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INTRODUCTION

Most mammals are continuously challenged by microorgan-
isms, as a result of which defense mechanisms must be main-
tained throughout their life span. The first line of defense is
provided by the skin or the mucosa of the gastrointestinal tract,
which forms an impermeable barrier for the vast majority of
microorganisms. However, when this barrier becomes dam-
aged, an easy path of entry is provided. Furthermore, some
microorganisms are capable of penetrating these barriers and
can thereby gain access to the underlying tissues. There they
are encountered by immunological defense mechanisms and
may elicit an inflammatory reaction. These defense mecha-
nisms can be nonspecifically directed against a broad range of
microorganisms (e.g., neutrophils that phagocytose and kill
bacteria) but may also be specifically directed against a single
organism (e.g., antibody-mediated inactivation of the organ-
ism). The generation and maintenance of these immunological
responses is controlled by a network of small, nonstructural,
intercellular regulatory proteins that mediate a multiplicity of
immunologic as well as nonimmunologic biological functions
(4, 121, 177). These so-called cytokines and chemokines (re-
ferred to here as cytokines) are induced by specific stimuli,
such as several types of bacterial products, and are responsible

for the generation, stimulation, and differentiation of multiple
cell types as well as for the control of production of other
cytokines that may enhance or inhibit the synthesis of protein
products and/or biological effects of other cell types and pro-
teins. This results in a complex, fine-tuned regulatory network
that may ultimately succeed in the eradication of the invading
microorganism(s). The ability or inability to generate certain
cytokines or cytokine patterns in response to infection often
determines the clinical course of infection (126, 196) and may
greatly affect the outcome. In certain circumstances, mistuning
or massive overproduction of cytokines may even lead to
shock, multiorgan failure, or death (74).

The availability of recombinant cytokines, cytokine-neutral-
izing antibodies, antagonists, cytokine-inhibitory drugs, and cy-
tokine knockout laboratory animals (61, 91, 110, 166, 206)
enables researchers to study and modulate immune responses.
The knowledge thus obtained may eventually lead to the de-
velopment of new strategies for therapy of infectious diseases
(123, 126), which would be particularly valuable in light of the
increasing ineffectiveness of antibiotic treatment due to devel-
opment of resistance of microorganisms to antibiotics.

Due to the ever-increasing number of cytokines that are
being discovered and new insights into cytokine functions, it is
almost impossible to remember all cytokines and their effects.
It would therefore be helpful to have a quick reference guide
in which the major cytokines as well as their sources, receptors,
biological actions, and inducers are listed. As a result of the
vast amount of research on cytokines currently being con-
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ducted and the continuous flow of publications concerning
cytokines, it is not possible to provide a completely updated
overview. Therefore, the aim of this review is to provide a list
of the most common cytokines involved in inflammatory and
immune responses which may be expanded on a regular basis.

The list of references predominantly contains review articles
on specific cytokines or groups of cytokines that may be useful
as a source of more background information and as a starting
point for a search for more specific articles on a specific cyto-
kine(s).

Although cytokines have sometimes been divided into
groups according to their source (lymphokines or monokines),
it has become difficult to maintain this categorization since
most of the cytokines can be produced by a variety of cell types
depending on the stimulating agent and interaction with other
cells. Therefore, the cytokines are described in the following
order: interleukins (IL), tumor necrosis factors (TNF) and
lymphotoxins (LT), interferons (IFN), colony-stimulating fac-
tors (CSF), chemokines, and miscellaneous cytokines. The ta-
bles present contemporary and historical names and abbrevi-
ations, information on receptors and receptor-related proteins,
cytokine sources and gene locations, biochemical properties of
the protein, information on cytokine-specific bioassays, molec-
ular properties such as amino acid homologies and species
specificities, and information on various biological effects and
inducers.

IL

It has now been more than 12 years since the first two
members of the IL family, IL-1a and IL-1b, were cloned.
Furthermore, several other molecules that have been known
and studied for some time have been named as IL, such as
IL-2, formerly known as T-cell growth factor. Since the intro-
duction of the term IL, at least 17 cytokines have been de-
scribed and given that designation, the last one being IL-17
(204).

IL-1

Since the cloning of IL-1 it has become clear that IL-1 can
evoke a wide variety of biological effects (Tables 1 and 2) at
very low concentrations, sometimes even in the femtomolar
range (54, 55). It is a remarkably potent molecule that is able
to induce its effects by triggering as few as one or two receptors
per cell. The first effects ascribed to IL-1 were the induction of
fever, augmentation of lymphocyte responses, and stimulation
of the acute-phase response, hence the older names such as
endogenous pyrogen and lymphocyte-activating factor. Two
different molecules with agonistic effects are known, IL-1a and
IL-1b. While IL-1a is predominantly membrane bound, IL-1b
is secreted. A clear distinction should be made between local
and systemic effects of IL-1 (52). The induction of an inflam-
matory reaction in response to infection is to a large extent
attributed to the effects of IL-1. Apart from the induction of
other proinflammatory cytokines and chemotactic cytokines at
the site of infection, IL-1 also up-regulates cell adhesion mol-
ecules, which ultimately leads to the production of an effective
defense mechanism. Indeed, in several models of bacterial,
fungal, and parasitic infection, IL-1 is associated with protec-
tion (188, 189). Furthermore, the radiation-protective effect of
IL-1 (possibly because of its stimulatory effect on hematopoi-
esis) may hold promise for treatment during cancer therapy. In
contrast, however, overproduction of IL-1 may sometimes be
associated with disease (51, 114).

A molecule named IL-1 receptor antagonist (IL-1ra) is also

part of the IL-1 family. This cytokine, which strongly resembles
IL-1, completely lacks an agonistic effect in vitro and in vivo
(53, 55, 144). Therefore, IL-1ra may act by dampening IL-1
responses. Furthermore, the IL-1 receptor type II (IL-1-RII)
presumably may act as a decoy receptor, thereby attenuating
the potential effects of IL-1 (173, 174). In addition, it has
become clear from models of infection that treatment with
IL-1ra may have protective effects (189); e.g., treatment of
Plasmodium berghei-infected mice with IL-1ra protects against
the development of cerebral malaria (39). Therefore, treat-
ment with soluble IL-1-Rs (sIL-1-Rs) or IL-1ra may be bene-
ficial in some disease states, such as chronic inflammation. It
has become evident that the time and location of IL-1 produc-
tion together with production of IL-1ra and IL-1-R expression
is crucial in determining the final biological effect.

IL-2

The T-cell-derived cytokine IL-2 targets a variety of cells to
induce their growth, differentiation, and functional activation
(Table 3). Previous names for IL-2, such as lymphocyte mito-
genic factor and T-cell growth factor, indicate that one of the
major functions of this cytokine is in the activation, growth,
and differentiation of T cells. Indeed, within minutes after
interaction of the T-cell receptor (TCR) with the major histo-
compatibility complex (MHC) class II antigen complex on an-
tigen-presenting cells, T cells transcribe three categories of
genes that are expressed early during T-cell activation: cellular
proto-oncogenes, cytokine genes, and cytokine receptor genes.
Transcription of the gene for IL-2 as well as of that for IL-2-R
begins within 1 h of TCR-mediated stimulation of human lym-
phocytes. In this way secreted IL-2, produced by an activated T
cell in an autocrine fashion, stimulates growth and prolifera-
tion of antigen-specific T lymphocytes as well as B cells. The
major T-cell subclass that produces IL-2 is the CD41 T cell,
although CD81 cells may also produce small quantities of IL-2.
Apart from the autocrine effect, IL-2 also induces the produc-
tion of other T-cell-derived cytokines such as IFN-g and
TNF-b, which results in activation of monocytes, neutrophils,
and natural killer cells (NK cells). It is evident that in that way
IL-2 contributes to the generation and propagation of antigen-
specific immune responses. A strong induction of IL-2 (and
IFN-g and TNF-b) is also found after stimulation of the TCR
b chain by superantigens; this induction leads to extensive
proliferation of T-cell subsets.

The functional human IL-2-R is composed of subunit com-
plexes of a, b, and g chains or b and g chains. Together with
the b chain, the g chain participates in increasing the IL-2
binding affinity and is responsible for signal transduction. Re-
markably, signaling through the g chain is shared by receptors
for at least IL-4, IL-7, IL-9, and IL-15 (56, 84). The importance
of signaling through the g chain can be demonstrated by the
fact that mutations of the g-chain gene are the cause of the
human X-linked severe combined immunodeficiency syn-
drome (178).

IL-2 has been used for several therapeutic applications, such
as infusions of IL-2-activated lymphokine-activated killer
(LAK) cells and tumor-infiltrating lymphocytes for antitumor
therapy, the augmentation of IL-2 levels in immunodeficiency
disorders, and the increase of NK cell activity following bone
marrow transplants (88). Studies to determine beneficial ef-
fects of IL-2 during human immunodeficiency virus (HIV)
infection are currently being conducted. Increases in the num-
bers of circulating B and T cells have been observed at rela-
tively high doses of IL-2, although toxicity due to activation of
NK cells and the resulting production of proinflammatory cy-
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tokines is one of the side effects. However, B and T cells
express high-affinity IL-2Rs while NK cells express low-affinity
IL-2Rs; therefore, low doses of IL-2 may be beneficial in in-
creasing the numbers of B and T cells without induction of
proinflammatory cytokine production by NK cells.

IL-3
Murine IL-3 (Table 4) was first described in 1974 as a factor

released from T cells after stimulation with the mitogen phy-
tohemagglutinin (PHA) and was named CFU-stimulating ac-
tivity. Later this factor was renamed IL-3 because treatment of
splenic lymphocytes with this factor gave rise to mature T cells.
Several years after the discovery of murine IL-3, the human
equivalent was identified from a cDNA clone from concanava-
lin A (ConA)-activated human T-helper cells.

IL-3 exerts its ability to support multilineage-colony forma-
tion early in the development of multipotent progenitors and
exhibits synergy with stem cell factor in inducing human
CD341 cells to form basophils and mast cells. IL-3 apparently
supports only a few cell divisions, giving rise to neutrophils
or erythroid bursts only upon addition of granulocyte-macro-
phage CSF (GM-CSF) or erythropoietin, respectively. These
observations are in agreement with data indicating that multi-
lineage colonies become less sensitive to IL-3 as they mature.
IL-3 has indeed been used successfully in combinations with
later-acting factors such as GM-CSF to stimulate hematopoi-
esis in primates. In addition, sequential administration of IL-3
and IL-6 in primates stimulates thrombopoiesis.

Based upon in vitro studies, IL-3 may be an effective treat-
ment for reversing the hematopoietic toxicity associated with
zidovudine. Furthermore, therapies directed at down-regulat-
ing IL-3 or its receptor may be an effective treatment in pa-
tients with non-Hodgkin’s lymphoma because of the ability of
IL-3 to promote the proliferation of follicular B cells from
lymphomas (34). In clinical trials IL-3 has been used in com-
bination with other CSF as a possible treatment for aplastic
anemia (80).

IL-4
Formerly designated B-cell growth factor (BCGF) (Table 5),

IL-4 was first described in 1982 as a factor present in the
supernatants of cultures of phorbol myristate acetate-stimu-
lated thymoma cells (EL-4) capable of supporting the growth
of anti-immunoglobulin (Ig)-stimulated B cells by driving them
into the S phase (92).

IL-4 is also designated as a type 2 cytokine because it is
mainly produced by TH2 cells. Indeed, when it was shown that
CD41 cells do not constitute a homogeneous class of cells,
IL-4 together with IL-5, IL-10, and IL-13 proved to be pro-
duced primarily by the CD41 subset (TH2) whereas the other
subset (TH1) mainly produced IL-2, IFN-g, and TNF-b. TH1
cells are assumed to be well suited for induction of enhanced
microbicidal activity by macrophages (enhanced cellular im-
munity), whereas TH2 cells make products that are well
adapted to help B cells develop into antibody-producing cells.
Apart from its involvement in the generation of the humoral
immune response, a striking effect of IL-4 is its ability to
suppress many monocyte proinflammatory responses such as
IL-1 and TNF-a production, and it may thus act as an anti-
inflammatory cytokine involved in the fine-tuning of an immu-
nological response (32, 35, 116, 154). Therefore, IL-4 may hold
promise as a therapeutic agent in chronic inflammatory pro-
cesses. However, during lepromatous leprosy the enormous
accumulation of intracellular organisms is associated with IL-4
production. On the other hand, tuberculoid leprosy, in which

there are very few organisms and little tissue damage mediated
by immunologically induced inflammation, is characterized by
TH1 cell responses. Furthermore, IL-4 is involved in the patho-
genesis of Leishmania infection (126). Few infections in which
IL-4 production correlates with protection are known; e.g., in
nematode infections in mice, IL-4 is involved in clearance of
the primary infection and in immunity to rechallenge.

As a multifunctional cytokine that can augment certain T-
and B-cell responses, IL-4 may have potential therapeutic
value in several instances, such as reconstitution of humoral
and cellular immune function following bone marrow trans-
plantation, induction of terminal differentiation of acute lym-
phoblastoid leukemias, and amelioration of immunodeficiency
associated with hyper-IgM syndrome (88).

IL-5
Eosinophil differentiation factor (Table 6), later designated

IL-5, was first isolated and characterized in 1985 from condi-
tioned culture supernatants of parasite-specific, antigen-stim-
ulated T-cell clones isolated from Mesocestoides corti-infected
mice. However, in the early 1970s the first observations that
foretold the discovery of IL-5 had been made: eosinophilia was
shown to be a T-cell-dependent condition, and supernatants of
activated murine spleen cell cultures were shown to be capable
of inducing eosinophil colony formation.

Mainly produced by activated T cells, IL-5 exhibits activity
on eosinophils (chemotaxis and activation), basophils (activa-
tion), B cells (differentiation), and thymocytes (up-regulation
of IL-2R). Some observations made with IL-5 in mice have not
yet been confirmed in humans, i.e., induction of B-cell differ-
entiation, synergism with IL-2 in production of cytotoxic T
lymphocytes (CTL) from thymocytes, and BCGF II activity
(167).

Based on the activities of IL-5 in humans one can only
speculate about possible therapeutic uses for this cytokine.
During schistosomiasis, IL-5 may be beneficial through its ac-
tivating effect on eosinophils (28). Conceivably, IL-5 antago-
nists may be of benefit in hypereosinophilic syndromes (180) or
in reducing the production of asthma-related lesions of respi-
ratory epithelium (73).

IL-6
One of the oldest names for IL-6, IFN-b2, came from ob-

servations that fibroblastoid cells could be induced to produce
a protein with weak antiviral activity. Since then IL-6 has
received a large number of designations based upon its great
variety of effects (Table 7) (190). One of the best-known bio-
logical effects of IL-6 is undoubtedly the induction and control
of acute-phase protein synthesis and release by hepatocytes in
response to noxious stimuli such as trauma, infection, and
burns (8). An additional important effect is the stimulation of
growth and differentiation of and antibody production by B
cells. Therefore, IL-6 is considered to play an important role in
host defense mechanisms. Abnormal production of IL-6, how-
ever, has been suggested to be involved in the pathogenesis of
a variety of diseases, such as rheumatoid arthritis, Castelman’s
disease, mesangial proliferative glomerulonephritis, and sev-
eral autoimmune diseases (103, 179). Furthermore, there are
several indications that IL-6 is a possible autocrine growth
factor for human myeloma cells. Although IL-6 is produced
early in inflammation (shortly after IL-1 and TNF-a) and dis-
plays several proinflammatory properties (e.g., maturation and
activation of neutrophils, maturation of macrophages, differ-
entiation and maintenance of CTL and NK cells, and increased
expression of IL-1 and TNF-a), it cannot be regarded as a
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typical proinflammatory cytokine. IL-6 possesses some anti-
inflammatory properties as well: it inhibits the synthesis of IL-1
and TNF-a in response to several stimuli, it suppresses the
production of macrophages induced by macrophage CSF (M-
CSF), it protects against lung damage during pulmonary in-
flammation, and it induces inhibitors of matrix metallopro-
teases. Even during allergic inflammation, IL-6 suppresses the
formation of IgE-producing plasma cells (88, 103). Studies
with IL-6-deficient mice revealed an impaired immune and
acute-phase response in deficient animals (109). Furthermore,
in several animal models of infection IL-6 appears to be in-
volved in protection, e.g., in infections with Helicobacter felis
(20), Listeria monocytogenes (42), Escherichia coli (43), and
Candida albicans (162). The lack of protection in these models
is linked to inefficient neutrophilia, impaired TH1 develop-
ment, or both.

IL-7

In 1988, a factor called lymphopoietin-1 was first described.
This factor was capable of supporting the growth of pre-B cells
in the absence of other cytokines or stromal cells. Later it
became clear that this cytokine, now designated IL-7, displays
stimulatory effects on many types of lymphocytes (Table 8) (17,
31, 146). Indeed, studies with IL-7 transgenic mice pointed out
that IL-7 is important for B- and T-cell development in vivo.
More specifically, IL-7 stimulates development of pro-B cells
into pre-B cells, common B/T-cell progenitors into prethymic
pre-T cells and intrathymic pre-T-cells into mature thymocytes,
CD42 CD81 thymocytes into CTL or LAK cells, and NK cells
into NK-LAK cells (3). IL-7 has also been reported to have
T-cell growth factor activity for early T-cell progenitors; in this
effect, stem cell factor synergizes with IL-7. Inhibitory regula-
tion of IL-7-induced pre-B-cell colony formation is displayed
by IL-1a and transforming growth factor b (TGF-b) (3).

No data from clinical studies with IL-7 have been published
yet, and one can expect a variety of side effects to occur, as has
been shown for IL-2. However, IL-7 holds promise as a treat-
ment for human cancers because of its effects on LAK cells and
CTL. The stimulation of lymphoid regeneration in patients
with lymphopenia as a result of B- and T-cell immunodefi-
ciency disorders or chemotherapy may be another therapeutic
application of IL-7 (108).

IL-8

In the late 1980s, several laboratories independently isolated
a novel protein with neutrophil-activating capacity, and hence
this protein was called neutrophil-activating protein-1 (NAP-1)
(Table 9). Based on its chemotactic properties (141), this pro-
tein was categorized within a newly identified group of other
chemotactic proteins, the chemokines (described below).

IL-8 is produced by macrophages (together with IL-1, IL-6,
and TNF-a) soon after infection or tissue injury. Several in-
vestigators found that neutrophils not only respond to IL-8 but
also are capable of synthesizing IL-8 and other chemokines
under the appropriate conditions. Therefore, the classic view
of neutrophils as being terminally differentiated cells with high
phagocytic and low protein-synthesizing activities had to be
adjusted. The biosynthetic activity of these cells must be con-
sidered an important source of cytokines during acute infec-
tion, since neutrophils may comprise up to 70% of the circu-
lating pool of leukocytes. In addition, localized inflammatory
responses are usually characterized by the influx of neutrophils
into the affected tissue followed by the recruitment of mono-
nuclear cells, indicating that neutrophils may play a role in
mononuclear cell elicitation. Vascular endothelial cells are in-
volved in the control of leukocyte trafficking during diapedesis,
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and it is therefore not surprising that endothelial cells can also
produce IL-8.

It is obvious that IL-8 plays an important role during infec-
tion (40, 79, 194). This can be demonstrated by the correlation
between IL-8 and survival in septic patients, disease severity in
patients with meningococcal infection, and endotoxin-induced
pleurisy. In contrast, patients with Pseudomonas pseudomallei
sepsis have a poor prognosis when IL-8 levels rise above 100
pg/ml, and in an animal model of parasitic infection (Plasmo-
dium berghei), IL-8 appears to have a deleterious effect (194).

IL-9
Whereas murine IL-9 was isolated and identified in 1988

from culture supernatants of T-cell clones that contained an
unusual autocrine growth factor, human IL-9 was obtained by
expression cloning of factors produced by a human T-cell lym-
photropic virus type 1-transformed T-cell line. This factor was
named P40/TGFIII (Table 10) and could support the long-
term growth of certain T-cell clones in the absence of IL-2,
IL-4, or antigen. Two years later, a factor obtained from
pokeweed mitogen-stimulated spleen cells was found to have a
mast cell growth-enhancing activity and appeared to be iden-
tical to IL-9. Apart from its effect on T cells and mast cells,
IL-9 has been found to enhance the production of IgG and IgE
in synergism with IL-4 (159). Of special interest is its role in the
differentiation of hippocampal progenitor cells, indicating links
between the central nervous system and the immune system
(130).

The role of IL-9 as an autocrine growth factor for T cells
implies that it has therapeutic value in T-cell lymphomas. In-
deed, blockade of IL-9 expression and IL-9-Rs has led to a
subsequent growth arrest of Reed-Sternberg cells in Hodgkin’s
lymphoma, although IL-9 is probably not involved in the
pathogenesis of most peripheral B- and T-cell lymphomas
(131).

IL-10
In 1989, Fiorenzo et al. (65) found that a factor produced by

activated T cells was able to inhibit cytokine production by TH1
T-cell clones. After cloning, it became apparent that this factor
exerted a large number of effects on different cell types (Table
11) (139), and it was subsequently named IL-10. Some years
earlier it had become clear that the reason why strong immune
responses are often biased towards either cellular or humoral
reactivity is the functional dichotomy of T-helper cells (138,
139). The development of an immune response often results in
a shift towards either a TH1 or TH2 type response. TH1 re-
sponses are predominantly cellular, whereas TH2 responses are
characterized by strong humoral reactivity. Interestingly, these
T-helper cell subsets can be distinguished by their cytokine
production profile. IL-10 is typically produced by TH2 cells and
may therefore steer a developing immune response towards
the humoral side. In line with this is the potent stimulatory
effect of IL-10 on B cells, especially with respect to antibody
production.

Effects of IL-10 on other cell types include the inhibition of
proinflammatory cytokine production by activated monocytes/
macrophages (32, 60), and IL-10 may therefore be involved in
the negative regulation or control of the inflammatory re-
sponse that is otherwise characterized by several autoamplify-
ing loops. Enhanced proliferation of mast cells and inhibition
of IFN-g production by NK cells are two other major effects of
IL-10 (44).

Because of the suppressive effects of IL-10, there are several
promising clinical applications (138, 139). Its suppressive effect
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on TH1 cells may be of use in the prevention of transplant
rejection and T-cell-mediated autoimmune diseases such as
multiple sclerosis and type I diabetes. Furthermore, its anti-
inflammatory effect could be beneficial in sepsis, rheumatoid
arthritis, and psoriasis. The observation that enhanced IL-10
production is deleterious in several intracellular parasitic in-
fections in which macrophage- or cell-mediated immunity is
involved in protection (i.e., leishmaniasis, schistosomiasis, and
trypanosomiasis) implies therapeutic value for IL-10 antago-
nism. Furthermore, antagonism of IL-10 may be expected to
have beneficial effects during the polyclonal B-cell activation
and hyperglobulinemia observed in AIDS patients because
IL-10 is a potential factor influencing dysregulation of B-cell
growth.

IL-11
In 1989 a protein with multifunctional activity was detected

in the conditioned medium of a primate bone marrow stromal
cell line, and this was followed by the cloning of the human
cDNA from a human fetal lung fibroblast cell line. This pro-
tein, initially called bone marrow-derived stromal growth fac-
tor, was shown in vitro to influence lymphohematopoietic stem
cell and megakaryocyte progenitor cell proliferation and dif-
ferentiation, erythroid progenitor cell proliferation, B-lympho-
cyte maturation, hepatocyte acute-phase protein synthesis, and
adipogenesis (Table 12) (100, 147). This protein, now named
IL-11, has a unique and slightly unusual structure but never-
theless shares some functional activities with IL-6 and even
induces IL-6 mRNA synthesis in T-helper cells and monocytes.
Directly or through IL-6 induction, IL-11 can enhance anti-
body production in primary as well as secondary antigen-spe-
cific responses and therefore can play a significant regulatory
role in Ig production (147). As described for IL-9, IL-11 is
involved in the differentiation of hippocampal progenitor cells,
thereby linking immune and neural network development
(130). The multiple activities of IL-11 in vitro prompted fur-
ther investigation in nonhuman primates. Administration of
IL-11 to normal primates, especially in combination with IL-3
and GM-CSF, results in increased platelet and neutrophil lev-
els. Interestingly, in none of these studies were side effects such
as fever observed. These preclinical studies imply that IL-11
may be a promising candidate for treatment of thrombocyto-
penia and leukopenia (i.e., as an adjunct to chemotherapy or
bone marrow transplantation) (75, 76, 147).

IL-12 and IGIF
A factor produced by a human Epstein-Barr virus-trans-

formed B lymphoblastoid cell line was found to mediate sev-
eral biological effects on human T and NK cells (Table 13).
Unlike other cytokines, this factor appears to be composed of
two different proteins (p35 and p40) encoded by separate
genes. The production of this cytokine is particularly complex
because the expression of both genes is required to produce
biologically active IL-12. Produced predominantly by macro-
phages and B lymphocytes in response to a variety of stimuli,
its main effect appears to be the regulation of T-cell and NK
cell functions (cytotoxicity) (187). In contrast to IL-4 and IL-
10, IL-12 has been implicated in polarizing the maturation of T
cells to the TH1 phenotype (186), which through production of
IL-2, lymphotoxin, and IFN-g orchestrates the cellular im-
mune response (26, 176). It is therefore not surprising that
IL-12 produced early during infection is critically involved in
protection against an array of intracellular pathogens (Leish-
mania major, Toxoplasma gondii, Schistosoma mansoni, Listeria
monocytogenes, Yersinia enterocolitica, Cryptococcus neofor-
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mans) (15, 87, 125). Most, if not all, of these protective effects
are mediated by IFN-g. The present evidence suggests that
IL-12 represents a bridge between innate resistance and adap-
tive immune responses and that the bias of the immune system
to either a TH1 or TH2 response is regulated by the balance of
IL-12 and IL-4 early during the immune response (15, 126).

Preclinical studies have shown that in vitro treatment of
depressed NK cells from HIV-seropositive patients with IL-12
results in up-regulation of cytotoxicity within a few hours. In
addition, the cytotoxicity of IL-12-treated peripheral blood
leukocytes (PBL) from HIV-infected patients was also effi-
ciently enhanced with respect to tumor-derived target cells as
well as to cytomegalovirus-infected cells, and this cytotoxicity
was at least as high as in PBL from healthy donors. In conclu-
sion, the central role of IL-12 in the biology of immune re-
sponses suggests possibilities for therapeutic use in infectious
diseases, allergic diseases, tumors, and immunodeficiencies
and as an adjuvant in vaccinations (126). IL-12 antagonism
may be beneficial in autoimmune diseases (15, 87).

A protein with effects broadly similar to those of IL-12 has
recently been isolated from Kupffer cells of the liver of mice
injected with Propionibacterium acnes followed by a challenge
with lipopolysaccharide (LPS) which leads to toxic shock. This
protein, named IL-g, or IFN-g-inducing factor (IGIF), proved
to protect these mice against liver damage. Indeed, its IL-12-
like activities appeared to be stronger than those of IL-12
itself, especially with respect to induction of IFN-g production
by TH1 and NK cells (150). Its actions are independent of
IL-12, but synergism with IL-12 has been observed. Its effects
on TH1 cells indicate a regulatory function in the development
of immune reactions. Based on structural and functional dif-
ferences from any known cytokines, it was recently proposed
that this cytokine be designated IL-18 (133).

IL-13

Discovered in 1993, human IL-13 (the homolog of murine
P-600) was first reported as a cytokine with IL-4-like activities
and the potential to regulate inflammatory and immune re-
sponses (Table 14) (137). Like IL-4 and IL-10, human IL-13 is
predominantly produced by CD41 T cells with TH2 character-
istics. Its stimulatory effect on B cells together with its effects
on monocytes led to its inclusion in the IL family of cytokines
(47). IL-13 inhibits the production of a large array of cytokines
by monocytes in response to LPS (IL-1a, IL-1b, IL-6, IL-8,
IL-10, IL-12 p35 and p40, macrophage inflammatory protein
1a [MIP-1a], GM-CSF, granulocyte CSF [G-CSF], IFN-a, and
TNF-a) and increases the production of IL-1ra; therefore,
IL-13 can be regarded as an anti-inflammatory cytokine (50).
Apart from inhibition of cytokine production, it also induces
significant changes in the phenotypes of monocytes (50, 192).
The effects of IL-13 on B cells are in part also found with IL-4
(e.g., the switch to IgG4 and IgE). The fact that IL-4 and IL-13
share a large number of biological effects without noticeable
synergism implies that these cytokines may have common re-
ceptor components (but not the IL-4-R-binding protein) (149).
However, IL-13 acts independently of IL-4, because the activ-
ities of IL-13 cannot be blocked by anti-IL-4 neutralizing an-
tibodies. Differences between IL-4 and IL-13 include the in-
ability of IL-13 to support the proliferation of mitogen-induced
blasts or T-cell clones and the lack of induction of CD8a
expression on CD41 T-cell clones.

IL-14 and LMW BCGF

Enhancement of B-cell proliferation has been ascribed to
many lymphokines, including IL-1, IL-2, IFN, and several
BCGFs or B-cell-stimulatory factors. One of the human
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BCGFs that is capable of stimulating the growth and differen-
tiation of activated B cells only (by antigen or cross-linking of
surface membrane Ig) was purified and characterized in 1985
(2). With a molecular weight of 60,000 and homology to the
murine low-molecular-weight (LMW) BCGF (12 kDa), it was
initially named high-molecular-weight (HMW) BCGF and was
later designated IL-14 (Table 15) (1). HMW-BCGF activity
was first identified in culture supernatant of mitogen-stimu-
lated acute lymphocytic leukemia T cells and Namalva (human
B-cell lymphoma) cell lines (2). Its BCGF activity was reported
to be completely independent of the presence of other BCGFs.
Apart from being secreted, HMW BCGF may also be a puta-
tive intracellular precursor for another mature BCGF (1).

Human LMW BCGF was isolated in 1987 and represents
the predominant molecular species released by normal lectin-
activated human T cells. LMW BCGF has been defined by its
comitogenic effect on activated T-cells. Studies performed by
Sharma et al. (172) indicate the possibility that the BCGF gene
either belongs to a multigene family or represents a differen-
tially spliced single gene.

IL-15

Being purified from the culture supernatant of a simian
kidney epithelial cell line, IL-15 represents a cytokine with
biological actions similar to those of IL-2 (Table 16) (72). In
fact, IL-15 activity was first determined with the assay for
murine IL-2 (IL-2-dependent T-cell line CTLL). Human IL-15
was obtained by using the simian gene sequence to probe a
cDNA library from the human stromal cell line IMTLH (77);
murine IL-15 was obtained by similar techniques. Although
human IL-2 and IL-15 share several biological effects, no sig-
nificant sequence homologies were found. In contrast to IL-2,
the most abundant sources of IL-15 appear to be nonlymphoid
cells (i.e., muscle and placenta). No expression of IL-15 can be
detected in (activated) peripheral T cells, but abundant mRNA
levels were found in monocytes (29, 47), epithelial cells, muscle
cell lines, and stromal cell lines derived from bone marrow and
thymus. The IL-15-R is composed of three subunits, and the b
and g chains are shared with the IL-2-R and are necessary for
signal transduction (6, 48, 72). The IL-15-Ra chain is unique
for IL-15, and the differences in distribution compared with
IL-2 imply that IL-15 may have unique roles in the develop-
ment and activation of some lymphocyte subpopulations as
well as additional activities outside the immune system (72,
128).

In animal models, IL-15 appears to contribute to the patho-
genesis of rheumatoid arthritis by recruitment of IL-15-respon-
sive T cells into the synovial membrane (128), whereas in
humans IL-15 may be involved in modulation of immune re-
activity during intracellular infection (e.g., leprosy) (97).

IL-16

Originally called lymphocyte chemoattractant factor (30),
IL-16 appeared to be biologically active only in its tetrameric
form, which is composed of 14- to 17-kDa chains. Although
expression of the IL-16 precursor mRNA is found in CD41 as
well as CD81 T cells, fully assembled bioactive tetrameric
protein is present only in CD81 T cells. Structurally, IL-16
bears no resemblance to other cytokines or chemokines. The
sequence and structure of the secreted form appear to be
strongly conserved across species, and the predicted amino
acid homology of murine IL-16 (mIL-16) with human IL-16
(hIL-16) is .85% (secreted peptide). Furthermore, mIL-16
has chemoattractant bioactivity for human CD41 T cells (153),
and this activity is inhibited by antibody to human recombinant
IL-16 (hrecIL-16).
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Although IL-16 is predominantly secreted by CD81 T cells
it is not clear yet whether these cells are classic cytotoxic
lymphocytes or other CD81 subsets (115). IL-16 displays a
variety of effects on CD41 T cells, monocytes, and eosinophils
(Table 17). The chemotactic effect of IL-16 leading to tissue
infiltration by CD41 T cells has been investigated in several
disease states (30). In asthmatics, IL-16 secretion by airway
epithelial cells is augmented by histamine, which suggests that
IL-16 is involved in the full development of inflammatory re-
sponses. Moreover, IL-16 appears to be the only lymphocyte
chemoattractant factor in the airways of persons with atopic
asthma. IL-16 also appears to be involved in granulomatous
inflammatory responses such as delayed-type hypersensitivity
granuloma formation, sarcoidosis, and Mycobacterium tubercu-
losis-induced granuloma formation. This effect implies a pos-
sible role for IL-16 inhibitors in suppressing diseases in which
IL-16 plays a prominent part. In addition, its ability to inhibit
HIV replication together with the priming effect of CD41 T
cells (for IL-2-induced proliferation) suggests possibilities for
IL-16 in treatment of HIV infection (153).

IL-17

A protein named CTLA8 was first cloned (rodent cDNA
sequence) and described in 1993, and its predicted amino acid
sequence showed 57% homology with that of HVS13 of Her-
pesvirus saimiri. Recombinant HVS13 and mCTLA8 exhibit
similar activities on a variety of cell types (Table 18), which was
the basis for terming them viral IL-17 and mIL-17, respec-
tively. In 1995 human IL-17 was cloned and described by Yao
et al. (204). IL-17 is produced almost exclusively by activated
CD41 T cells and is able to induce production of IL-6 and IL-8
by and expression of intercellular adhesion molecule-1
(ICAM-1) on human foreskin fibroblasts. The biologic activi-
ties of IL-17, its role in immune regulation, and its mechanism
of action remain to be determined.

TNF AND LT

More than 20 years ago it was found that an endotoxin-
induced serum factor was able to cause hemorrhagic necrosis
of tumors. Isolation and characterization of two factors capa-
ble of tumor necrosis, TNF-a and LT-a (also called TNF-b),
occurred 10 years later. It then became evident that TNF-a was
identical to the macrophage-secreted factor cachectin, a factor
first described as a lipoprotein lipase-suppressing hormone
secreted by endotoxin-induced RAW 264.7 cells. Both TNF-a
and LT-a are biologically active as homotrimers. LT-b is a
cytokine with actions similar to those of LT-a; in fact, LT-b is
bioactive as a heterotrimeric protein composed of one LT-a
and two LT-b molecules or as a complex of two LT-a and one
LT-b subunits. Whereas TNF-a and LT-a are mostly secreted,
LT-b is strictly a transmembrane protein that acts chiefly
through cell-to-cell contact. The two LT are produced mainly
by T cells, whereas TNF-a is secreted predominantly by mono-
cytes in response to inflammatory stimuli (Table 19). TNF-a
and LT-a have the same receptors, TNF-RI and TNF-RII (9,
10, 22), whereas LT-b binds to its own unique receptor, LT-
b-R, also named TNF-R-related protein (38, 145). The recep-
tors initiate signals for cell proliferation and apoptosis, and
these signals are required for the normal development and
function of the immune system. Excessive signaling can cause
severe inflammatory reactions and tissue injury and may even
lead to shock. In contrast, mutations in the receptor or ligand
genes can cause characteristic disturbances of lymphocytes,
derangement of the immune response, or autoimmune disease

(81, 83). The role of TNF-a during infection has been de-
scribed in numerous studies (185). TNF-a-dependent resis-
tance to infections has been demonstrated (e.g., Listeria mono-
cytogenes infection) but, on the other hand, TNF-a has also
been implicated in the pathogenesis of diseases such as endo-
toxic shock. Due to its high toxicity for animals as well as
humans, TNF-a did not fulfill initial expectations for thera-
peutic application in the treatment of cancer, for example.
Extensive clinical trials have been conducted to test TNF-a-
neutralizing antibodies in the treatment of septic shock, but no
substantial benefit was observed (185). In patients with rheu-
matoid arthritis, anti-TNF-a treatment has proved to lessen
pain, joint swelling, anemia, and erythrocyte sedimentation
rates. Potential problems for this antibody-based therapy are
the lack of neutralization of LT-a, the antigenicity of murine
monoclonal antibodies that prevents long-term therapy, the
formation of TNF-a–anti-TNF-a immune complexes that may
be harmful, and the requirement for high doses of anti-TNF-a
antibodies for neutralization of TNF-a (81). A different, more
promising approach for inhibition of TNF-a-mediated effects
in vivo is the development of chimeric inhibitor molecules in
which the extracellular domain of the TNF-R is spliced to an Ig
heavy-chain fragment. Such molecules are as stable as Igs and
are minimally antigenic because they are composed of two
nonantigenic elements. In addition, they block the effects not
only of TNF-a but also of LT-a, since their binding domain is
the receptor, which has the added advantage of a higher affinity
for the ligand than monoclonal antibodies.

IFN

Type I, or viral, IFN (IFN-a, or leukocyte-derived IFN, and
IFN-b or fibroblast-derived IFN) were originally described as
factors capable of inducing RNA and protein in target cells.
They are produced during viral or bacterial infection and have
significant structural and functional homologies. Type II, or
immune, IFN (IFN-g) is primarily produced by T lymphocytes
in response to antigen or mitogen and has a higher molecular
weight than type I IFN (Table 20) (7, 63).

Although initial clinical studies with IFN-a suggested ther-
apeutic activity against malignant melanoma, osteosarcoma,
and various lymphomas, subsequent trials demonstrated sig-
nificant activity only against less common tumor histiotypes
such as hairy cell leukemia, chronic myelogenous leukemia,
and a few types of lymphoma. Despite IFN-a’s activity against
some specific leukemias and lymphomas, it has limited activity
against solid tumors.

IFN-g plays a critical role in the immune response and is the
earliest detectable cytokine at the site of immunization with
protein antigens. It plays a major role in the generation and
regulation of the immune response and is one of the TH1-
specific cytokines that promote TH1 responses and inhibit TH2
responses. Enhancement of MHC class II expression on anti-
gen-presenting cells leading to more efficient antigen presen-
tion is also ascribed to IFN-g. Apart from these effects, IFN-g
priming and activation of macrophages lead to enhanced pro-
duction of proinflammatory cytokines in response to several
stimuli. Furthermore, IFN-g displays some adjuvant properties
and plays a significant role in the control of several infections
(e.g., M. tuberculosis and L. major). Apart from its value in
cancer chemotherapy (157), IFN-g has also proved effective
for treatment of a variety of other diseases, such as rheumatoid
and psoriatic arthritis (117), chronic granulomatous disease
(170), and hepatitis B. One difficulty of the use of IFN-g in
therapy is the side effects produced (117, 170).
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CSF
The major CSF comprise GM-CSF (119), M-CSF (80), G-

CSF (119), and multi-CSF. The last, better known as IL-3, is
described above.

In general, GM-CSF acts on bipotential stem cells to pro-
duce granulocytes and mononuclear phagocytes (119), G-CSF
acts on the bone marrow to induce granulocyte colony forma-
tion (41), and M-CSF induces mononuclear phagocyte colony
formation (80) (Table 21).

GM-CSF and G-CSF have proven to be of therapeutic value
in the treatment of neutropenia arising from various causes
(e.g. cancer chemotherapy, bone marrow transplantation, or
infectious diseases), and generally, the duration as well as
degree of neutropenia is reduced (120). In patients with my-
elodysplastic syndrome, recombinant GM-CSF has proven to
increase not only numbers of monocytes and eosinophils but
also numbers of killer T cells and nonactivated T-helper cells
(phase I/II clinical trial) (68). On the other hand, the thera-
peutic benefit of M-CSF seems to be more modest. It had only
slight effects on circulating-leukocyte levels when given to leu-
kopenic patients. Beneficial effects of M-CSF, such as activa-
tion of host defenses against viral, bacterial, parasitic, and
fungal infections, can be expected because of its enhancement
of monocyte function. In addition, M-CSF induced the termi-
nal differentiation of peripheral blood blast cells from some
patients with acute myeloid leukemia in vitro and may there-
fore hold promise for treatment of leukemia (140).

CHEMOKINES
Basically, chemokines can be considered proinflammatory

cytokines with chemotactic properties. They are involved in the
initiation and propagation of inflammatory responses that are
characterized by sequestration of neutrophils at the site of
infection or tissue injury (113, 135). The chemokines have been
divided into two groups of related polypeptides (supergene
families) based on structural similarities in their primary amino
acid sequences: CXC, or a, chemokines and CC, or b, chemo-
kines. The CXC and CC chemokine genes cluster on chromo-
somes 4 and 7, respectively, except the gene for CXC chemo-
kine stromal-cell-derived factor-1, which is located on
chromosome 10 (16).

Over 12 different CXC chemokines, most of which have
strong neutrophil chemotactic and activating properties, have
been described. This property appears to be based on a specific
amino acid sequence immediately preceding the first cysteine,
the so called ELR motif (Glu-Leu-Arg) (33, 164). Indeed,
chemokines lacking this motif (MIG, PF4, and IP-10 [see Ta-
ble 22]) have relatively weak neutrophil-activating capacities.
Table 22 lists the CXC and CC chemokines, and Tables 23 and
24 describe the properties of some representatives of CXC and
CC chemokines, respectively. The members of the CC super-
gene family (Table 24) have relative specificity for the elicita-
tion of mononuclear cells (macrophages and T cells), and some
members appear to be potent chemotactic factors for eosino-
phils and basophils.

Lymphotactin is a structurally unique chemokine that bears
only minor similarities to some CC chemokines. In contrast to
the other chemokines it is mainly produced by T lymphocytes
and is a strong chemotactic factor for T cells (Table 25). Due
to its effects and structure it may represent a third supergene
family of chemokines (C chemokines) (101).

MISCELLANEOUS CYTOKINES

Cytokines involved in the development and regulation of
immune responses that cannot easily be categorized in other
groups are summarized in Table 26.

CYTOKINE RECEPTORS

Characteristic features of cytokines are their functional
pleiotropy and redundancy. This can in part be explained by
the molecular biology of the cytokine receptor systems (45, 62,
85, 122). Most cytokine receptors consist of two or more mem-
brane proteins, and generally only one of these subunits dis-
plays specific binding properties (private ligand-specific recep-
tor). The others have no ability to bind the ligand but are
associated with signal generation and transduction (public
class-specific signal transducer). Binding of the ligand to the
ligand-specific subunit leads to oligomerization of the subunits,
which juxtaposes their cytoplasmic domains and allows the
receptor to engage the intracellular signaling machinery. Sev-
eral cytokine receptor systems use a common signal trans-
ducer; e.g., gp130 is used by IL-6, leukemia-inhibitory factor
(LIF), oncostatin M (OSM), and IL-11. Therefore, different
cytokines can mediate similar functions on various tissues, or a
tissue-specific effect can be realized by different cytokines.
With few exceptions (e.g., IL-8-R, M-CSF-R, and TGF-b-R),
cytokine receptors do not contain classical signaling domains
and hence do not use signaling pathways such as cyclic AMP
(cAMP)-protein kinase A, inositol lipid hydrolysis with Ca21

mobilization followed by protein kinase C activation, cGMP-
protein kinase G, or receptor tyrosine kinase activation. In-
stead, dimerization of the cytokine receptor components re-
sults in the activation of receptor-associated cytoplasmic
protein tyrosine kinases, the so-called JAKs (Janus family of
tyrosine kinases [95]), that in turn activate members of the
STAT family (signal transducers and activators of transcrip-
tion) or induce the Ras–mitogen-activated protein kinase cas-
cade (95). Several review articles on cytokine receptors (5, 10,
45, 62, 105, 111, 118, 122, 136, 143, 200, 201) and cytokine
signal transduction (21, 89, 95, 98, 106, 107, 142, 145, 151, 155,
169, 171) have been published recently.

Based on structural similarities, cytokine receptors can be
divided into several superfamilies: the Ig receptor superfamily
(e.g., IL-1-R), the hematopoietin receptor superfamily (e.g.,
IL-2-R, -4-R, -5-R, -6-R, and -9-R, GM-CSF-R, LIF-R, and
OSM-R), the TNF receptor superfamily (e.g., TNF-R, LT-
a-R, and LT-b-R), the G-protein-coupled receptor superfam-
ily (e.g., IL-8-R and many other chemokine receptors), the

TABLE 25. C chemokinea

a Abbreviation: aa, amino acid.
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TGF-b-R superfamily (e.g., TGFb-R), and the IFN receptor
superfamily (IFN-a-R, IFN-b-R, and IFN-g-R).

Not only are the biological actions of cytokines regulated by
cytokine or receptor expression, but also the presence of sol-
uble receptors (23, 85, 198) can influence the effects of a
specific cytokine; e.g., sIL-6-Ra (the extracellular portion of
IL-6-Ra) enhances IL-6 activity by transporting IL-6 to the
IL-6-Rb (198). Furthermore, not all receptors are capable of
signal transduction; e.g., IL-1-RII is devoid of signaling and
may act as a decoy receptor, thereby attenuating the effects of
IL-1b (55). In addition, naturally occurring autoantibodies to
cytokines may affect cytokine actions (12, 82).

Remarkable discoveries that linked cytokine receptors to
HIV infection were made in 1996 and have been extensively
reviewed by Fauci (64). Apart from the induction or suppres-
sion of HIV expression by numerous individual cytokines, it
appears that several receptors for CC and CXC chemokines
can act as coreceptors for HIV; i.e., T-tropic (T-cell-tropic)
HIV strains use CXC-CKR4 (also known as LESTR or fusin),
M-tropic (monocyte- or macrophage-tropic) HIV-1 strains use
CC-CKR5, and M-tropic and dually tropic HIV-1 strains use
CC-CKR2b and CC-CKR3 as coreceptors (57, 64). As a con-
sequence, the chemokines RANTES (regulated on activation,
normal T expressed, and secreted), MIP-1a, and MIP-1b sup-
press M-tropic viral replication while stromal-cell-derived fac-
tor-1 suppresses T-tropic viral replication (16). Furthermore,
people with a defect in the gene encoding CC-CKR5, leading
to a truncated version of the receptor that is not expressed on
the cell surface, have been shown to be partially protected
against certain strains of HIV.

CONCLUSIONS
Over the last 2 decades our understanding of the biology and

biological significance of cytokines has dramatically increased
and some cytokines have been introduced into clinical practice
(e.g., IFN-g and G-CSF). Apart from cytokines, one may ex-
pect that treatment with cytokine inhibitors, anticytokine an-
tibodies, receptor antagonists, or substances that inhibit cyto-
kine signaling (171) may be of therapeutic value. Treatment
with such biological response modifiers generally means mod-
ulating an array or cascade of events. Therefore, in-depth in-
vestigation of possible effects and accurate determination of
the optimal immunomodulatory doses of these modifiers are
absolutely necessary. However, many questions on cytokine
biology remain unanswered. Until the mechanisms responsible
for the control of cytokine biological activities are further elu-
cidated, clinical trials should be designed carefully and the
results obtained should be interpreted and evaluated with cau-
tion. Basic and animal research on cytokines must be contin-
ued in addition to investigations of therapeutic applications in
clinical trials.
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