn’s disease and ulcerative colitis, the two major forms
of human inflammatory bowel disease (IBD).62 Over the
past few years, various murine models of chronic intestinal
inflammation resembling IBD have been established.
These models have provided important clues as to the

Table 1 Genes regulated by NF-êB

Cytokines and growth factors Interleukin 2
Interleukin 6
Interleukin 8
Interleukin 12p40
TNF-á
â-interferon
Granulocyte/macrophage colony
stimulating factor (GM-CSF)
Granulocyte colony stimulating
factor (G-CSF)
Macrophage colony stimulating
factor (GM-CSF)

Adhesion molecules Endothelial leucocyte adhesion
molecule 1 (ELAM-1)
Vascular cell adhesion molecule 1
(VCAM-1)
Intercellular cell adhesion molecule
1 (ICAM-1)
E-selectin
Mucosal vascular addressin cell
adhesion molecule (MAd-CAM-1)

Cell surface receptors T cell receptor â chain
T cell receptor á chain
â2-microglobulin
Interleukin-2R á chain

Transcription factors c-rel
c-myc
Interferon regulatory factor 1
(IRF-1)
IêBá

Others iNO synthase
TAP-1 peptide transporter
LMP2 proteasome subunit
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nature of such dysregulation and to its possible cytokine
based treatment.63 Thus, in studies of several of the models
most closely resembling Crohn’s disease it was found that
production of large amounts of Th1-type cytokines (e.g.
IFNã and TNF) whose promoters are regulated by NF-êB
is a major and essential feature of the inflammation.64 65

Finally, it has been shown that Th1 cytokine production in
these models is triggered by macrophages via increased
production of IL-12, a cytokine that plays a major role in
driving T cell diVerentiation and whose expression is also
at least partially triggered by NF-êB.66

The above data encouraged studies on the identification
of signalling pathways and transcription factors that govern
cytokine gene transcription in IBD. Although some NF-êB
family members are apparently important in preventing
inflammatory responses (e.g. RelB), it was found that
nuclear NF-êB levels are increased in patients with
IBD.56 76 In particular, the p65 subunit was highly activated
in epithelial cells and lamina propria macrophages from
patients with active Crohn’s disease and ulcerative
colitis.56 67 76 These findings are consistent with immuno-
histochemical data indicating increased expression of
NF-êB p65 in active IBD68 76 and data from intestinal
biopsy samples showing increased p65 in active Crohn’s
disease.69 In addition, it was shown recently that a specific
p65 antisense oligonucleotide can block p65 expression
and proinflammatory cytokine production by lamina
propria macrophages in patients with active Crohn’s
disease and ulcerative colitis.56 Furthermore, in a murine
model of colitis p65 antisense treatment led to an abroga-
tion of chronic intestinal inflammation.56 In spite of these
data on the role of NF-êB p65 in IBD, many additional
questions have to be answered. In particular, there are few
data concerning the role of other NF-êB/IêB family mem-
bers in epithelial cells and T cells in the gut. In addition,
the expression of IêB family members and their degrada-
tion mechanisms in IBD have only been partially
characterised. Interestingly, recent data by Jobin and
coworkers showed activation of NF-êB in epithelial cells in
response to IL-1 and altered regulation of IêBá degrada-
tion in native colonic epithelial cells.67 Such enhanced
resistance of epithelial cells to IêBá proteolysis suggested a
potentially increased responsiveness to therapeutic block-
ade. Indeed, adenoviral mediated delivery of a mutant
NF-êB repressing IêBá protein resulted in inhibition of
IL-8 production by intestinal epithelial cells.70 Further-
more, pharmacological inhibition of IêBá degradation
strongly reduced IL-8 secretion by intestinal epithelial
cells.67 70 Finally, recent evidence suggests that NF-êB is
important in regulating intercellular cell adhesion molecule
(ICAM-1) expression in the intestine.71 75 Preliminary data
from the same group also showed a beneficial therapeutic
eVect of proteasome inhibitors (that block NF-êB
activation) in experimental colitis.

Inhibition of NF-êB activity has been recently suggested
as a major component of the anti-inflammatory activity of
glucocorticoids that are frequently used for treatment of
chronic intestinal inflammation in humans.72 73 Although
activation of NF-êB p65 is not specific for patients with
IBD, its perpetuated activation makes it a very attractive
target for therapeutic intervention.74 Thus, downregulation
of NF-êB activity emerges as a potential key event in the
control of chronic intestinal inflammation in humans and
strategies to inhibit NF-êB activity more specifically are
desirable. Such strategies include antioxidants, proteasome
inhibitors, inhibition of NF-êB by adenoviral IêB expres-
sion vectors, and antisense DNA targeting of NF-êB p65
(fig 3). Thus, the above data suggest that targeting of
NF-êB may be a novel molecular approach for the
treatment of patients with IBD that could lead to the

design of new treatment strategies that have added specifi-
city but reduced toxicity compared with standard immuno-
suppressive therapy.
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