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INTRODUCTION

Numerous compounds have been reported to inhibit the
replication of human immunodeficiency virus (HIV) in vitro
(118, 410), yet only four agents have at this time been formally
licensed (in the United States) for clinical use in the treatment
of AIDS. These are zidovudine (39-azido-29,39-dideoxythymi-
dine or azidothymidine [AZT]; Retrovir) (269), didanosine
(29,39-dideoxyinosine [ddI]; Videx) (156), zalcitabine (29,39-
dideoxycytidine [ddC]; Hivid) (479), and stavudine (29,39-dide-
hydro-29,39-dideoxythymidine [D4T]; Zerit). The basic strate-
gies and molecular targets for anti-HIV therapy have been
repeatedly reviewed starting from 1985, thus shortly after HIV
had been identified as the causative agent of AIDS (116–121,
127, 324, 327). More recent reviews have addressed the chal-
lenges and prospects for the therapy of HIV infection (236,
490).
The replicative cycle of HIV comprises a number of steps

that could be considered adequate targets for chemotherapeu-
tic intervention (Fig. 1). In fact, HIV follows a replicative
pathway that is similar to that of the classical cytolytic RNA
viruses, except for reverse transcription (step 4) and integra-
tion (step 5), which lead to the formation and integration of
the proviral DNA into the cellular DNA genome. Most of the
substances that have been identified as anti-HIV agents can be
assigned to one of the 10 classes of HIV inhibitors according to

the stage at which they interfere with the HIV replicative cycle
(Table 1).
However, not all substances to which anti-HIV activity has

been attributed easily fit within the proposed scheme (Fig. 1;
Table 1). For example, some recombinant (chimeric) proteins
in which a toxin, Pseudomonas aeruginosa toxin (7, 16, 17, 65)
or diphtheria toxin (18), has been linked to the HIV envelope
glycoprotein (gp120)-binding domain of human CD4 have
been described: by virtue of their affinity for gp120, these
hybrid toxins selectively bind to and kill HIV-infected cells.
Although both acutely and chronically HIV-infected cells can
be selectively killed by this gp120-targeted cytotoxicity ap-
proach, it does not prevent the emergence of HIV-infected
cells that are resistant to the chimeric toxins (18). Also, gene
therapy approaches have been advocated to introduce the
diphtheria toxin gene directly to HIV-infected cells (198),
which should ultimately result in the eradication of the cells
when the diphtheria toxin gene is expressed.
Another approach that could not be readily accommodated

by the proposed scheme (Fig. 1; Table 1) is that based on the
targeting of antiviral agents (i.e., pokeweed antiviral protein)
to CD41 cells (whether infected or not) by conjugation of
these antiviral agents with monoclonal antibodies reactive with
normal antigens on CD41 cells. Such conjugates have been
shown to inhibit HIV type 1 (HIV-1) replication in CD41 cells
and were surmised to inhibit the replication of other viruses as
well (152, 497).
Also, various other compounds that have been reported to

inhibit HIV replication cannot be unequivocally allocated to
one of the 10 classes of HIV inhibitors (Table 1; Fig. 1),
primarily because their target of action has not been elucidated
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or does not fall within the proposed scheme. To the more
recent group of HIV inhibitors, for which the mechanism of
anti-HIV action needs to be elucidated, belong diphenylhydan-
toin (97), ascorbic acid (194), pradimycin (444), oxophenarsine
(188), fluoroquinolones (354), prostaglandins (10), glutathi-
one, glutathione ester, N-acetylcysteine (241), (2)-gossypol
(282) and various analogs of gossypol (284), and the HIV-1
inhibitors produced by myxobacteria (237) or induced by Pinus
parviflora extracts (440). Other HIV inhibitors such as the C60
fullerene derivatives seem to interact at multiple steps of the
viral life cycle, i.e., direct virus inactivation as well as inhibition
of the HIV reverse transcriptase (RT) and HIV protease (166,
411, 423). Until the modes (targets) of action of these com-
pounds are better delineated, it would seem difficult to assess
their position or potential for the treatment of HIV infections.

ANTI-HIV AGENTS

Virus Adsorption Inhibitors

Since the CD4 molecule on helper T4 lymphcoytes and
monocytes/macrophages is the principal receptor for the
HIV-1 envelope glycoprotein gp120, various forms of recom-
binant soluble CD4 (rsCD4), including truncated CD4 mole-
cules (i.e., CD4 [segment 74-95] or CD4 [segment 81-92] pep-
tides [384, 418] and benzylated or phenylalanine-substituted
derivatives thereof [275]) as well as CD4-immunoglobulin con-
jugates (i.e., CD4 immunoadhesins [86, 268]) and CD4-albu-
min constructs (491), have been created with the aim of block-
ing HIV-1 binding (adsorption) to the cells. The chimeric
forms (CD4 immunoadhesins and CD4-albumin constructs)
were obviously made to increase the plasma half-life of the
otherwise short-lived CD4. The CD4 immunoadhesin (CD4-
immunoglobulin G) did not offer much protection against sim-
ian immunodeficiency virus infection in macaques (268) but
proved capable of preventing HIV-1 infection in chimpanzees
(471), and this offers hope for the use of CD4-immunoglobulin

in HIV-infected pregnant women for the prevention of HIV
infection of the fetus, since CD4-immunoglobulin G, like the
parent immunoglobulin G molecule, efficiently crosses the pla-
centa. Yet, there are several problems linked to the use of
CD4-based therapeutics, in particular, the fact that much
higher concentrations of CD4 are needed to inhibit primary
HIV-1 isolates than laboratory strains of HIV-1 (109), for
reasons that still have to be clarified (15). Also, cell-associated
virus may be less easily inhibited by CD4 derivatives than
cell-free virus.
As CD4 is not only the receptor for HIV but also the recep-

tor for class II major histocompatibility complex antigens, sol-
uble forms of CD4 may also interfere with immune processes
involving the class II major histocompatibility complex pro-
teins, and in addition, the CD4 derivatives may have delivery,
stability, and expense problems. The smaller the peptides, the
smaller these problems may turn out to be, and in this per-
spective the N-carbomethoxycarbonyl-prolyl-phenylalanyl ben-
zyl esters (CPFs) were conceived (160). These compounds
interact directly with the viral glycoprotein gp120, block bind-
ing of the HIV to the CD4 receptor, do not interfere with the
binding of CD4 to class II major histocompatibility complex
proteins, and prevent the spread of HIV from a small number
of afflicted cells to a larger population of uninfected cells (160).
The questions of how the CPFs perform in vivo and whether
they indeed block dissemination of HIV-1 in vivo have so far
remained unanswered. Given their poor aqueous solubility,
these compounds might also have bioavailability problems.
In addition to the CPFs, several other, miscellaneous com-

pounds have been postulated to inhibit HIV infection through
an interaction with the viral glycoprotein gp120, thus blocking
the binding of gp120 to the CD4 receptor: pyridoxal 59-phos-
phate (187a), Prunella vulgaris extract (488), tannins (474),
caffeoylquinic acid derivatives (294), flavans (i.e., daphnodor-
ins [495a]), and flavanoids (i.e., (2)epicatechin 3-O-gallate]
(295). In contrast with the sulfated polysaccharides (i.e., dex-

FIG. 1. Essential steps in the HIV replicative cycle: 1, adsorption; 2, fusion; 3, uncoating; 4, reverse transcription; 5, integration; 6, DNA replication; 7, transcription;
8, translation; 9, maturation; 10, budding (assembly/release).
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tran sulfate), whose action is reversible, the flavanoids irrevers-
ibly inactivate virus infectivity (295). Also, some of the fla-
vanoids have been shown to inhibit the RT of certain
retroviruses (including HIV), but this effect would not contrib-
ute to their anti-HIV action observed in cell culture. Other
compounds that have been postulated to interfere with several
steps of the HIV replicative cycle, i.e., cosalane (disalicylmeth-
ane linked to cholestane [106a]) and GTOs (oligonucleotides
composed entirely of guanosine and thymidine [356a]), may
owe their anti-HIV activity primarily to inhibition of gp120-
CD4 binding.
Various sulfated polysaccharides (e.g., heparin, dextran sul-

fate, dextrin sulfate, cyclodextrin sulfate, curdlan sulfate, pen-
tosan polysulfate, mannan sulfate, sulfoevernan, and fucoidan)
and derivatives thereof (e.g., O-acylated heparin, polyacetal

polysulfate, polyvinylalcohol sulfate, and modified cyclodextrin
sulfates) (Fig. 2) have been found to inhibit HIV replication in
vitro at45 concentrations that are up to 10,000-fold lower than
the cytotoxic concentration (124). These compounds are tar-
geted at the interaction between the viral envelope glycopro-
tein gp120 and the CD4 receptor, and as a consequence, they
inhibit not only virus adsorption to the cells but also virus-
induced syncytium (giant cell) formation (29). The inhibitory
effects of dextran sulfate and its congeners on viral binding,
viral replication, and syncytium formation appear to be medi-
ated by a specific interaction with the V3 region of gp120 (64,
82). In addition, sulfated polysaccharides may also directly
interfere with the binding of HIV particles to the heparan
sulfate proteoglycan at the cell surface, whether or not this
process occurs independently of, or cooperatively with, the

TABLE 1. Review of HIV inhibitors according to stage of intervention with the HIV replicative cycle

Stage of HIV intervention HIV inhibitor

Adsorption rsCD4 constructs (CD4 fragments, CD4 immunoadhesins, and CD4-albumin constructs)
CPFs (N-carbomethoxycarbonyl-prolyl-phenylalanyl benzyl esters), tannins, and flavanoids [(2)epicatechin-3-O-
gallate]

Polysulfates (heparin, dextran sulfate, dextrin sulfate, curdlan sulfate, pentosan polysulfate, mannan sulfate,
sulfoevernan, fucoidan, polyvinylalcohol sulfate, polyacetal polysulfate, O-acylated heparin, cyclodextrin
sulfate, and modified cyclodextrin sulfates)

Polysulfonates [suramin, Evans blue, bis(naphthalene disulfonate) derivatives, polyvinyl sulfonate, polystyrene
sulfonate]

Polycarboxylates (ATA), polyhydroxycarboxylates (phenyl-derived polyhydroxycarboxylates), and
polyfluoroalkylcarboxylates (MAA-HFPO5)

Polyoxometalates {H4SiW12O40 (JM1493), K7[PTi2W10O40] z 6H2O [PM-19], K13[Ce(SiW11O39)2] z 26H2O
[JM1590], and [Me3NH]8[Si2Nb6W18O77] (JM2820)}

Fusion Plant lectins (from Listera ovata, Hippeastrum hybrid, Cymbidium hybrid, Epipactis helleborine, and Urtica dioica)
Peptide T22 [(Tyr-5,12,Lys-7)polyphemusin II]
Succinylated and aconitylated HSA
Betulinic acid RPR 103611

Uncoating Bicyclams (JM2763 and JM3100)

Reverse transcription Substrate analogs
29,39-Dideoxynucleoside analogs (zidovudine [AZT], didanosine [ddI], zalcitabine [ddC], stavudine [D4T],
lamivudine [3TC], FTC, and FddClUrd)

Acyclic nucleoside phosphonates (PMEA, FPMPA, PMPA, and PMPDAP)
Nonsubstrate analogs (NNRTIs: TIBO [R82150, R82913, and R86183], HEPT [E-EPU, E-EBU-dM, and I-
EBU], nevirapine [BI-RG-587], pyridinone [L-696,229 and L-697,661], BHAP [U-88204 and U90152], TSAO,
a-APA, and PETT)

Miscellaneous RT inhibitors, including antisense oligonucleotides

Integration Antisense constructs

DNA replication Antisense constructs

Transcription Antisense ODNs
Tat antagonists (benzodiazepines [Ro 5-3335 and Ro 24-7429] and 3-keto/enol-4,5-epoxy steroids)
LTR-directed gene expression inhibitors (topotecan) and PKC inhibitors (indolocarbazoles)

Translation Antisense ODNs (phosphorothioates, phosphorodithioates, and methylphosphonates)
Ribozymes (hammerhead and hairpin ribozymes) that can be delivered exogenously or endogenously via
retroviral vectors)

Trichosanthin (?)

Maturation Protease inhibitors: transition-state peptidomimetics (Ro 31-8959, U-81749, A-77003, and KNI-227), and
nonpeptide cyclic ureas (XM323)

Myristoylation inhibitors (12-azidododecanoic acid)
Glycosylation inhibitors (NBuDNJ and its prodrug [N-butyldeoxynojirimycin-6-phosphate])

Budding (assembly/release) IFN (also interferes with other stages)
Hypericin (?)
Cyclosporine analogs (SDZ NIM 811) (also interfere with transport of viral DNA into the nucleus)
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FIG. 2. Structures of polysulfates. (A) Dextran sulfate [sulfated (1 3 6)-a-
D-glucan], dextrin sulfate [sulfated (13 4)-a-D-glucan], curdlan sulfate [sulfated
(13 3)-b-D-glucan], pentosan polysulfate [sulfated (13 4)-b-D-xylan], mannan
sulfate [sulfated (13 4)-a-D-mannan], sulfoevernan {sulfated (13 3) [80%], (1
3 4) [20%]-a-D-glucan}, fucoidan [composed of sulfated (1 3 2)-linked L-
fucose units], PAPS (polyacetal polysulfate prepared from dextran), and PVAS
(polyvinyl alcohol sulfate). (B) Heparin [composed of L-iduronic acid or D-
glucuronic acid (1 3 4) linked to D-glucosamine], O-acylated (butyrylated or
hexanoylated) heparin, supersulfated dermatan sulfate [chondroitin sulfate B;
consists of L-iduronic acid (13 3) linked to D-(N-acetyl)galactosamine], PAVAS
[poly(acrylic acid vinyl alcohol sulfate) copolymer], and sulfated b-cyclodextrin
[cyclic dextrin consisting of seven (1 3 4)-linked a-D-glucans] and derivatives
thereof (mCDS11 and mCDS71 [containing 6-benzylthio-6-deoxy or 2-O-benzyl
substituents, respectively]).
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viral envelope-CD4 receptor interaction (364). Yet, sulfated
polysaccharides would be unable to block the viral gp120 in-
teraction with the CD4 of monocytes (292a).
Among the more promising congeners of dextran sulfate

rank polyacetal polysulfate (484) and polyvinylalcohol sulfate
(27), which show potent activity against HIV-1, HIV-2, and
several other enveloped viruses, including simian immunode-
ficiency virus, herpes simplex virus (HSV), cytomegalovirus
(CMV), influenza A virus, and respiratory syncytial virus, as
well as toga-, flavi-, arena-, bunya-, and rhabdoviruses (8, 124,
215, 414). Thus, the spectrum of activity of the polysulfates
extends to various viruses other than HIV that may occur as
opportunistic pathogens in immunosuppressed (i.e., AIDS) pa-
tients.
Of additional importance is the fact that the polysulfates can

be obtained from natural sources (i.e., marine invertebrates)
(66). They can be prepared and made available in large quan-
tities at reasonable cost. They can act synergistically with other
anti-HIV drugs (i.e., AZT, ddI, and ddC) (415). They are not
known to lead to the development of virus-drug resistance, and
they should be effective against HIV mutants that are resistant
to AZT or other RT inhibitors (461).
However, polysulfates (such as dextran sulfate) suffer from a

number of drawbacks which seem to argue against their po-
tential usefulness in vivo. They are poorly absorbed after oral
administration, as noted in humans (2, 288), rats (200), and
mice (256). However, high oral bioavailability can be obtained
by the appropriate chemical modifications, as shown for the
modified b-cyclodextrin sulfates (mCDS11 and mCDS71)
(338, 339, 359). Dextran sulfate, upon intravenous administra-
tion, produces thrombocytopenia (164). Sulfated polymers are
also notorious for their anticoagulant activity, but as has been
demonstrated with periodate-treated heparin (19) and O-acy-
lated heparin (63), this problem can be overcome by appropri-
ate chemical modifications.
The sulfated polymers owe their anti-HIV activity to the

presence of the sulfate groups, which in turn are responsible
for the inhibition of virus-cell binding. In this sense, any com-
pound could be turned into an anti-HIV agent targeted at
virus-cell binding provided it contains the necessary hydroxyl
groups for attachment of the sulfate groups, and thus various
compounds, i.e., glycyrrhizin, lentinan, amphotericin B, and
gangliosides (191, 204, 347, 358, 453), were found to gain
anti-HIV activity following sulfation.
Given their widely varying molecular weights and degrees of

sulfation, it is very difficult to obtain standardized preparations
of dextran sulfate or other sulfated polymers. This lack of
homogeneity, together with the inherent variability of the mo-
lecular target (V3 loop of gp120) with which the sulfated poly-
mers interact, may account for the differences in susceptibility
of different HIV strains to different polysulfates (79, 416). This
differential virus-drug susceptibility obviously raises questions
as to the in vivo efficacy that may be expected for the polysul-
fates in each particular HIV infection.
There is little, if any, evidence for the in vivo efficacy of

sulfated polysaccharides against HIV infection or any other
viral infection. Dextran sulfate did not prove efficacious against
feline leukemia virus infection in cats (299) or duck hepatitis B
virus (HBV) infection in ducklings (356). On the other hand,
sulfoevernan was reported to completely suppress Rauscher
leukemia virus infection in mice if administered at a dose of 20
mg/kg/day for 8 days, starting 1 day after infection (477).
Equally impressive have been the protective effects of dextran
sulfate and, recently, pentosan polysulfate (139) in mice in-
fected with the unconventional scrapie agent.
Pentosan polysulfate has been further pursued for its phar-

macokinetic properties in HIV-infected individuals (372). It
has also been investigated, but found inactive, against HIV-
associated Kaposi’s sarcoma (375). Since Kaposi’s sarcoma is
characterized by microvascular proliferation (angiogenesis) in
the initial stage of lesion development, it would seem justified
to study sulfated polysaccharides because of their angiostatic
potential against Kaposi’s sarcoma. Perhaps pentosan polysul-
fate was not the best choice, and other sulfated polysaccharides
such as the sulfated polysaccharide-peptidoglycan produced by
Arthrobacter sp. (343) might be more efficacious against Kapo-
si’s sarcoma.
In the wake of any solid evidence for the in vivo efficacy of

the polysulfates against HIV or other viral infection, one
should consider their potential application in the (systemic)
prophylaxis of HIV infection following an accidental needle
stick injury or stab wound, i.e., conditions in which AZT has
proved inefficacious, and/or topical prophylaxis of HSV or HIV
infection contracted through sexual intercourse.
The principles guiding the anti-HIV activity of polysulfates

are also applicable to the polysulfonates. Several polysulfon-
ates of varying molecular weights and degrees of sulfonation
have been described as potent anti-HIV agents (Fig. 3): e.g.,
naphthalene sulfonates (330, 330a, 332–334) {i.e., 4,49-[1,6-
hexanediylbis(carbonylamino)]bis(5-hydroxy-2,7-naphthalene-
disulfonic acid) (335)}, stilbene sulfonates (87), Evans blue
and various other sulfonated dyes (47, 96, 263, 363, 473), poly-
styrene sulfonate, polyanethole sulfonate, and polyvinyl sulfon-
ate (331). These compounds would bind primarily to the viral
envelope gp120 glycoprotein (28) and thus interfere with the
interaction between the viral gp120 glycoprotein and the cel-
lular CD4 receptor and block virus adsorption and virus-in-
duced syncytium formation. Like the polysulfates, the polysul-
fonates inhibited not only the replication of HIV but also that
of other enveloped viruses, i.e., CMV (24).
In fact, the prototype of the polysulfonates, suramin (117),

was the first compound to be recognized as an anti-HIV agent
(325) and also the first to be used in the clinic for the treatment
of AIDS (74). It was originally assumed that suramin, as well as
Evans blue (47), inhibits the replication of HIV through an
inhibitory effect on the viral RT. Hence, initial structure-func-
tion relationship studies were based on the inhibitory effect of
suramin and its congeners on the viral RT (230). It has now
become evident, however, that the polysulfonates also inter-
fere with the viral adsorption process (412). Inhibition of virus-
cell binding may well be their principal mode of anti-HIV
action, since as a rule, inhibition of the RT does not correlate
with inhibition of HIV replication in the virus-cell assay, prob-
ably due to the lack of cellular entry of the polysulfonates
(330a).
Suramin may interfere with a number of processes, i.e.,

protein kinase C (PKC)-mediated processes (296), involved in
virus infectivity. Furthermore, suramin and other polysulfon-
ates (i.e., sulfonated distamycin A derivatives) (95) are known
to block basic fibroblastic growth factor and other factors in-
volved in tumor angiogenesis and should therefore be pursued
for their antitumor potential, i.e., against Kaposi’s sarcoma.
Also, suramin is notorious for its stickiness to plasma proteins,
i.e., albumin (70); thus, albumin reverses the ability of suramin
to block the CD4-gp120 interaction, thereby attenuating its
anti-HIV activity (489). Although the high affinity of suramin
for plasma proteins, a propensity it undoubtedly shares with
other polysulfonates, is likely to affect the in vivo efficacy of
these compounds, suramin has proved to be effective in sup-
pressing retrovirus (Rauscher leukemia virus) replication in
mice (398). Now that so many more polysulfonates have been
shown to be antivirally active, not only against HIV but also
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against other viruses (e.g., CMV), it would seem imperative to
explore their in vivo antiviral activity in the appropriate animal
models.
Akin to the polysulfonates (i.e., Evans blue), the polycar-

boxylates (i.e., aurintricarboxylic acid [ATA]) (Fig. 4) were
originally assumed to inhibit HIV replication through inhibi-
tion of the viral RT (47). Later it was ascertained that ATA
inhibits HIV replication primarily through a specific interac-
tion with the CD4 receptor (413), thus preventing the binding
of the viral gp120 with its receptor (413, 472). In addition to
the cellular CD4 receptor, the viral gp120 glycoprotein (V3
loop) may also serve as a target for the interaction of ATA
(351, 413). Different fractions of ATA, with varying molecular
weights, have been prepared, and a direct correlation was
found between antiviral potency and molecular weight; thus,

the higher the molecular weight, the higher the capacity of the
ATA fractions to block HIV binding to the cells, HIV repli-
cation, and HIV-induced syncytium formation (107, 108).
Also, polyhydroxycarboxylates derived from phenolic (PDP)

compounds have been found to block HIV binding to the cells,
HIV replication, and HIV-induced syncytium formation (417).
The anti-HIV activity of the polyhydroxycarboxylates can be
ascribed to inhibition of the gp120-CD4 interaction, and this
inhibitory effect would depend essentially on the presence of
the carboxylate groups (417). A similar mode of action may be
postulated for the polyfluoroalkylcarboxylates (i.e., MAA-
HFP05), which have been recently shown to inhibit HIV-1
replication, HIV-1 binding to the cells, and HIV-1-induced
syncytium formation (23).
As noted above for the polysulfonates, the poly(hydroxy)car-

boxylates (i.e., ATA and PDP) were also found to inhibit the
replication of herpesviruses (i.e., HSV and CMV) (353), which
again could be ascribed to inhibition of the viral adsorption
process (353). As for the polysulfonates, the poly(hydroxy)car-
boxylates need to be further explored for their in vivo efficacy
in the appropriate animal virus infection models.
Beginning with HPA-23 ([NH4]17Na[NaSb9W21O86] z

14H2O) as the prototype (142), numerous polyoxometalates
have been synthesized and found to be effective as anti-HIV
agents (210, 223, 439, 475, 487). Representative examples (Fig.
5) of these inorganic complexes are H4SiW12O40 (JM1493)
(210), K7[PTi2W10O40] z 6H2O (PM-19) (439), [NH4]2
H2[EU4(MoO4)(H2O)16(Mo7O24)4] z 13H2O (PM-104) (223),
K13[Ce(SiW11O39)2] z 26H2O (JM1590) (487), K6[BGa
(H2O)W11O39] z 15H2O (JM2766) (487), and [Me3NH]8

FIG. 3. Structures of polysulfonates: suramin, Evans blue, bis(naphtha-
lenedisulfonate) derivatives, polystyrene sulfonate, and polyvinyl sulfonate.

FIG. 4. Structures of polycarboxylates: aurintricarboxylic acid (ATA), phe-
nol-derived polyhydroxycarboxylates [KOP (from caffeic acid), HYKOP (from
hydrocaffeic acid), and GENOP (from gentisinic acid)], and polyfluoroalkylcar-
boxylates [bis(perfluoro-1,4,7,10-tetramethyl-2,5,8,11-tetraoxatetradecylated)
methacrylic acid oligomer (MAA-HFPO5)]. Polymeric form for ATA, as pro-
posed by Cushman et al. (108).
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FIG. 5. Structures of polyoxometalates: H4SiW12O40 (JM1493), [Me3NH]-8[Si2Nb6W18O77] (JM2820), and K13 [Ce(SiW11O39)2] z 26H2O (JM1590). JM1493
represents a ‘‘keggin’’ structure; JM2820, a ‘‘double keggin’’ structure; and JM1590, a ‘‘keggin sandwich’’ structure.
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[Si2Nb6W18O77] (JM2820) (487). Like all of the other polyan-
ionic substances, polyoxometalates inhibit HIV replication,
HIV binding to the cells, and HIV-induced syncytium forma-
tion.
Although the polyoxometalates also inhibit the viral RT,

their mechanism of anti-HIV action can be attributed primar-
ily to inhibition of virus-cell binding. This mode of action was
suggested by ‘‘time of addition’’ experiments, in which the
polyoxometalates were added at different times after virus in-
fection (487). Inhibition of virus-cell binding apparently results
from the interaction of the polyoxometalates with the viral
glycoprotein gp120.
In keeping with the other polyanionic substances, polyoxo-

metalates are also inhibitory to various enveloped viruses (oth-
er than HIV), including herpesviruses (i.e., HSV and CMV)
and ortho- and paramyxoviruses (influenza A and respiratory
syncytial virus) (167, 221, 487). This broad-spectrum antiviral
activity adds to the therapeutic potential of the polyoxometa-
lates and also justifies their further follow-up in the appropri-
ate animal virus infection models. In fact, the polyoxotungstate
PM-19 has proved effective against HSV-2 infection in mice
when given intraperitoneally over a dosage range of 0.1 to 50
mg/kg/day under conditions in which acyclovir was ineffective
at doses of up to 100 mg/kg/day (222).

Virus-Cell Fusion Inhibitors

To qualify as a specific virus-cell fusion inhibitor, a given
compound, while not inhibitory to virus-cell binding, should
inhibit syncytium formation in the direct syncytium formation
assay. The latter test is based on the formation of giant cells
following cocultivation of uninfected CD41 cells with HIV-
infected cells expressing the viral glycoproteins gp120 and
gp41. This giant cell (or syncytium) formation requires the
interaction of the CD4 receptor with the viral glycoproteins.
Direct syncytium formation should be distinguished from in-
direct syncytium formation, in which giant cells are induced by
virus that has gone through its replicative cycle. The indirect
syncytium formation assay cannot be used for identifying com-
pounds that specifically interfere with virus-cell fusion, since
inhibition of indirect syncytium formation may reflect interfer-
ence with any step of the virus replicative pathway.
The mannose-specific plant lectins (i.e., from Listera ovata,

Hippeastrum hybrid, Cymbidium hybrid, and Epipactis hellebo-
rine) and N-acetylglucosamine-specific plant lectin (i.e., from
Urtica dioica) qualify as specific inhibitors of the virus-cell
fusion process: they do not inhibit virus attachment to the cells,
yet they block syncytium formation between HIV-infected cells
and uninfected cells (52, 58). Those plant lectins that inhibit
syncytium formation also inhibit HIV replication, and it is
likely that they intervene with the virus replicative cycle at the
fusion step. This may also be the case for mannose-specific
lectins from Gerardia savaglia (340) (although the latter lectin
was mentioned, but not shown, to block virus binding to the
cells) and other sources (Machaerium biovulatum andMachae-
rium lunatus) (9).
Mannose- and N-acetylglucosamine-specific plant lectins

may be assumed to interact with specific glycosylation sites
within the viral envelope glycoproteins gp120 and/or gp41,
particularly those sites that are rich in mannose (or N-acetyl-
glucosamine). These plant lectins were also found to inhibit a
number of viruses other than HIV, i.e., CMV, respiratory syn-
cytial virus, and influenza A virus (52). As these antiviral effects
were achieved at concentrations well below the cytotoxicity
threshold, the most promising plant lectins should be further

pursued for their therapeutic potential in the treatment of
retro-, herpes-, and myxovirus infections in vivo.
The peptide T22 ([Tyr-5,12,Lys-7]polyphemusin II), a deriv-

ative of polyphemusin that is highly abundant in hemocyte
debris of the horseshoe crab Limulus polyphemus, also qualifies
as an HIV-cell fusion inhibitor: it is only weakly inhibitory to
virus-cell binding, yet it is strongly inhibitory to syncytium
formation, and from time of addition experiments it appears to
interact with a stage of the virus replicative cycle that may well
correspond with virus-cell fusion (346). It would seem manda-
tory to examine whether the antiviral activity spectrum of T22
extends to viruses other than HIV (i.e., HSV, CMV, or respi-
ratory syncytial virus) and/or whether it is as efficacious in vivo,
as its in vitro potency tends to suggest.
Another class of molecules that is apparently targeted at the

fusion process is the succinylated lectins (i.e., succinylated con-
canavalin A [300]) and succinylated albumins (whether or not
these albumins are also glycosylated [228]). The anti-HIV ac-
tivity of the succinylated albumins increases with their negative
charge; they inhibit syncytium formation at concentrations that
correspond to (or are slightly higher than) the concentrations
required to inhibit HIV replication, while virus-cell binding is
inhibited only partially at much (100-fold) higher concentra-
tions (228). In addition to the succinylated human serum al-
bumins (HSA), aconitylated HSA (Fig. 6) have also been
found to inhibit HIV replication (229). Aconitylated albumins
inhibit HIV-1 replication at lower concentrations than succi-
nylated albumins, probably because in addition to their inhib-
itory effect on virus-cell fusion, aconitylated albumins also in-
hibit virus-cell binding by shielding off viral gp120. Both
succinylated and aconitylated HSA are less active against
HIV-2 than HIV-1, and in contrast to the sulfated polysaccha-
rides (dextran sulfate), they are inactive against viruses other
than HIV. Also in contrast to dextran sulfate, succinylated and
aconitylated HSA lack anticoagulant activity. Succinylated and
aconitylated albumins offer the potential to block HIV infec-
tivity in blood, plasma, and plasma products and should be
further examined for this purpose.
A novel class of triterpene (i.e., betulinic acid) derivatives

has been recently identified as a potent and selective HIV-1
inhibitor (303). These betulinic acid derivatives (Fig. 7) are
inactive against HIV-2 and apparently targeted at a postbind-
ing, virus-cell fusion step. As some HIV-1 strains (i.e., NDK)
are not susceptible to betulinic acid RPR 103611, the com-
pound may be surmised to interact with a very specific molec-
ular site. The precise mode of action of RPR 103611, as well as
its potential therapeutic usefulness, remains a subject for fur-
ther study.

Virus Uncoating Inhibitors

Of all the retrovirus inhibitors that have been described to
date, the bicyclams, consisting of 2 cyclam (1,4,8,11-tetraaza-
cyclotetradecane) units tethered by various bridges (Fig. 8),
are the only ones that have been postulated to interfere with
the uncoating process. This assumption has been based on the
fact that the prototype (JM2763) of this class of compounds
inhibits the replicative cycle of HIV at a stage that follows the
virus adsorption step but precedes the reverse transcription
step, and as the compound had apparently no effect on syncy-
tium formation (in a direct syncytium formation assay), its
mode of action could be attributed to an inhibition of the viral
uncoating event (129). This hypothesis was corroborated by
‘‘uncoating’’ experiments in which sensitivity to RNase A was
monitored for the viral RNA that was recovered from HIV-
infected cells that had been exposed to JM2763: the compound
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effected a concentration-dependent inhibition of the degrada-
tion of viral RNA by RNase A, as could be anticipated if the
uncoating (i.e., dissociation) of the viral RNA from the sur-
rounding viral proteins had been blocked (123).
Bicyclams represent an entirely new class of HIV inhibitors

and new approach toward the treatment of HIV infections.
Some of the recently synthesized bicyclams (e.g., JM3100), in
which the cyclam moieties are tethered via an aromatic phe-
nylenebis(methylene) bridge (Fig. 8), inhibit the replication of
HIV-1 and HIV-2 at concentrations which are more than
100,000-fold lower than the cytotoxic concentration (130). In
primary T4 lymphocytes or monocytes, JM3100 inhibits HIV-1
replication at concentrations lower than 1 nM. From time of
addition experiments, JM3100 appeared to interfere with viral
uncoating, and this was further corroborated by uncoating ex-
periments in which the RNase A sensitivity of the viral RNA
was monitored (130). JM3100 was also found to interfere di-
rectly with virus-induced syncytium formation formation, albeit
at a higher concentration (;1 mM) than that required for
inhibition of viral replication.

FIG. 6. Succinylated (Suc) and aconitylated (Aco) HSA, following treatment of HSA with succinic anhydride or cis-aconitic anhydride. Per lysine residue, suc-HSA
and aco-HSA acquire one or two negative charges, respectively, which means a gain (D) of two or three negative charges overall.

FIG. 7. Betulinic acid, RPR 103611: N9-{N-[3b-hydroxy-1up-20(29-ene-28-
oyl]-8-aminooctanoyl}-L-statine.

FIG. 8. Bicyclams, consisting of two cyclam (1,4,8-11-tetraazacyclotetrade-
cane) moieties, tethered via an aliphatic bridge (i.e., propylene, as in JM 2763)
or an aromatic bridge [i.e., phenylenebis(methylene), as in JM 3100].
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Reverse Transcription Inhibitors

Substrate analogs. All four anti-HIV drugs that have been
formally approved for the treatment of HIV infection, namely,
AZT, ddI, ddC, and D4T, belong to the class of the 29,39-
dideoxynucleoside analogs (Fig. 9). Their anti-HIV activity was
disclosed (323, 326) shortly after suramin had been described
as an anti-HIV agent (235). Following the saturated 29,39-
dideoxynucleosides (323), their 29,39-unsaturated derivatives
(i.e., 29,39-didehydro-29,39-dideoxycytidine or 29,39-dideoxycyt-
idinene [also referred to as D4C] and 29,39-didehydro-29,39-
dideoxythymidine or 29,39-dideoxythymidinene [also referred
to as D4T]) (26, 53, 190, 281, 283) and various other 29,39-
dideoxynucleoside analogs were reported to inhibit HIV rep-
lication, with selectivity indexes that in some instances (i.e.,
5-chloro-39-fluoro-29,39-dideoxyuridine [FddClUrd]) (60, 128,
463) approached the selectivity index of AZT (118, 122, 349).
While its selectivity index is comparable to that of AZT, Fdd-
ClUrd is much less toxic for the host cells than are AZT and
various other 29,39-dideoxynucleoside analogs (60, 128, 463).
This compound (BW 935U83) has been selected for further
development (109a).
All 29,39-dideoxynucleoside analogs may be assumed to act

in a similar fashion; that is, following intracellular phosphory-
lation to the 59-triphosphate form, they serve as chain termi-
nators of the RT reaction (as has been clearly demonstrated
with AZT) (169, 218, 434). As attested to by the inactivity of
29,39-dideoxyuridine (ddU) against HIV replication (despite
the potent inhibitory effect of its 59-triphosphate form on the

viral RT), the anti-HIV activity (or inactivity) of 29,39-
dideoxynucleosides may be more critically dependent on the
initial intracellular phosphorylation than on their eventual in-
teraction with their target enzyme (192, 193).
The bottleneck in the intracellular metabolism of the 29,39-

dideoxynucleosides is the first phosphorylation step by nucle-
oside kinases. Many dideoxynucleosides (such as ddU) have a
low affinity for nucleoside kinases (such as thymidine kinase),
and moreover, the nucleoside kinase activity of some cells
(such as monocytes/macrophages) at rest may be insufficient to
satisfactorily phosphorylate even those dideoxynucleoside an-
alogs (i.e., AZT) that have high affinity for the enzyme. In
attempts to overcome this problem, special prodrugs, i.e., aryl
methoxyglycinyl derivatives (308) and bis[S-(2-hydroxyethyl-
sulfidyl)-2-thioethyl] esters (379), have been designed that de-
liver the monophosphate forms intracellularly and thus bypass
the first phosphorylation step.
Among the most promising 29,39-dideoxynucleoside analogs

that have recently been described are 3TC, the (2)-b-enanti-
omer of 29,39-dideoxy-39-thiacytidine (BCH-189), and the (2)-
b-enantiomer of 29,39-deoxy-5-fluoro-39-thiacytidine [(2)FTC]
(83, 405, 406, 409, 429). In both cases the (2)-b-enantiomer
was found to be less toxic and/or more potent than the (1)-
b-enantiomer. The absolute configuration of (2)FTC has been
determined by X-ray crystallography, and the results confirmed
that the L-isomer [or (2)-b-enantiomer] is indeed the most
active enantiomer (465). Akin to all other 29,39-dideoxynucleo-
side analogs, 3TC and (2)FTC function, following their intra-

FIG. 9. 29,39-Dideoxynucleoside analogs (clockwise): a, carboxylic oxetanocin analogs; b, oxetanocin analogs; c, carbocyclic 29,39-didehydro-29,39-dideoxynucleo-
sides; d, 29,39-dideoxynucleoside isomers; e, 1,3-dioxolane nucleosides; f, 1-oxo-3-thiolane nucleosides (3TC and FTC); g, 29,39-dideoxy-L-nucleosides; h, 29,39-
dideoxynucleosides (ddI and ddC); i, 39-azido-29,39-dideoxynucleosides (AZT); j, 39-fluoro-29,39-dideoxynucleosides (FddClUrd); k, 29-fluoro(‘‘up’’)-29,39-
dideoxynucleosides; 1, 29,39-didehydro-29,39-dideoxynucleosides (D4C and D4T); and m, phosphonate isosteres of 29,39-didehydro-29,39-dideoxynucleoside 59-
monophosphates.
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cellular phosphorylation to the 59-triphosphate, as DNA chain
terminators in the HIV RT reaction. In fact, the 59-triphos-
phates of the (2) and (1) enantiomers of FTC interact equally
well with the HIV-1 RT (481). Since HBV replicates through
an RNA template-driven RT process, it should come as no
surprise that 29,39-dideoxynucleosides, namely 3TC and
(2)FTC, by virtue of their DNA chain-terminating capacity,
not only inhibit HIV RT but also inhibit HBV RT (141, 168).
In addition to the (2)-b-enantiomers 3TC and (2)FTC,

which both have the L-configuration, other L-nucleosides, i.e.,
29,39-dideoxy-b-L-cytidine (b-L-ddC) and 29,39-dideoxy-b-L-5-
fluorocytidine (b-L-FddC), have been recently shown to inhibit
HIV-1 and HBV replication in vitro (183a, 280). The L-nucleo-
sides b-L-ddC and b-L-FddC must act according to the same
mechanism as 3TC and (2)FTC, since HIV-1 strains resistant
to 3TC and (2)FTC are cross-resistant to b-L-ddC and b-L-
FddC (183a), and like the 59-triphosphates of 3TC and
(2)FTC, the 59-triphosphates of b-L-ddC and b-L-FddC have
been found to inhibit HIV-1 RT (155a).
49-Azidothymidine, another potent HIV inhibitor (292b),

runs counter to many of the structural trends: although it
inhibits HIV replication via a mechanism similar to that of the
29,39-dideoxynucleoside analogs, it retains a hydroxyl group at
the 39-position, and this 39-hydroxyl group is mandatory, since
if the 39-hydroxyl group of 49-azidothymidine is removed, all
anti-HIV activity is lost.
The acyclic nucleoside phosphonates, i.e., 9-(2-phosphonyl-

methoxyethyl)adenine (PMEA), (S)-9-(3-fluoro-2-phosphonyl-
methoxypropyl)adenine (FPMPA), (R)-9-(2-phosphonylme-
thoxypropyl)adenine (PMPA), and their 2,6-diaminopurine
derivatives [9-(2-phosphonyl-methoxyethyl)-2,6-diaminopu-
rine (PMEDAP) and (R)-9-(2-phosphonylmethoxypropyl)-2,6-
diaminopurine (PMPDAP)] (Fig. 10), represent another class
of selective HIV inhibitors that interact, as chain terminators,
with the viral RT reaction (35, 38, 39, 370). They do so after
they have been converted intracellularly to their diphosphate
form, i.e., PMEApp, PMEDAPpp, FPMPApp, PMPApp, or
PMPDAPpp. PMEA and its congeners have proven to be
effective in vitro in a wide variety of retrovirus-cell systems,
including HIV in monocytes/macrophages and human periph-
eral blood lymphocytes (57), feline immunodeficiency virus in
feline peripheral blood lymphocytes (201), and maedi or visna
virus in sheep choroid plexus cells (451). PMEA and
PMEDAP have also proved selectively inhibitory to the repli-
cation of both human and duck HBV infections (492, 493), the
latter in both duck hepatocytes and Pekin ducks (208).
PMEA and its congeners are more effective in vivo than may

be predicted from their in vitro potency. PMEA has been
found efficacious in several animal models for retrovirus infec-
tion, including Friend leukemia virus, Rauscher leukemia vi-
rus, Moloney sarcoma virus and LP-BM5 (murine AIDS) virus
infection in mice (49, 59, 171), feline leukemia virus and feline
immunodeficiency virus infection in cats (150, 214), and simian
immunodeficiency virus infection in monkeys (51, 456).
When PMEA was compared with AZT for in vivo effective-

ness against retrovirus infections (49, 59), PMEA proved
clearly superior in terms of potency and/or selectivity. A
unique feature common to all acyclic nucleoside phosphonates
is their prolonged antiviral action, lasting for up to 1 week or
even longer after a single-dose administration. This long-last-
ing antiviral action may be related to the long half-life of the
active metabolites (i.e., PMEApp and PMEDAPpp) within the
cells and would allow infrequent dosing in the prophylaxis and
therapy of retrovirus infections (48, 342).
An additional advantage of some of the acyclic nucleoside

phosphonates (i.e., PMEA and PMEDAP) and the closely
related 9-[2-(phosphonomethoxy)alkoxy]purines (145) and
9-[2-phosphonomethylthio)alkoxy]purines (196) is that their
activity spectrum is not limited to retroviruses but also extends
to herpesvirus. Thus, PMEA and PMEDAP may have a dual
usefulness in AIDS patients: for the treatment of both the
underlying HIV infection and the intercurrent HSV infections.
Furthermore, PMEA and other acyclic nucleoside phospho-
nates have been found to enhance natural killer activity and
stimulate interferon (IFN) production, at least in mice (81).
Drawbacks of the acyclic nucleoside phosphonates are their

slow cellular uptake (by an endocytosis-like process) and their
poor oral bioavailability. Thus, recent efforts have been fo-
cused on the development of prodrugs (esters) that would be
better taken up by the cells (in vitro) and the gastrointestinal
tract (in vivo). This approach has yielded the bis(pivaloyloxy-
methyl) or bis(pom) derivative of PMEA (432), which shows a
.100-fold-increased cellular uptake and 5-fold better oral bio-
availability than the parent compound (106, 431).
Nonsubstrate analogs. While the acyclic nucleoside phos-

phonates (i.e., PMEA) have only recently become the subject
of clinical trials, much clinical expertise has been accumulating
for the 29,39-dideoxynucleoside analogs AZT, ddI, ddC, and
D4T. In general, these compounds lead to an improvement of
virological, immunological, and clinical parameters, namely, a
decrease in p24 antigen levels (and/or virus load), an increase
in CD4 cell counts, and an increase in body weight (and/or
delay in the progression of the disease). Also, the long-term
use of AZT in AIDS patients is accompanied by a significant
increase in survival rate. However, the clinical usefulness of the
dideoxynucleoside analogs AZT, ddI, ddC, and D4T is limited
by their toxic side effects. These toxic side effects differ from
one compound to another: anemia or neutropenia for AZT,
peripheral neuropathy for ddC and D4T, and acute pancreati-
tis (as well as peripheral neuropathy) for ddI. These toxic side
effects may be related to the interference of the 29,39-
dideoxynucleoside metabolites (i.e., 59-mono-, di-, and triphos-
phates) with 29-deoxynucleoside metabolism and, in particular,
interference of the 29,39-dideoxynucleoside 59-triphosphates
with the cellular DNA polymerization processes. Therefore,
nonsubstrate analogs that do not interact with the substrate
binding site of DNA polymerases, whether RNA dependent or
DNA dependent, may be expected not to cause any of the toxic
side effects that compromise the clinical usefulness of the 29,39-
dideoxynucleoside analogs (122, 125).
The first compounds ever shown to specifically inhibit

HIV-1, but not HIV-2, replication were 1-(2-hydroxyethoxy-
methyl)-6-(phenylthio)thymine (HEPT) (31, 328) and tetrahy-

FIG. 10. Acyclic nucleoside phosphonates: 9-(2-phosphonylmethoxyethyl)-
adenine (PMEA) and -2,6-diaminopurine (PMEDAP), (S)-9-(3-fluoro-2-phos-
phonylmethoxypropyl)-adenine (FPMPA) and -2,6-diaminopurine (FPMP-
DAP), and (R)-9-(2-phosphonylmethoxypropyl)-adenine (PMPA) and -2,6-
diaminopurine (PMPDAP).
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droimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and -thione
(TIBO) (113, 369). The unprecedented specificity of the TIBO
derivatives (R82150 and R82913) was attributed to a specific
interaction with the HIV-1 RT (113, 369). For the HEPT
derivatives it became evident that they also interact specifically
with HIV-1 RT after a number of derivatives, i.e., E-EPU,
E-EBU, and E-EBU-dM, had been synthesized that were more
active than HEPT itself (20, 21). Subsequently to the discovery
of HEPT and TIBO, several other compounds, i.e., nevirapine
(BI-RG-587) (262, 317), pyridinone derivatives (L-696,229 and
L-697,661) (179, 180), and bis(heteroaryl)piperazine (BHAP)
(U-88204 and U-90152) (392, 393), were described as HIV-1-
specific RT inhibitors.
Whereas HEPT and TIBO were discovered as the result of

a systematic evaluation for anti-HIV activity in cell culture
(and later found to achieve their anti-HIV-1 activity through
an interaction with the HIV-1 RT), the other compounds (ne-
virapine, pyridinone, and BHAP) emerged from a screening
program for HIV-1 RT inhibitors. The anti-HIV-1 activity of
the latter compounds was then confirmed in cell culture. Like
the HEPT and TIBO derivatives, the 29,59-bis-O-(tert-bu-
tyldimethylsilyl)-39-spiro-50-(40-amino-10,20-oxathiole-20,20-di-
oxide)pyrimidine (TSAO) derivatives (TSAO-T and TSAO-
m3T) (55, 56) and a-anilinophenylacetamides (a-APA
R89439) (368) were discovered through the evaluation of their
anti-HIV activities in cell culture and then proved to act
through inhibition of HIV-1 RT. HEPT, TIBO, nevirapine,
pyridinone, BHAP, TSAO, and a-APA can be regarded as
HIV-1-specific RT inhibitors. These compounds have also
been referred to as ‘‘non-nucleoside RT inhibitors’’ (NNRTIs).
Which compounds could be considered NNRTIs that spe-

cifically inhibit HIV-1 RT? To qualify, the compound should,
due to a specific interaction with HIV-1 RT, inhibit HIV-1, but
not HIV-2, replication in cell culture at a concentration that is
significantly lower than the concentration required to affect
normal cell viability. On the basis of these premises, several
classes of compounds (Fig. 11) could be considered NNRTIs
that are specifically targeted at HIV-1 RT: TIBO derivatives
(111, 113, 367, 369, 478), HEPT derivatives (20, 21, 30, 32,
495), nevirapine (54, 262, 317), pyridinones (179, 180), bis(h-
eteroaryl)piperazines (147, 392, 393), TSAO derivatives (54–
56), a-APA (368), PETT derivatives (448), oxathiin carboxa-
nilide (Uniroyal) (for which in the original studies no
inhibitory effect on HIV-1 RT could be witnessed [34]), qui-
noxaline S-2720 (251), dihydrothiazoloisoinolones (i.e.,
BM151.0836) (293, 318, 404), imidazodipyridodiazepine UK-
129,485 (449), 5-chloro-3-(phenylsulfonyl)indole-2-carboxam-
ide (L-737,126) (480), and a series of 4-(arylethynyl)-6-chloro-
4-cyclopropyl-3,4-dihydroquinazolin-2(1H)-ones (457a). These
compounds were found to inhibit HIV-1 cytopathicity at a
concentration that was at least 1,000-fold and in some in-
stances (E-EBU-dM [21] and a-APA R89439 [368]) even
100,000-fold, below the cytotoxicity threshold. Also, most of
these compounds proved inhibitory to HIV-1 replication at
concentrations of 1 to 10 nM, i.e., concentrations that would be
much lower than those attainable in the organism following
therapeutic use of the compounds. Exceptional activity against
the HIV-1 RT (50% inhibitory concentration, 0.65 nM) was
noted for a member of the imidazo[1,5-b]pyridazine series
(286) carrying an additional imidazole at position 2 and 1-phe-
nyl-1-heptanone at position 7.
The following compounds have also been claimed to be

specific inhibitors of HIV-1 replication: thiazolo[3,4-a]ben-
zimidazole NSC 625487 (76, 90, 91), pyrrolo-[1,2-d]-(1,4)-ben-
zodiazepin-6-one (132), 2-nitrophenyl phenyl sulfone (309),
naphthalenone TGG-II-23A (4), 3,4-dihydro-2-alkoxy-6-ben-

zyl-4-oxopyrimidine derivatives (14), and benzothiadiazine
(NSC 287474) derivatives (75a). However, these compounds
showed only moderate selectivity and/or weak potency. Cal-
anolide A, a dipyranocoumarin derivative from the tropical
rainforest tree Calophyllum lanigerum (245) and the related
inophyllums, isolated from the Malaysian tree Calophyllum
inophyllum (365), are examples of natural products that act as
HIV-1 RT-specific inhibitors (245, 365). The interaction of
calanolide A with HIV-1 RT may be distinct from that of the
other NNRTIs; in particular, a segment located between
amino acids 225 and 427 in HIV-1 RT may be important for
specifying susceptibility to the drug (211).
How do the NNRTIs interact with the HIV-1 RT? NNRTIs

show marked differences in their inhibitory potency. Their RT
inhibitory potency is greatly influenced by the choice of the
template/primer; it is much greater with poly(C) z oligo(dG)
than with poly(A) z oligo(dT) as the template/primer (20, 21,
54, 113, 179, 317, 369, 455). In fact, TSAO-T is inhibitor to
HIV-1 RT only with poly(C) z oligo(dG), and not with
poly(A) z oligo(dT), poly(U) z oligo(dA), or poly(I) z oligo(dC),
as template/primer (54). With rRNA as the template, TIBO
R82913 inhibits HIV-1 RT at a 50% inhibitory concentration
of 0.006 mM, which is more than 1,000-fold lower than that
obtained for R82913 with poly(A) z oligo(dT) as the template/
primer (478).
The HIV-1 RT controls three consecutive functions: RNA

transcription to DNA, degradation of the RNA template by
RNase H, and duplication of the remaining DNA strand. The
TIBO derivatives (e.g., R82150) and their congeners (i.e., ne-
virapine) preferentially inhibit the first step, i.e., RNA-depen-
dent DNA polymerization (113, 317, 455). Inhibition of HIV-1
RT by the NNRTIs is noncompetitive with respect to both the
substrate (dGTP) and the template/primer, as demonstrated,
in particular, for TIBO (113, 165), HEPT (20, 21), nevirapine
(258, 317), pyridinone (179, 180), BHAP (6), TSAO (54), and
a-APA (368). This contrasts with the behavior of the 29,39-
dideoxynucleoside 59-triphosphates, which competitively in-
hibit the incorporation of the natural substrates (deoxynucleo-
side triphosphates) into the growing DNA chain. The
noncompetitive type of inhibition of HIV-1 RT by TIBO and
the other NNRTIs suggests that these compounds may interact
with a nonsubstrate binding site of the HIV-1 RT. Through
photoaffinity labeling, the binding site for nevirapine was
shown to span the region 174 to 199, the tyrosine residues at
positions 181 and 188 being crucial in the binding of nevirapine
to HIV-1 RT (98, 486).
While TIBO and its congeners can be considered allosteric

inhibitors of the HIV-1 RT (112, 115), their target site may be
functionally and/or spatially related to the substrate binding
site (114). While generally noncompetitive, the TIBO conge-
ners under some conditions act as competitive inhibitors of
HIV-1 RT: i.e., TIBO R82150 with respect to dATP, if
poly(U) z oligo(A) is used as the template/primer (54); HEPT
with respect to dGTP if poly(C) z oligo(dG) is used as the
template/primer (114); and E-EPU and E-EBU-dM with re-
spect to dTTP, if poly(A) z oligo(dT) is used as the template/
primer (20, 21). That the HIV-1 RT binding site of the NNR-
TIs may be functionally and/or spatially related to the substrate
binding site is also suggested by the fact that NNRTIs (BHAP
and U-88204) and 29,39-dideoxynucleoside 59-triphosphates
(ddGTP) can bind simultaneously to HIV-1 RT but the pres-
ence of one ligand decreases the affinity of RT for the second
(146).
Unequivocal proof that Tyr-181 and Tyr-188 are involved in

the susceptibility (and binding) of HIV-1 RT to NNRTIs such
as nevirapine and TIBO came from chimeric RT constructs in
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which the tyrosine residues at position 181 or 188 were re-
placed by the HIV-2 RT counterparts isoleucine and leucine
(420): the Y181I and Y188L RT constructs proved resistant to
nevirapine, TIBO R82913, TIBO R82150, and E-EPU, while
retaining full susceptibility to the 29,39-dideoxynucleoside
triphosphates (135, 420). The substitution Y181C, which arises
as the most frequent mutation upon passage of HIV-1 in cell
culture in the presence of the NNRTIs, did not cause a more
than 10-fold decrease in susceptibility to TIBO R82150 (135).
While Y181 and Y188 are essential for the susceptibility (and
binding) of HIV-1 RT to NNRTIs (such as HEPT, TIBO, and

nevirapine), they alone do not suffice, since HIV-2 RT con-
structs containing I181Y and L188Y are virtually resistant to
nevirapine (420). This suggests that in addition to Y181 and
Y188, other amino acid residues must be involved in the sus-
ceptibility (and binding) of nevirapine and other NNRTIs to
HIV-1 RT.
Which amino acids are involved in the interaction of HIV-1

RT with the NNRTIs? Through the use of HIV-1 or HIV-2
chimeric RT constructs, it was ascertained that RT suscepti-
bility to NNRTIs largely, though not exclusively, depends on
the RT region defined by amino acid residues 176 to 190, with

FIG. 11. HIV-1-specific RT inhibitors, which have also been referred to as NNRTIs. (A) TIBO (R82150, R82913, and R86183), HEPT (E-EPU, E-EBU-dM, and
I-EBU), nevirapine (BI-RG-587), pyridinone (L-696,229 and L-697,661), BHAP (U-88204 and U-90152), TSAO (TSAO-T and TSAO-m3T), a-APA (R89439), and
PETT (LY297345). (B) Oxathiin carboxanilide, quinoxaline S-2720, thiazolobenzimidazole NSC 625487, pyrrolo[1,2-d]benzodiazepinone, thiazolo[2,3-a]isoindolone,
imidazodipyridodiazepine UK-129,485, phenylsulfonylindolecarboxamide L-737,126, and 2-nitrophenyl phenyl sulfone (NPPS). (C) Oxazolinylnaphthalenone TGG-
II-23A, DABO, calanolide A, inophyllums B and P, and imidazo[1,5-b]pyridazines.
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specific contributions by residues 181 and 188, and that other
regions, in particular the region defined by residues 101 to 106,
and a segment located between amino acids 225 and 427 may
also be important for specifying drug susceptibility (99, 211).
Characterization of drug-resistant virus mutants that arise in
vitro, upon passage of HIV-1 in the presence of the NNRTIs,
revealed that the amino acid residues 100, 103, 106, 138, 179,
181, 188, 190, and 236 (at either the p66 or the p51 subunit) of
HIV-1 RT are crucial in the susceptibility of the virus to the
NNRTIs. Amino acid substitutions at these positions invariably
lead to resistance of the enzyme and the virus to one or more
of the NNRTIs (43, 44, 61, 80, 148, 251, 314, 464, 466, 499,
500). The amino acid substitution Y181C, or Tyr 3 Cys at
position 181, is responsible for resistance to virtually all of the
NNRTIs (i.e., TIBO, HEPT, nevirapine, pyridinone, BHAP,
a-APA, quinoxaline S-2720, and dihydrothiazoloisoindolone
BM151.0836) (40–42, 80, 135, 251, 293, 313, 355, 368, 388,
400, 480, 500). The role of amino acid residues at positions 100,

103, 106, 138, 181, 188, and 236 in the susceptibility and resis-
tance patterns of HIV-1 RT to TIBO, HEPT, nevirapine, pyr-
idinone, TSAO, and BHAP has been confirmed by site-di-
rected mutagenesis. Also, drug-resistant virus strains emerging
upon passage of HIV-1 in the presence of NNRTIs in cell
culture may be predictive of the mutations that could arise in
the clinic in patients treated with the NNRTIs.
The structure of the HIV-1 RT, complexed with either ne-

virapine (255) or double-stranded DNA (13, 227), has been
determined at 3.5- and 3.0-Å (0.35- and 0.30-nm resolution,
respectively. In analogy with the DNA polymerase Klenow
fragment, the polymerase subdomains of the HIV-1 RT p66
subunit have been named fingers, palm, and thumb and a
fourth subdomain, which is missing in the Klenow fragment,
has been designated the connection subdomain, for it links the
RNase H subdomain with the polymerase domain. The muta-
tions conferring resistance to the NNRTIs appear to be located
on general segments (b5b-b6 connecting loop [100 Leu3 Ile,

FIG. 11—Continued.
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103 Lys3Asn]; b6 sheet [106 Val3Ala, 108 Val3 Ile]; b-b8
connecting loop [138 Glu 3 Lys]; b9 sheet [181 Tyr 3 Cys];
b10 sheet [188 Tyr3 His, Cys]; and b13-b14 reverse turn [236
Pro 3 Leu]) surrounding a flexible, highly hydrophobic
pocket, where the NNRTIs may bind. The b5b-b6 connecting
loop (with positions 100 and 103) would encircle the backside
of the pocket; the tyrosine residues 181 and 188 would be
located in the floor of the pocket, whereas Pro 236 would be
located in the roof of the pocket (348).
The TSAO mutation 138 Glu 3 Lys occurs in the b7-b8

connecting loop of the fingers subdomain. In the p66 subunit,
the b7-b8 hairpin is far removed from the NNRTI-binding
pocket, but in p51 the b7-b8 hairpin is adjacent to the NNRTI-
binding pocket of p66, and therefore the mutation 138 Glu3
Lys may be expected to confer drug (i.e., TSAO) resistance
when occurring in the p51, rather than the p66, subunit (73a,
236a). As dictated by the proximity of Leu-100, Lys-103, Val-
106, Val-108, Val-179, Tyr-181, Tyr-188, and Gly-190 with the
catalytic triad Asp-110, Asp-185, Asp-186 (which is directly
responsible for substrate binding), the NNRTI pocket must be
situated in the immediate vicinity of the polymerase active site,
and thus any conformational changes of the NNRTI pocket
resulting from its interaction with the NNRTIs may alter the
conformation of the deoxynucleoside triphosphate binding site
as well (446a).
To the extent that the different mutations involved in HIV-1

RT resistance to the NNRTIs affect their binding to the
NNRTI pocket and/or the conformation of this pocket, cross-
resistance may be expected among the different NNRTIs. This

has indeed been observed with the Y181C mutation, but for
most of the other mutations, resistance is generally limited to
one, two, or three classes of the NNRTIs. If, for example,
Glu-138 is mutated to Lys, only resistance to TSAO, and not to
any of the other NNRTIs, is seen (61). This may be attributed
to the fact that the TSAO compounds, unlike all other NNR-
TIs, interact probably via the 40-amino group of the 39-spiro
substituent, with the carboxylic acid group of Glu-138 (44).
Other amino acid substitutions, i.e., 100 Leu3 Ile and 103 Lys
3 Asn, lead to resistance to TIBO but not HEPT (40, 305).
The 106 Val3 Ala substitution confers resistance to nevirap-
ine but not pyridinone; it also confers resistance to TIBO but
much less so than to nevirapine (80). Also, a-APA is active
against the TIBO-resistant 100 Leu 3 Ile mutant, while it is
inactive against the TIBO-resistant 181 Tyr 3 Cys mutant
(368). Substitution of Cys, Ser, or His for Tyr at position 181
results in a decreased susceptibility to TIBO, nevirapine, and
pyridinone, but while substitution of Cys for Tyr at position 188
also reduces the susceptibility to TIBO, nevirapine, and pyr-
idinone, the 188 Tyr 3 His substitution does not appear to
affect the sensitivity of the HIV-1 RT to nevirapine (400). The
fact that resistance of HIV-1 RT mutants to some NNRTIs
does not necessarily lead to cross-resistance to others clearly
indicates that while all of these HIV-1-specific RT inhibitors
may share a common binding site (‘‘pocket’’), significant dif-
ferences must exist with regard to the exact amino acid resi-
dues (within this common pocket) and/or the affinity by which
they bind to their target. This thus means that while the bind-
ing sites of the different NNRTIs at the HIV-1 RT level may
overlap, they are not necessarily identical (73).
Several NNRTIs have been the subjects of phase I and phase

II clinical studies. When TIBO R82913 was administered daily
by intravenous infusion for 2 to 50 weeks at daily doses of up
to 300 mg, the drug appeared to be well tolerated, with no
serious hematological, biochemical, or clinical side effects; as
the patient population of this pilot study (22 patients) was
small and heterogeneous, efficacy could not be assessed (373).
Most of the HIV-1 isolates obtained from these patients were
as susceptible to R82913 as wild-type virus; only two HIV-1
variants showing a 20- or .100-fold reduced susceptibility
could be isolated; the latter appeared to contain the Y188L
mutation in its RT, and this mutation was lost upon passaging
the virus in vitro in cord blood lymphocytes (464). Another
phase I dose-finding study with oral TIBO R82913 indicated
that the oral bioavailability of this particular derivative was low
(7 to 10%) and that improvement of oral bioavailability would
be needed before implementation of long-term efficacy and
tolerability studies (136).
Initial single-dose studies with nevirapine (given by mouth as

tablets of 2.5 up to 400 mg) in humans indicated that the drug
was rapidly absorbed and well tolerated and would achieve, if
given daily at 12.5 mg, trough concentrations in the plasma that
would be sufficient to totally inhibit replication of wild-type
HIV-1 in cell culture (89).
Pyridinone L-697,661 has been subjected to a short-term

clinical evaluation (6 or 12 weeks) with one of the following
dosage regimens: oral L-697,661 at 25 mg twice a day, 100 mg
three times a day, or 500 mg twice a day. The compound was
well tolerated and exhibited a significant dose-related activity
against HIV-1 (as monitored by plasma viremia or p24 antigen
dlevels) (110, 399). However, this antiviral response subsided
after 6 to 12 weeks, when drug-resistant virus variants ap-
peared. The latter contained the characteristic pyridinone re-
sistance mutations at positions 103 (Lys 3 Asn) and 181 (Tyr
3 Cys) of the HIV-1 RT. The authors (399) concluded that
the rapid emergence of drug-resistant virus may limit the ef-

FIG. 11—Continued.
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fectiveness of NNRTIs if used as monotherapy for HIV-1 in-
fection but that these agents may still be useful in combination
regimens. They further advised that because the emergence of
resistant isolates occurred in the setting of established infec-
tion, when the genetic complexity of the virus is extensive and
subpopulations of resistant virus are more likely, the use of
NNRTIs for very early infection or postexposure prophylaxis
may be especially advantageous (399).
Miscellaneous RT inhibitors. In addition to the substrate

analogs (AZT, ddI, ddC, etc., which need to be phosphorylated
intracellularly to their 59-triphosphate form before they can
interact with the viral RT) and the nonsubstrate analogs
(TIBO, HEPT, nevirapine, etc., which are as such able to
interact with the HIV-1 RT), various other substances of
widely varying origins have been shown to inhibit HIV RT
activity: for example (Fig. 12), rifamycins (62), rubromycins
(182), avarone and avarol (289), psychotrine and O-methylpsy-
chotrine (442), (2)epicatechin-3-gallate (345), phloroglucinol
derivatives (i.e., mallotojaponin) (344), pyrophosphate analogs
(i.e., N-hydroxyphosphonoformamide [140]), and 29,59-
olidoadenylates (341). In fact, rubromycin g, avarol, and ava-
rone were also evaluated for their inhibitory effects on HIV-1
replication in cell culture, in which they displayed little, if any,
antiviral selectivity (182, 402). For (2)-epicatechin-3-gallate
conflicting data have appeared: while in one study (345) the
compound was found inactive at subtoxic concentrations, in
another study (295) it proved inhibitory to HIV-1 infectivity at
a concentration that was at least 100-fold below the cytotoxicity
threshold. The anti-HIV-1 activity of (2)epicatechin-3-gallate,

and that of other flavanoids, was attributed to its interaction
with the viral envelope glycoprotein gp120 (295) rather than
the RT. Another compound that has been recently found to
inhibit HIV-1 replication, albeit at rather high concentrations
(IC50, 14.8 mM), is the dithiole derivative oltipraz [4-methyl-
5-(2-pyrazinyl)-1,2-dithiole-3-thione] (378). Oltipraz behaves
kinetically as an irreversible inhibitor of HIV-1 RT in the
template-primer binding domain (378), but it is unclear to
what extent, if any, the inhibitory effect of oltipraz on HIV-1
RT could account for its inhibitory effect on virus replication.
The HIV RT-associated RNase H activity has also been

considered a possible target for HIV inhibitors. A number of
totally unrelated products, i.e., sulfated polysaccharides (329),
illimaquinone (a metabolite isolated from the Red Sea sponge
Smenospongia) (291), a cephalosporin degradation product
(189), and the 59-monophosphate of AZT (441), have been
reported to inhibit RNase H from HIV or other retroviruses.
Illimaquinone would interact with HIV RT in close proximity
to cysteine residue 280 and thus affect the RNase H function of
the HIV RT (290). The fact that AZT 59-monophosphate is
inhibitory to RNase H, albeit at a higher concentration than is
AZT 59-triphosphate to RT, may be relevant to the mode of
anti-HIV action of AZT, since AZT 59-monophosphate is
known to accumulate inside the cells to levels that are in excess
of those required for the inhibition of RNase H activity (36,
169, 212). AZT 59-monophosphate is also inhibitory to the
39-exonuclease(s) that would otherwise cleave off AZT 59-
monophosphate from the DNA 39-terminal ends (197).
The reverse transcription process can also be inhibited by

FIG. 12. Miscellaneous RT inhibitors: psychotrine, epicatechin, avarone, rubromycin, and mallotojaponin (a phloroglucinol derivative).
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antisense oligonucleotides, i.e., oligonucleotides that are com-
plementary to a template sequence adjacent to (downstream
from) the primer binding site: the RT molecule travelling on
the RNA template would thus be blocked by the hybrid formed
by the RNA and the antisense oligonucleotide (67, 69). Phos-
phorodithioate-linked deoxynucleotides that bind to the prim-
er-template binding site of HIV RT provide another type of
potential therapeutic agent (298): S2dKY14, a dithioate de-
oxynucleotide (CTGTTCGGGCGCCA) complementary to
the 59 end of the viral RNA primer binding sites was found to
inhibit HIV-1 RT at a Ki of 0.5 nM.
Antisense oligodeoxynucleotides (ODNs) can also block the

reverse transcription process by an RNase H-dependent mech-
anism, i.e., when the ODN is bound to a template sequence
remote from the primer binding site and allows the RNA
template to be cleaved by the RT-associated RNase H (67).
Antisense phosphorothioate ODNs (S-oligos) would exert a
biphasic effect on RNase H activity: at low concentration, S-
oligos could enhance the cleavage of the RNA portion of the
S-oligo–RNA duplex, whereas at high concentrations, S-oligos
could inhibit RNase H and protect the complementary RNA
from degradation (173).
Finally, the HIV RT could be blocked by RNA pseudoknots,

selected by the SELEX procedure (systematic evolution of
ligands by exponential enrichment), that act as high-affinity
ligands of the enzyme and thus suppress enzymatic activity
(459).

Integration Inhibitors
After it has been formed in the cytoplasm by the viral RT,

the duplex viral DNA is transported into the nucleus, where it
is integrated into the host DNA genome through the aid of the
viral integrase (IN). In fact, the IN protein is the only HIV
protein necessary for integration of the viral DNA. It is also
responsible for generating the recessed 39-termini of the viral
DNA before it is inserted (as proviral DNA) into the host
DNA (78, 467). A relatively simple assay has been developed
that should allow a high-throughput evaluation of candidate IN
inhibitors (78). Potential candidate IN inhibitors may include
antisense ODNs that lead to triple helix formation with the
duplex viral DNA sequences that are recognized by the viral IN
protein. Instead of inhibiting the function of the IN protein,
one might also envisage preventing its formation, i.e., through
the aid of ribozymes that cleave the RNA containing the IN
gene (424). Such ribozymes have been shown to block expres-
sion of HIV-1 integrase in Escherichia coli. Whether aimed at
blocking the action or the expression of the viral integrase,
antisense ODNs and/or ribozymes will be therapeutically use-
ful only if integration of the viral DNA into the host genome is
indeed required for efficient HIV replication. This has not
been ascertained for all cell types that can serve as host for the
HIV infection.

DNA Replication Inhibitors
Once integrated, the proviral DNA is replicated concomi-

tantly with, and inseparably from, the cellular DNA genome.
To operate at the level of the integrated proviral DNA, any
construct, whether antisense or not, should be able to specifi-
cally recognize proviral DNA sequences. They should firmly
bind to these target sequences and inactivate, or even better,
delete, them from the cellular genome. Approaches to ‘‘cure’’
the cellular genome from any untoward genes have become an
area of intense research and speculation. One of the most
imaginative approaches is based on antisense constructs that
(i) specifically bind to the target duplex DNA sequences, thus

forming a local triple helix, which (ii) could be stabilized by a
triple helix-specific ligand [i.e., benzo(e)pyridoindole (316)]
and (iii) then cleaved by a specific DNA-cleaving functionality.
Such ‘‘magic bullets’’ aimed at genetically curing the cells from
any undesirable intruder still need to be worked out. Obvi-
ously, their implications reach much further than a cure for
AIDS.

Transcription Inhibitors

Antisense ODNs designed to form DNA triple helices with
specific proviral DNA target sequences may be expected to
inhibit transcription of viral mRNA in intact cells carrying the
HIV proviral DNA genome (311). In principle, the antisense
ODNs could be targeted at any region of the proviral DNA
genome (i.e., trans-activation-responsive [TAR] region, Rev-
responsive element [RRE], etc.), and they may prevent tran-
scription by triplex formation with the proviral duplex DNA or
arrest translation by duplex formation with the viral RNA, as
will be discussed in the next section.
Another approach toward blocking HIV gene expression is

based on the inhibition of trans-activation by the trans-activator
protein, Tat. The Tat protein interacts with the TAR region
(380), located immediately downstream of the transcription
initiation site of the proviral DNA. A number of cellular fac-
tors seem to cooperate with Tat in the overall transactivation
process (242). Some of these factors (i.e. NF-kB, SP-1, TFIID,
LBP-1, and LBP-2) (297) may bind directly to the proviral
DNA near the transcriptional initiation site, whereas other
cellular factors (i.e., MSS1) (419) might directly modulate Tat-
mediated transactivation. Better insight into the different fac-
tors and steps involved in the transactivation process should
help in developing Tat inhibitors.
The best known Tat antagonists (Fig. 13) are Ro 5-3335

[7-chloro-5-(2-pyrryl)-3H-1,4-benzodiazepin-2(H)-one] (217,
483) and its congener Ro 24-7429, in which the ONH-COO
functionality has been replaced by the ONAC(NHCH3)O
functionality (216). More recently, some keto/enol epoxy ste-
roids (Fig. 13) have also been reported to act as HIV-1 Tat
inhibitors (321). The Tat antagonists Ro 5-3335 and Ro 24-
7429 are inhibitory (at a concentration of about 1 mM) to both

FIG. 13. Tat antagonists: Ro 5-3335 [7-chloro-5-(2-pyrryl)-3H-1,4-benzodi-
azepin-2(H)-one], Ro 24-7429 [7-chloro-N-methyl-5-(1H-pyrrol-2-yl)-3H-1,4-
benzodiazepin-2-amine], and 3-keto/enol-4,5-epoxy steroids.
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HIV-1 and HIV-2, which contrasts with the TIBO-type RT
inhibitors which are solely inhibitory to HIV-1. Again, in con-
trast with the RT inhibitors, the Tat antagonists are active
against both acute and chronic HIV infection. They also act
synergistically with the dideoxynucleoside analogs, show activ-
ity against AZT-resistant HIV strains, and do themselves not
lead to the development of resistance, even after prolonged
(2-year) exposure in cell culture (216). The latter is not sur-
prising, since as suggested for the marked cell type-dependent
differences in anti-HIV activity noted for Ro 5-3335 (483), this
class of compounds may be assumed to interact with one of the
cellular factors involved in the transactivation process rather
than the Tat protein per se (483). A possible target protein for
transactivation inhibitors is the cellular serine or threonine
kinase that seems to mediate Tat function (209). It remains to
be established whether TAT antagonists, such as Ro 5-3335
and Ro 24-7429, or any other, that are targeted at cellular
proteins rather than the Tat protein itself may be effective in
vivo, in the clinical setting, in suppressing HIV replication
without untoward effects on the host.
Transcription of the HIV-1 provirus is governed by the viral

long terminal repeat (LTR), and the activity of the HIV-1 LTR
is determined by a number of both positive and negative tran-
scriptional regulators. In particular, phorbol 12-myristate 13-
acetate and tumor necrosis factor are potent activators,
whereas three other compounds (topotecan, b-lapachone, and
curcumin) have been reported to block activation and/or sup-
press the activity of the HIV-1 LTR (279). The latter com-
pounds may thus prevent induction of viral expression in la-
tently infected cells. Assuming that PKC is involved in
activation of the latent HIV-1 infection, PKC inhibitors, such
as the recently described indolocarbazoles (366, 382), may also
be postulated to act, albeit indirectly, as HIV-1 LTR transcrip-
tion inhibitors.

Translation Inhibitors

Antisense oligonucleotides may inhibit HIV replication at a
number of stages: virus adsorption, reverse transcription
(RNA 3 DNA) proviral DNA replication, transcription
(DNA 3 RNA), and finally, translation. As a rule, the anti-
sense ODNs are expected to form a stable duplex with com-
plementary sequences of the viral mRNA and thus arrest viral
mRNA translation (301, 401, 496). This has been shown par-
ticularly with an antisense phosphorothioate ODN against the
regulatory HIV gene Rev (302), as well as the antisense phos-
phorothioate ODN GEM91, a 25-mer complementary to the
HIV-1 gag mRNA initiation site (Fig. 14). GEM 91 may block
the translation of gag mRNA and also disrupt the secondary
structure of RNA (3). Antisense oligonucleotides may also be
targeted at the RRE of the viral mRNA and, through disrup-
tion of Rev-RRE complexes, assist in blocking expression of
the viral glycoproteins (158a).
The phosphodiester-, phosphorothioate- and phosphorodi-

thioate-based ODNs, once they have been hybridized to the
mRNA, may allow the cellular RNase H to cleave the RNA,
and hence multiple copies of each target mRNA could be
eliminated via the RNase H cleavage mechanism. However,
only the phosphodiester-, phosphorothioate-, and phospho-
rodithioate-based ODNs are competent for RNase H-acti-
vated cleavage of RNA, while methylphosphonate ODNs,
phosphoramidate ODNs, and many other backbone-modified
ODNs (Fig. 14) are not (322). These other ODNs must, if
active in inhibiting mRNA translation, do so through simple
steric blocking, thus preventing the RNA from interacting with

the cellular components required for translation of the mRNA
into protein.
The backbone-modified ODNs (Fig. 14) have been designed

in attempts to overcome the hurdles that generally compro-
mise the therapeutic efficacy of ODNs: poor cellular perme-
ability, premature degradation by nucleases, and insufficient
affinity for their target RNA sequences (322). Modification of
the phosphodiester backbone has indeed been shown to impart
stability and may also allow for enhanced affinity and increased
cellular permeation, but none of the currently available ODNs
meet all the requirements for a therapeutically useful mole-
cule. Thus, further ingenuity will be needed to construct anti-
sense molecules (i.e., uniformly modified 29-deoxy-29-fluoro-
phosphorothioate oligonucleotides [246], self-stabilized at
their 39-ends by hairpin loop structures [446]) that have both
high affinity for their RNA target and stability toward nucle-
ases (246) and, moreover, remain sufficiently stable in vivo
(446).
Antisense ODNs could be added exogenously: for example,

antisense ODN phosphorothioates targeting different se-
quences of the viral genome have been applied in a rotating
manner so as to reduce the viral burden and to minimize the
risk of escape mutants (285). Because of the difficulties en-
countered in delivering the antisense oligonucleotides intracel-
lularly (390), different approaches using viral vectors (460)
(i.e., murine leukemia virus [287] or adeno-associated virus
[88]) have been elaborated to introduce antisense oligonucle-
otides into the cells. Constitutive expression of the antisense
RNA may then lead to inhibition of HIV gene expression in
the cell that has already been infected by HIV as well as confer
‘‘intracellular immunity’’ of noninfected cells against subse-
quent HIV infection. The constitutively expressed antisense
RNA may block HIV replication by several mechanisms: by
blocking the reverse transcription of genomic RNA to proviral
DNA or by arresting translation of the targeted mRNA (460).
An interesting approach (394) toward the therapy of HIV

infections is based on the use of ribozymes (403), namely, RNA
molecules that following hybridization with their target RNA
sequences, also cleave a specific phosphodiester bond in this
target RNA (Fig. 15). Most of the ribozymes that have been
constructed are of the ‘‘hammerhead’’ (374) or hairpin (494)
type. They can be targeted at different sites of the viral RNA,
including the RNA fragments that encode the regulatory pro-
teins (i.e., Rex and Tax in the case of bovine leukemia virus)
(85). The stability of the ribozymes toward nucleases can be
increased without a serious decrease in catalytic efficiency
(206, 207). Ribozymes can be delivered exogenously to the
cells (457), and this delivery can be enhanced by electropora-
tion, liposome encapsulation (395), or conjugation to polyca-
tions. As mentioned above for the antisense oligonucleotides,
ribozymes can also be delivered intracellularly via retroviral
vectors (287, 476), and this should then allow constitutive ex-
pression of the ribozymes and thus protect (‘‘immunize’’) the
cells against HIV infection (144, 494). The efficacy of ri-
bozymes for the rapid and specific cleavage of RNA might be
enhanced by endogenous proteins or addition of p7 nucleo-
capsid (Nc) protein (457), and such proteins may be intro-
duced along with the ribozyme by means of a gene therapy
approach. Also, constructs in which the ribozyme is covalently
linked to antisense oligonucleotides or to the (39-end of the)
tRNA primer may be envisaged. The latter may be able to
cleave the viral RNA as soon as it has been attached to the
primer binding site.
Many problems remain to be addressed before the true

potential of ribozymes can be fully assessed. These questions
concern their delivery forms (exogenous or endogenous), their
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specificity (for viral compared with cellular RNAs), their sta-
bility (intracellular turnover), their catalytic activity in physio-
logical conditions, and their accessibility, inside the cells, to the
viral RNAs and to the target sequences of the viral RNA.
Tethering the ribozyme to the HIV packaging signal may en-
hance the ribozyme’s efficiency by colocalizing it with the HIV
mRNA transcripts inside the cells (436). Other issues remain-
ing to be addressed concern the propensity of ribozymes for
mispairing and the development of resistance by mutations at
their target site.
A separate class of translation inhibitors, also known as

SCRIPs (for single-chain ribosome-inactivating proteins) be-
cause they cleave the eukaryotic ribosomal 28S RNA, is rep-
resented by trichosanthin, also referred to as GLQ223, a 26-
kDa protein isolated from Trichosanthes kirilowii (307). The
compound was found to inhibit HIV replication in acutely and

chronically infected lymphocytes and macrophages. GLQ223
has been pursued for its clinical potential (174), despite its
overt toxicity to the host cells (i.e., for MT-4 cells at a concen-
tration of 0.25 mg/ml) (159, 381). Another protein from T.
kirilowii, termed TAP 29, a 29-kDa protein, would be less toxic
yet still active in inhibiting HIV replication (277). Although
TAP 29, like trichosanthin and other SCRIPs, is assumed to
owe its anti-HIV activity to its ‘‘SCRIP’’ effect, namely, cleav-
age of ribosomal 28S RNA and thus abrogation of polypeptide
chain elongation, a causal link between SCRIP and anti-HIV
activity has not been established.

Maturation Inhibitors

Protease inhibitors. An aspartyl protease encoded by the
viral pol gene is responsible for the cleavage of the gag and

FIG. 14. Antisense ODNs: for example, GEM 91, a 25-mer ODN phosphorothioate, complementary to the gagmRNA of HIV-1 at the initiation codon (AUG) site.
In attempts to increase cellular permeation of ODNs, protect them against degradation by cellular nucleases, and/or enhance their affinity for binding to their target
mRNA sequences, the natural phosphodiester linkage can be replaced by various other linkages (i.e., phosphorothioate, phosphorodithioate, etc.).
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gag-pol precursor proteins (Pr55 and Pr160, respectively) into
the mature gag and pol proteins. The search for HIV protease
inhibitors was launched after it was ascertained that the HIV
protease is required for viral infectivity (254). This search was
facilitated by the vast knowledge of other aspartyl protease
(i.e., renin) inhibitors, the cloning and purification of the HIV
protease, the elucidation of its three-dimensional structure
(first at 3-Å [0.3-nm] resolution [350] and later at 2.8-Å [0.28-
nm] resolution [154]), and the development of rapid enzyme

assays for screening potential inhibitors. In the past few years
there has been a virtual explosion of new X-ray crystal struc-
tures from numerous laboratories aimed at the characteriza-
tion, on an atomic level, of the structures of the HIV protease-
inhibitor complexes (485).
The identification of the HIV protease cleavage sites (TyrH

Pro, PheH Pro, LeuH Ala, MetH Met, PheH Tyr, PheH
Leu, and Leu H Phe) proved useful in designing the appro-
priate inhibitors: protease inhibitors with high specificity (Tyr
H Pro or PheH Pro), protease inhibitors of the renin inhibitor
type (LeuH Ala), and symmetrical inhibitors (MetHMet). In
the design of these inhibitors, the ‘‘transition state peptidomi-
metic’’ principle was followed, thus replacing the hydrolyzable
peptide linkage by a nonhydrolyzable transition state isostere,
i.e., statine, hydroxyethylene, reduced amide, hydroxyethyl-
amine, (hydroxyethyl)urea, or dihydroxyethylene (Fig. 16).
Thus emerged a variety of HIV protease inhibitors (Fig. 17):
hydroxyethylamine derivatives (i.e., Ro 31-8959 [391]), hy-
droxyethylene derivatives (i.e., U-81749 [310], UK-88947 [33],
and L-687,908 [462]), (hydroethyl)urea derivatives (i.e., SC-
52151 [175]), norstatine derivatives (i.e., KNI-227 [238]), the
C2 symmetric dihydroxyethylene derivatives A-74704 (154,
250), A-77003 (249), and L-700,414 (68) and other dihydroxy-
ethylene derivatives (450), and various other protease inhibi-
tors (133, 239, 266, 292, 386, 454).
Various new HIV protease inhibitors containing the dihy-

droxyethylene transition state isostere have been synthesized,
and starting from Ro 31-8959 as the model compound, various
novel and high-affinity ligands have been introduced at the P2
(3-tetrahydrofuran and pyran urethanes [177], cyclic sulfolanes
[176], and tetrahydrofuranylglucines [183]) and P3 (pyrazine
amides [183]) positions of the molecule. Novel constrained
‘‘reduced amide’’-type inhibitors of HIV protease have been
constructed in which three amino acid residues of the polypep-
tide chain were locked into a g-turn conformation and desig-
nated g-turn mimetics (352).
As an alternative to the peptide-based approach, penicillin-

derived compounds have been pursued as HIV-1 protease
inhibitors: (i) penicillin-C2-symmetric dimers held together by
an ethylenediamine linker (220) and (ii) monomeric penicillins
linked to peptide isosteres (i.e., statine) (213). On the bases of
the knowledge of the X-ray crystal structure of the HIV pro-
tease dimer and the role of a structural water molecule in
linking the protease inhibitor to the HIV protease dimer, an
entirely new class of HIV protease inhibitors, that of the non-
peptide cyclic ureas, has been developed (265, 361). XM323,
the prototype of this series of HIV protease inhibitors, inhibits
the enzyme at a Ki of 0.27 nM and inhibits HIV-1 replication
in vitro at a 50% inhibitory concentration of 0.036 mM (50%
cytotoxic concentration, 61.5 mM); in contrast to most of the
peptide-based HIV protease inhibitors, XM323 also has good
oral bioavailability (27% in rats and 37% in dogs) (265).
The HIV protease inhibitors Ro 31-8959 (391) and A-77003

(259) have been the subjects of extensive preclinical evalua-
tion. These compounds offer an interesting profile as candidate
anti-HIV drugs: i.e., Ro 31-8959 is active against HIV-1 in cell
culture at a concentration of 1 to 2 nM and inhibitory to the
HIV-1 protease at a Ki of 0.1 nM. It is not inhibitory to renin,
pepsin, cathepsin, elastase, prolidase, or collagenase. It is ac-
tive in both acutely and chronically HIV-infected cells (170). It
is active against AZT-resistant HIV-1 strains and acts syner-
gistically with 29,39-dideoxynucleosides (ddC) and Tat antago-
nists (Ro 24-7429). Although virus resistance to the HIV pro-
tease inhibitors may develop resistance to Ro 31-8959 would
seem to arise less readily than that found for the RT inhibitors
(105).

FIG. 15. Ribozyme (hammerhead ribozyme HH16 [403]) hybridizes to a
specific RNA sequence (containing GUCN) and then cuts it at the specific
cleavage point C 1 N to give two products, P1 (59 product, ending with a
29,39-cyclic phosphate) and P2 (39 product, starting with a 59-hydroxyl group).
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Peptide-based drugs generally have a short half-life (due to
degradation by proteolytic enzymes) and poor oral bioavail-
ability. As demonstrated with the renin inhibitor A-72517
(253), oral bioavailability can be significantly enhanced by the
appropriate chemical modifications, and thus A-77003, which
has poor oral bioavailability (,1%), has been further modified
to yield A-80987, which is still equally as active as an HIV-1
protease inhibitor (Ki, 0.2 nM) but has better oral bioavailabil-
ity ('25% in the rat). The HIV protease inhibitor Ro 31-8959
would achieve plasma levels upon oral administration that for
several hours are far in excess of those required to inhibit HIV
replication.
Also, most HIV protease inhibitors are notoriously hydro-

phobic and thus poorly soluble in aqueous medium. These
compounds also appear to be rapidly cleared by the liver. In
attempts to remedy these problems, phosphate prodrugs in
which the phosphate group was introduced via the hydroxyl
functionality of serine or threonine have been designed: they
are highly water soluble and maintain significantly higher
blood levels in vivo (93).
It remains to be established whether HIV-1 protease inhib-

itors are able to arrest progression of AIDS in patients. Clin-

ical trials with the prominent HIV-1 protease inhibitors (i.e.,
Ro 31-8959) are under way. In the meantime, it has been
demonstrated that inhibitors of retroviral proteases, in partic-
ular, KH164, a statine-based protease inhibitor, impedes pro-
gression of Friend murine leukemia virus-induced disease in
mice (264).
Myristoylation inhibitors. The gag precursor protein (Pr55)

and gag-pol precursor protein (Pr160), as well as the nef pro-
tein, need to be myristoylated; that is, they require attachment
of myristic acid via an amide bond to their N-terminal Gly;
otherwise, no mature infectious virus particles can be formed
(184). This myristoylation is carried out by a cellular enzyme,
protein N-myristoyltransferase. Several myristic acid deriva-
tives, i.e., N-myristoyl glycinal diethylacetal (447), 13-oxatetra-
decanoic acid (75), and 12-azidododecanoic acid (134), have
been found to inhibit HIV-1 production in both acutely and
chronically infected cells. However, these myristoylation inhib-
itors are active only at a relatively high concentration (10 to 50
mM), which may not be therapeutically meaningful.
Glycosylation inhibitors. The HIV envelope glycoproteins

gp120 and gp41 undergo extensive glycosylation, and as these
glycoproteins are involved in virus-cell binding and virus-cell

FIG. 16. Concept of HIV-1 protease inhibitors as peptidomimetics of the transition state formed during hydrolysis of the peptide linkage, with special reference
to the peptide bonds that are cleaved during the maturation of the viral gag and gag-pol precursor proteins.
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FIG. 17. HIV-1 protease inhibitors. (A) Ro 31-8959, U-81749, UK-88947, L-687,908, SC-52151, and KNI-227. (B) A-74704, A-77003, L-700,414, A-80987,
penicillin-derived C2-symmetric inhibitors, and nonpeptide cyclic ureas (XM323). Boc, tert-butoxycarbonyl; tBu, tert-butyl.
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fusion, the glycosylation process has been pursued as a target
for chemotherapeutic intervention. Thus, a number of ami-
nosugar derivatives (Fig. 18) (castanospermine [470], 1-de-
oxynojirimycin [185], N-butyl-1-deoxynojirimycin [NBuDNJ;
131, 243], 1-deoxymannojirimycin [337], and 6-O-butyrylcas-
tanospermine [396]) have been reported to inhibit HIV infec-
tivity, albeit at relatively high concentrations (0.1 to 10 mM).
All of these glycosylation inhibitors, except 1-deoxymannojiri-
mycin, which is a mannosidase inhibitor (482), are inhibitory to
a-glycosidase I, the enzyme which is responsible for the cleav-
age of the terminal a-glucose unit and thus initiates the trim-
ming of the N-linked oligosaccharides.
The attenuated infectivity of HIV particles released from

chronically infected cells that have been exposed to the glyco-
sylation inhibitors is paralleled by reduced binding of these
virions to the cells and, consequently, syncytium formation
(362). The anti-HIV activity of 1-deoxynojirimycin and its con-
geners may obviously be attributed to the altered glycosylation
of the HIV envelope glycoproteins ensuing from their inhibi-
tory effect on a-glucosidase I, but how then may this aberrant
glycosylation give rise to an attenuation of HIV infectivity?
Among the several possibilities that could be envisaged are (i)
abnormal folding of the nascent glycoprotein gp120 (158), (ii)
diminished processing of the gp160 precursor glycoprotein to
gp120 and gp41 (362, 383, 421), and possibly, (iii) impaired
processing of the gp120 to gp70 and gp50 (which would be
catalyzed by a trypsin-like protease, once gp120 has been
docked to the CD4 receptor) (225).
Castanospermine, when given orally at doses as high as 100

or 400 mg/kg/day, was found to inhibit murine Rauscher leu-
kemia virus-induced splenomegaly by 37 and 78%, respec-
tively; however, when compared with AZT in the same murine
system, castanospermine was less active and more toxic (397).
In patients, gastrointestinal side effects (diarrhea, flatulence,
and abdominal pain) have been noted with NBuDNJ (SC-
48334) given orally (1,000 mg every 8 h) (161). These problems
would be caused by the inhibitory effect of NBuDNJ on the
intestinal a-glucosidases (such as maltase and sucrase) and
might be overcome by prodrugs (i.e., NBuDNJ 6-phosphate

[SC-49955]), which do not inhibit gut a-glucosidases (226).
Admittedly, these prodrugs must as such be able to cross the
intestinal barrier before they are hydrolyzed so as to release
the active compound (NBuDNJ).

Budding (Assembly/Release) Inhibitors

IFN-a has been shown to directly prevent the release of HIV
virions from chronically infected cells (376); this is in accord
with earlier studies on IFN in murine retroviral systems. IFN
may affect the budding of new HIV particles through an alter-
ation of the fluidity of the plasma membrane or it may render
the viral proteins unable to interact, assemble, and bud from
the cell (428). In addition to its action targeted at the viral
budding process, IFN has been found to interfere with various
other stages of the HIV-1 replication cycle: (i) at an early step
preceding or coinciding with the integration of proviral DNA
(320, 422); (ii) at the transcriptional level, an effect that is
overruled by the Tat protein (377); and (iii) at the posttran-
scriptional level, through induction of a cellular factor that
antagonizes Rev function (101). All of these effects enable IFN
to restrict HIV replication in both acutely and chronically
infected cells and this suggests that IFN should be effective in
vivo in AIDS patients, if the outcome would depend solely on
the antiviral effects of IFN.
Although originally hailed as ‘‘therapeutic agents with dra-

matic antiretroviral activity’’ (319), the aromatic polycyclic di-
ones (naphthodianthrones) hypericin (Fig. 19) and pseudohy-
pericin have so far not fulfilled their promise. These natural
products from St. Johnswort (Hypericum) would have the ca-
pacity to block viral assembly (or release) as well as directly
inactive properly assembled (released) virions (276). Hypericin
is a photodynamic agent (149), causing hypericism in cattle
ingesting large amounts of Hypericum sp. on pastures. It inhib-
its PKC activity (438) and epidermal growth factor receptor
tyrosine kinase activity (137). Its antiviral activity is not re-
stricted to retroviruses but extends to various other viruses (7,
219, 445). Light is essential for all of the antiviral effects of
hypericin (278). Upon illumination by visible light, it inacti-

FIG. 18. Glycosylation inhibitors: castanospermine, 6-O-butyrylcastanospermine, 1-deoxynojirimycin (DNJ), N-butyl-1-deoxynojirimycin (NBuDNJ), and N-butyl-
1-deoxynojirimycin-6-phosphate (NBuDNJ-6-P). The last should be considered a prodrug of NBuDNJ.
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vates enveloped (but not unenveloped) viruses (278, 435) and
thus acts as a virucidal agent. Rose bengal (Fig. 19) acts sim-
ilarly to hypericin (278): both compounds are known to gen-
erate singlet oxygen (upon illumination) that may be respon-
sible for their virus-inactivating effect. While hypericin and
rose bengal might prove to be suitable agents for photody-
namic inactivation of enveloped viruses in blood or blood
products, it is hard to conceive how these compounds could be
useful in the systemic treatment of HIV-infected patients.
Other agents that have been found to directly interact with

the viral envelope, and thus block HIV-1 infectivity, are the
aurothiolates, aurothioglucose and aurothiomalate (357).
These compounds interact directly with the cysteine residue at
position 532 of the envelope glycoprotein gp120, which is then
no longer capable of interacting with the viral glycoprotein 41
and is thus released from the budding virus particles (357).
Recently, a nonimmunosuppressive cyclosporine analog

(SDZ NIM 811) was shown to inhibit HIV-1 replication
(393a). It was postulated that the compound may interfere with
both the assembly process and an early step of viral replication,
e.g., transport of the viral DNA into the nucleus. Cyclophilins
would be involved in both processes through their capacity to
bind to the HIV-1 gag protein and SDZ NIM 811 would inter-
fere with the cyclophilin-gag protein interaction. This working
hypothesis remains to be proven, however (393a).

COMBINATION THERAPY

It has become increasingly clear that as for the chemother-
apy of a variety of bacterial and malignant diseases, the ulti-
mate strategy for the treatment of AIDS will be based on the
combination of two, three, or even more, anti-HIV drugs.
Different anti-HIV drugs, whether targeted at different viral
proteins (enzymes) or at different molecular sites within the
same enzyme, may thus be combined. Combination therapy is
often understood in the sense of simultaneous use of different
drugs. Although alternating the use of two, three, or more
drugs may be an equally, if not more, valuable approach than
simultaneous use of the drugs for the treatment of HIV infec-
tions, alternating drug regimens have proved less effective in
inhibiting HIV-1 infection in vitro than giving all drugs of an
alternating regimen simultaneously (306). Three ‘‘virtues’’ are
generally expected from the (simultaneous or alternating)
combination of different anti-HIV drugs: (i) diminished toxic-
ity, because of a reduction in the dosage of the individual
compounds; (ii) reduced risk of virus-drug resistance develop-
ment, if resulting from different mutations in the viral genome;
and (iii) synergistic antiviral activity, if anti-HIV action is tar-
geted at different viral proteins or different sites within the
same protein.

These premises have been borne out, at least under some
conditions. Thus, when the individual compounds do not have
overlapping toxicity profiles, as with AZT and ddC, combina-
tion therapy may be well tolerated and not result in toxicity
(315), and in addition, it may show increased efficacy (430).
Also, treatment can be readily switched from one drug (i.e.,
AZT) to another (i.e., ddI or ddC); patients with HIV infection
who no longer respond to AZT treatment may still respond, by
a delayed progression of the disease, to ddI (240) or ddC (1).
Different anti-HIV drugs, such as AZT, ddI, and nevirapine
(or pyridinone), that lead to virus-drug resistance resulting
from different point mutations if used individually may prevent
virus breakthrough when combined (94a). Synergistic anti-
HIV activity has been demonstrated with a large number of
combinations, including phosphonoformate (foscarnet [PFA])
with IFN-a (202), AZT with IFN-a (203), IFN-a with ddC
(468), AZT with rsCD4 (232), AZT with castanospermine
(235), AZT with PMEA (425), PFA with AZT (155, 261), AZT
with quartromicins (443), IFN-a with coumermycin (437), PFA
with FddThd (FLT) (260), AZT with FLT (195), ddI with FLT
(103), AZT with nevirapine (387), AZT with TIBO R82913 or
TIBO R86183 (77), AZT with BHAP U-90152 (92), IFN-a
with HEPT (224), AZT with HEPT derivatives (i.e., E-EPU)
(22), AZT (ddC or nevirapine) with the Tat antagonist Ro
24-7429 (100), and the HIV protease inhibitor Ro 31-8959 with
either AZT (104) or the Tat antagonist Ro 24-7429 (100).
Also, AZT acts synergistically with ddI (12, 143), and AZT
combined with ddI or IFN-a has been found to act synergisti-
cally against AZT-resistant HIV-1 mutants (234); likewise,
AZT combined with BHAP (U-87201E) acts synergistically
against AZT-resistant clinical isolates of HIV-1 (84). In addi-
tion to two-drug combinations, a number of three-drug com-
binations (AZT, rsCD4, and IFN-a [233] and AZT, PFA, and
ddThd [257]) and even four-drug combinations (306) have
proved to confer increased anti-HIV activity. As a rule, it can
be stated that multidrug regimens are more effective in inhib-
iting HIV-1 replication than single-agent regimens and that the
effectiveness increases with the number of drugs used (306).
An interesting combination is that of hydroxyurea or other

hydroxamates (i.e., D-aspartic acid b-hydroxamate) and ddI:
this combination leads to a synergistic inhibitory effect on
HIV-1 replication without increasing toxicity (288a, 296a).
This synergistic action would result from the inhibitory effect
of the hydroxamates on ribonucleotide reductase and, conse-
quently, the decrease in the intracellular pool of deoxynucleo-
side triphosphates, including dATP, with which ddATP, the
active metabolite of ddI, has to compete at the HIV RT level.
However, not all combinations lead to synergistic anti-HIV

activity. For example, acyclovir and AZT show only additive to
antagonistic effects against HIV in vitro (427) (although in
vivo, in patients with AIDS, cotherapy of AZT with acyclovir
results in a significant improvement in survival [102] [possibly
due to the suppressive effect of acyclovir on herpesviruses that
may act as cofactors, stimulating HIV replication]). Antago-
nism was observed if rsCD4 was combined with dextran sulfate
(205). Also, ganciclovir antagonizes the anti-HIV activity of
AZT and ddI, while increasing their toxicity (312). Conversely,
AZT antagonizes the inhibitory activity of ganciclovir against
CMV infection (157). Ribavirin shows an ambivalent behavior:
it antagonizes the anti-HIV activity of AZT (469) but enhances
the anti-HIV activity of the purine 29,39-dideoxyribosides
ddAdo, ddGuo (25), and ddIno (ddI) (46). This potentiating
effect of ribavirin on the antiretroviral activity of purine 29,39-
dideoxyribosides (i.e., ddI) was not accompanied by an in-
crease in toxicity, as has also been confirmed in vivo (37, 50).
Thus, the combination of ddI with ribavirin seems to be an

FIG. 19. Hypericin and rose bengal: virucidal agents that, upon illumination
by visible light, are able to inactivate HIV and other enveloped viruses.
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attractive strategy that should be further pursued in the treat-
ment of AIDS patients.
In fact, the biochemical basis for the potentiating effect of

ribavirin on the anti-HIV activity of ddI has been well estab-
lished (45, 199). Being an inhibitor of IMP dehydrogenase
(leading to the conversion of IMP to XMP, which is then
further converted to GMP, GDP, and GTP), ribavirin causes
an increase in the intracellular IMP pool levels. IMP is then
used as a phosphate donor by 59-nucleotidase to convert ddI to
ddIMP, which will then finally be converted to its antivirally
active metabolite ddATP. On the other hand, ribavirin causes
a depletion of the GTP pools; GTP serves as an obligatory
cofactor in the conversion of IMP to succinyl AMP, which is
then further converted to AMP, ADP, ATP, and, via ADP 3
dADP, to dATP. Hence, ribavirin may enhance the anti-HIV
activity of ddI by facilitating its conversion to ddATP and, at
the same time, suppressing the formation of dATP, the direct
competitor of ddATP at the HIV RT level. A similar mecha-
nism may be invoked to explain the potentiating effect of riba-
virin on the anti-HIV activity of the 29-fluoro ‘‘up’’-analogs of
ddAdo, ddIno, and ddGuo (231).

VIRUS-DRUG RESISTANCE

The potential of HIV to become resistant to anti-HIV drugs
has become an increasing concern since it was first reported
that HIV variants isolated from patients following prolonged
AZT therapy show reduced susceptibility to AZT (272). The
following mutations in the HIV-1 RT were found to confer
high-level resistance to AZT: 67 Asp 3 Asn, 70 Lys 3 Arg,
215 Thr 3 Phe/Tyr, and 219 Lys 3 Gln (274). Later, a fifth
mutation, 41 Met 3 Leu, was found to contribute to the high
level of HIV AZT resistance (247). The 215 Thr 3 Tyr mu-
tation has been most frequently detected among AZT-resistant
HIV-1 isolates from patients under prolonged AZT therapy
(305). In AZT-resistant HIV strains selected by passage in cell
culture, an additional novel mutation (219 Lys 3 Glu) was
observed (271). Resistance to ddI is induced by the 74 Leu3
Val mutation in HIV-1 RT (433). The mutation 69 Thr3 Asp
decreases the susceptibility to ddC (162, 163) and the mutation
184 Met3 Val reduces the susceptibility to both ddC and ddI,
but not AZT (187). The 184 Met 3 Val mutation is also
responsible for resistance to the (2) enantiomeric 29,39-
dideoxy-39-thiacytidine 3TC (172, 452) and its 5-fluoro-substi-
tuted counterpart FTC (407). The 65 Lys 3 Arg mutation
confers resistance to ddC, 3TC, and ddI, but not AZT (186,
498), and the 75 Val 3 Thr mutation imparts resistance to
D4T (263a).
In HIV-1-infected patients treated with AZT, mutations

conferring resistance to AZT seem to occur in an ordered
fashion (i.e., 41 3 41/215 3 41/67/215 3 41/67/70/215 3
41/67/70/215/219), each step leading to accruing resistance
(248). The combination of ddC with AZT does not appreciably
delay the emergence of AZT resistance (389); in fact, alter-
nating therapy of AZT with ddC leads to the selection of virus
resistant to both drugs (161). Although AZT-resistant HIV
strains should, in principle, not exhibit cross-resistance to ddI
or ddC, some reduction in susceptibility to ddI and ddC was
noted with AZT-resistant HIV-1 isolates from five cohorts
(about a twofold decrease in ddI or ddC susceptibility for each
and a 10-fold decrease in AZT susceptibility [304]).
HIV-1 resistance to the HIV-1-specific RT inhibitors (NNR-

TIs) rapidly arises following passage of the virus in cell culture
in the presence of these compounds. The mutation 181 Tyr3
Cys is associated with resistance, or reduced susceptibility, to
most of the NNRTIs (i.e., TIBO, HEPT, nevirapine, pyridi-

none, BHAP, TSAO, and a-APA), as already mentioned
above. The mutation 188 Tyr 3 His is associated with resis-
tance to TIBO and other compounds (43) but not nevirapine
(400). The mutation 100 Leu 3 Ile is associated mainly with
resistance to TIBO (43, 80, 314); the mutation 103 Lys3 Asn
is associated with resistance to TIBO, nevirapine, pyridinone,
and BHAP (42, 43, 80, 355); the mutation 106 Val 3 Ala
mainly leads to resistance to nevirapine and HEPT (40, 42, 80);
the mutation 138 Glu 3 Lys is responsible for resistance to
TSAO (44, 61); the mutation 190 Gly 3 Glu accounts for
resistance to quinoxaline S-2720 (251, 252); and the mutation
236 Pro 3 Leu is associated with resistance to BHAP (148).
Notably, the 190 Gly 3 Glu mutation leads to a dramatic
reduction in RT activity (252). Although the different locations
of the mutations conferring resistance to the different RT
inhibitors should in the first place be interpreted to mean that
these different RT inhibitors bind to different sites of the
enzyme, it is likely that the secondary structure of the RNA
coding for HIV-1 RT also contributes to the location of these
mutations (408). Indeed, mutations may occur more readily at
‘‘unstable’’ nonhelical regions (i.e., loops, bulges, and bends)
which could therefore be regarded as mutation prone (408).
Resistance development is not an exclusive property of the

HIV-1 RT and HIV-1 RT inhibitors, whether nucleosides or
non-nucleosides. HIV-1 resistance to the protease inhibitor Ro
31-8959 has been obtained after five passages of HIV-1 in cell
culture in the presence of the compound (138). Resistance to
C2 symmetric inhibitors of HIV-1 protease has also been de-
scribed (360), and in this case, resistance was due to Val3 Ala
mutation at position 82 of the protease.
Although the clinical significance of AZT resistance devel-

opment, or for that matter resistance to any other anti-HIV
drug, has not yet been settled (458), the rapid emergence of
drug-resistant HIV-1 mutants under selective pressure of the
HIV-1-specific RT inhibitors has been generally viewed as a
limitation for, if not an argument against, the clinical useful-
ness of these compounds. Yet, a number of points should be
kept in mind when assessing the relevance of HIV-drug resis-
tance (126).
First, resistance should be considered a parameter of spec-

ificity, which means that the more specific the compound in its
antiviral action, the greater the likelihood that it leads to re-
sistance in the shortest possible time. This also means that, vice
versa, compounds that do not lead to resistance may fail to do
so because they are targeted at cellular (rather than viral)
proteins and thus bound to be cytotoxic.
Second, drug-resistant virus variants might be less patho-

genic than the wild-type variants. Otherwise, they would not be
overgrown by the wild type in the absence of the drugs and only
show up under continuous pressure of the drug. In fact, drug-
resistant virus variants may be present in the virus pool of
patients who never received the drug (336). Future clinical
studies should address the role of these drug-resistant variants
in disease progression.
Third, although AZT-resistant HIV-1 mutants may persist

for a long time (i.e., 1 year) after withdrawal of the drug before
reverting to the wild type (5, 71, 72, 267), it has not been
determined how long it takes for NNRTI-resistant HIV-1 mu-
tants to revert to the wild type: e.g., for pyridinone, L-697,661
resistance in the patient develops within 12 weeks of treatment
(110), but as HIV-1 resistance to NNRTIs generally depends
on one mutation, the time it needs to revert to the wild phe-
notype following withdrawal of the drug may not be as long as
for the AZT resistance phenotype.
Fourth, because of their handicap relative to the wild type,

drug-resistant virus strains may be less readily transmitted
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from one person to another. In fact, there are few documented
cases of transmission of drug-resistant virus (i.e., AZT-resis-
tant HIV-1 [11, 153]), although this issue remains to be fol-
lowed up by further epidemiological studies.
Fifth, if resistance to one of the NNRTIs develops, treat-

ment could be switched to any of the other NNRTIs to which
the virus has retained susceptibility. For example, 5-chloro-3-
(phenylsulfonyl)indole-2-carboxamide (480) is still active
against those HIV-1 strains that, because of the 103 Lys3 Asn
or 181 Tyr3 Cys mutation, have acquired resistance to other
NNRTIs (i.e., TIBO, nevirapine, pyridinone, and BHAP). The
a-APA derivative R89439 is very active against the 100 Leu3
Ile mutant, which is highly resistant to TIBO R82913 and
R86183 (371). Within the TIBO class, a minor chemical mod-
ification, i.e., shifting the chlorine from the 9-position
(R82913) to the 8-position (R86183), suffices to restore activity
against the 181 Tyr3 Cys mutant (367). Similarly, pyridinone
L-702,019, which differs from its predecessor L-696,229 only by
the addition of two chlorine atoms (in the benzene ring) and
substitution of sulfur for oxygen (in the pyridine ring), is mark-
edly inhibitory to HIV-1 mutants containing the 103 Lys 3
Asn or 181 Tyr 3 Cys mutation (181).
Sixth, in some instances, resistance to one of the NNRTIs

may even be accompanied by hypersensitivity to others. For
example, the 236 Pro 3 Leu mutation causing resistance to
BHAP confers a 10-fold increased susceptibility to TIBO, ne-
virapine, and pyridinone (148). Also, the 236 Pro 3 Leu mu-
tation, in combination with the 181 Tyr 3 Cys mutation, par-
tially restores the susceptibility of the HIV-1 RT toward TIBO,
nevirapine, and pyridinone.
Seventh, the 181 Tyr 3 Cys mutation, causing resistance to

most NNRTIs, has been found to suppress the 215 mutation
(Thr3 Phe/Tyr) conferring resistance to AZT (270), and vice
versa, the 181 Tyr3 Cys mutation can be suppressed by AZT,
which thus means that the NNRTI mutation at position 181
and the AZT mutation at position 215 seem to be mutually
exclusive. Still other mutations have proved to counteract each
other: 236 Pro 3 Leu versus 138 Glu 3 Lys; 215 Thr 3
Phe/Tyr versus 184 Met3 Val; and 215 Thr3 Phe/Tyr versus
74 Leu 3 Val (126). In addition to the 181 Tyr 3 Cys muta-
tion, the 100 Leu 3 Ile mutation was also found to suppress
resistance to AZT when coexpressed with AZT-specific muta-
tions (79a). On the basis of mutations that seem to counteract
each other (126), combinations of different drugs could be
envisaged that, if combined, may suppress emergence of resis-
tance to one another: e.g., combinations of AZT with either
TIBO, a-APA, HEPT, nevirapine, or pyridinone (to which
BHAP and/or TSAO may be added).
Eighth, the triple combination of AZT, ddI, and pyridinone

(or nevirapine) has been proposed as an example of ‘‘conver-
gent combination therapy,’’ which would restrict ‘‘multidrug
resistance development because of evolutionary limitations’’
(94a). At the drug concentrations used (0.3 mM AZT, 10 mM
ddI, and 0.09 mM pyridinone), the combination was indeed
found to prevent HIV-1 breakthrough. The authors (94a) sur-
mised that this happened because a triple drug-resistant virus
would be unable to replicate per se. This assumption has
proved to be faulty, as has also been recognized by the authors
(94), since HIV-1 coresistant to AZT, ddI, and an NNRTI
(such as nevirapine) can be readily selected in cell culture
(273). In fact, an HIV-1 variant with the RT mutations 74 (Leu
3 Val), 103 (Lys 3 Asn), 215 (Thr 3 Tyr), and 219 (Lys 3
Gln) is still viable (151) and retains susceptibility to AZT and
pyridinone L-697,661 at concentrations (,1 mM) that are ther-
apeutically attainable in human plasma.
Ninth, what would seem a straightforward approach to pre-

vent drug-resistant HIV strains from arising is using ‘‘knocking
out’’ concentrations of the NNRTIs (41). If NNRTIs, such as
BHAP U-88204 or BHAP U-90152, are used from the start at
a sufficiently high concentration (1 or 3 mM, respectively), they
completely suppress virus replication (147, 466), so that the
virus is ‘‘knocked out’’ and does not have the opportunity to
become resistant. If U-90152 is combined with AZT, the con-
centrations of the individual drugs can be lowered to achieve
total virus clearance (147). Various NNRTIs, i.e., TIBO,
HEPT, nevirapine, pyridinone, and BHAP, have been shown
to knock out HIV-1 in cell culture when used at concentrations
(1 to 10 mg/ml) that are nontoxic to the cells (41). That the
virus was really knocked out, and the cell culture cleared
(‘‘sterilized’’) from the virus infection, was ascertained by PCR
analysis of the infected cell cultures: even with two successive
35-cycle PCR rounds, no proviral DNA could be detected in
the HIV-1-infected cell cultures that had been treated from the
start with the knocking out concentrations. In contrast with the
NNRTIs, AZT proved unable to clear (or sterilize) the cell
cultures from HIV infection at a concentration of 3 mM (41,
147), and even at a concentration of 25 mM, AZT did not
prevent resumption of virus production, so that even in the
continued presence of the drug, the HIV-1-infected cell cul-
tures eventually produced as much virus as did untreated in-
fected cells (426).
Tenth, when used at knocking out concentrations, the NNR-

TIs may be expected to lead to a long-lasting suppression of
HIV-1 replication. This knocking out phenomenon could be
achieved at lower concentrations if the NNRTIs are combined
with each other or with any of the dideoxynucleoside analogs
(i.e., AZT, ddI, or ddC), and such drug combinations could be
particularly advantageous if based on the premise of mutually
suppressive resistance (126). Also, with a four-drug combina-
tion consisting of AZT, ddI, ddC, and IFN-a, virus break-
through could be delayed for a much longer time than with the
one-, two-, or three-drug treatment regimens (306).
All of these considerations should somehow help to alleviate

the concerns that have been raised with regard to the devel-
opment of HIV resistance to the various RT inhibitors,
whether nucleosides or non-nucleosides. Of course, the prob-
lem of virus-drug resistance would not have to be raised if the
compounds were to be used only prophylactically, that is, to
prevent HIV infection following occasional exposure to the
virus, e.g., through sexual contact or needle stick or other
injury, or to prevent perinatal HIV transmission at the time of
delivery.

CONCLUSION

Despite the enormous progress that has been made, and the
wealth of selective anti-HIV agents that are now available,
outsiders will keep insisting that there is still ‘‘no cure for
AIDS.’’ Yet, as discussed above, there are plenty of com-
pounds that have proved to specifically interact with one or
another target of the HIV replication cycle. There are also
targets for which specific inhibitors still need to be found, as
there are compounds for which the target(s) has not yet been
found. Not for all compounds have the target proteins or target
site been identified with as much unambiguity as for the poly-
anionic substances (virus adsorption), dideoxynucleoside ana-
logs (substrate binding site of the viral RT), TIBO-like com-
pounds (nonsubstrate binding site of the viral RT), or protease
inhibitors (specific cleavage sites of the viral precursor pro-
teins).
Antiviral agents in general, and antiretroviral agents in par-

ticular, could be seen as the following: an arc-shaped distribu-
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tion with, at the extremes, at 08, the compounds that are non-
specific showing a broad spectrum of antiviral activity and not
leading to resistance but proving toxic to the host, and at 1808,
the compounds that are highly specific showing a very narrow
spectrum of antiviral activity and not exhibiting toxicity but
promptly leading to resistance. Depending on the target with
which they interact, all anti-HIV agents can be positioned on
such a graduated arc (Fig. 20). Those compounds that interact
with common cellular or viral proteins will be close to 08,
whereas the compounds interacting with specific viral targets
will be close to 1808. It also follows that the high specificity of
the latter compounds cannot be acquired without the risk of
resistance development.
In addition to the different stages of the HIV replicative

cycle, other events outside this replicative cycle may be con-
sidered possible targets for anti-HIV chemotherapy. For ex-
ample, cyclosporin A and FK506 have been reported to inhibit
HIV replication, and this inhibition has been ascribed to an
inhibitory effect of the compounds on the expression of tumor
necrosis factor alpha, a known activator of HIV replication
(178). In another study, cyclosporin A and FK506 were found
to prevent the formation of the T-cell transcription factor
NF-AT (nuclear factor of activated T cells), and on the basis of
this coincidence, NF-AT has now also been regarded as a
target for anti-HIV therapy (244).
When discovering new compounds that are active against

HIV, or uncovering new targets that are amenable to anti-HIV
therapy, quite often a syllogistic reasoning is followed. If (a), a
compound is inhibitory to HIV replication, and if (b), the
compound is found to interact with a specific viral target, then
(c), the compound must inhibit HIV replication by acting at
that particular target. A case in point is the aromatic C-nitroso
compounds, which, on the one hand, inhibit HIV-1 infectivity
and, on the other hand, eject zinc from the HIV-1 capsid zinc
fingers and, therefore, are postulated to achieve their anti-HIV
activity through zinc ejection (385). This relationship may be
causal, indeed, but it may also be coincidental. In general, (a)
plus (b) does not necessarily yield (c) and, thus, caution should
be exercised when proposing new targets for anti-HIV chemo-
therapy and, even more so, when speculating on new thera-
peutic approaches that achieve their anti-HIV activity through
interaction with such targets.
The chemotherapy of HIV infections, as for other chronic

infections and malignant diseases, is moving into the direction
of multiple drug combinations. The rationale for such drug
combinations is threefold: to get synergistic (or at least, addi-
tive) activity, to lower the doses (and thus toxicity) of the

individual compounds, and to reduce the risk of drug resis-
tance development. Given the wealth of promising anti-HIV
agents that are now available, the number of two-, three-, or
four-drug combinations that could be envisaged should be al-
most astronomical. As a guideline to selecting the appropriate
drug combination before administering it to the patient, it may
be useful to first evaluate, in experimental cell systems,
whether the drugs, at therapeutically attainable concentra-
tions, are able to completely suppress virus replication, knock
out the virus, and thus prevent resistance from emerging. This
strategy should provide the rationale for judiciously choosing
the right compounds, at the right doses, to give the right an-
swers in the clinical setting.
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Enzymatic properties and sensitivity to inhibitors of human immunodefi-
ciency virus type 1 (HIV-1) reverse transcriptase with Glu138 3 Arg and
Tyr188 3 His mutations. Antiviral Res. 24:43–57.

500. Zhang, H., L. Vrang, T. Unge, and B. Öberg. 1993. Characterization of HIV
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