Identification of the *Chlamydia trachomatis* RecA-Encoding Gene

D.-J. ZHANG, † H. FAN, G. MCCLARTY, AND R. C. BRUNHAM*

Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada

Received 6 September 1994/Returned for modification 13 October 1994/Accepted 7 November 1994

DNA sequencing of the major outer membrane protein (MOMP) gene (*omp1*) from *Chlamydia trachomatis* shows that some strains have a mosaic structure suggestive of homologous recombination between two distinct *omp1* genes. On the basis of this conjecture, we attempted to clone by complementation and sequence the chlamydial *recA* homolog from *C. trachomatis* serovar L_2 . Chlamydial genomic DNA was partially restricted with *XbaI*, and fragments of 2 to 4 kb were ligated into pUC19. The recombinant plasmid was electroporated into *Escherichia coli* HB101 (RecA⁻), and colonies were selected in the presence of methyl methanesulfonate (MMS). A 2.1-kb fragment of *C. trachomatis* DNA in pUC19 conferred relative MMS resistance to *E. coli* HB101. When this recombinant plasmid (pX203) was electroporated into *E. coli* JC14604 (RecA⁻ *lacZ*), *lac*⁺ recombinants were isolated. Rabbit polyclonal antibodies produced to purified *E. coli* transformed with pX203. The 2.1-kb insert was cycle sequenced by the dideoxy chain termination method. An open reading frame of 1,056 bp encoding 352 amino acids that had 44% sequence identity with *E. coli* RecA was identified. The finding of a *recA* homolog in *C. trachomatis* suggests that homologous recombination may occur in this organism. The cloned *C. trachomatis* RecA-encoding gene will be useful for the construction of a *recA* mutant once a gene transfer system is developed for chlamydiae.

Chlamydia trachomatis is a dimorphic bacterial pathogen of mammalian cells (13). The organism replicates within an endocytic vacuole which does not fuse with host cell lysosomes. *C. trachomatis* has no known means of genetic exchange, although phage has been identified in some *Chlamydia psittaci* isolates (17). Chlamydiae are presumed to be genetically isolated from other organisms and thus to be relatively stable and slow to evolve.

One C. trachomatis gene, omp1, which specifies the major outer membrane protein (MOMP), is highly diverse, and MOMP polymorphism determines the serologic classification for the standard 15 C. trachomatis serovars (1, 16). Recent genotypic analysis of clinical isolates has demonstrated that omp1 is much more diverse at the DNA level than was expected from serologic typing (4, 5, 7, 18). The nature of DNA sequence diversity at the omp1 locus suggests that point mutation and possibly recombination generate variation (10). On the basis of DNA sequencing of an entire omp1 gene, Lampe et al. (10) suggested that a novel serologic variant of serovar I (termed Ia) may have resulted from recombination between serovar I and serovar H. Subsequently, an unexpectedly high prevalence (19 [32%] of 60 samples) of putative omp1 recombinants was identified among C. trachomatis strains studied in a core group of urban prostitutes in Nairobi, Kenya (4). The DNA sequencing of the omp1 gene from these infections implied a mosaic structure for MOMP, with variable domains 1 and 2 originating from one serovar and variable domain 4 from a different serovar.

These data suggest that C. trachomatis may undergo in-

tergenomic homologous recombination at the *omp1* locus. To determine if *C. trachomatis* has the capacity to undergo homologous recombination, we attempted to exploit heterospecific complementation of RecA⁻ mutants of *Escherichia coli* with chlamydial DNA in order to identify the *C. trachomatis recA* homolog.

Molecular cloning and DNA sequencing. Bacterial strains and plasmids are listed in Table 1. *E. coli* strains were routinely grown in Luria-Bertani (LB) medium. MacConkey's lactose agar was used to detect Lac⁺ papillae for recombinant *E. coli*. *C. trachomatis* L₂/434/Bu was grown in HeLa cell monolayers in Eagle's minimal essential medium containing 10% fetal calf serum.

A genome DNA library from C. trachomatis serovar L_2 was constructed in pUC19 following partial digestion with XbaI with DNA fragments in the size range from 2 to 4 kb. Recombinant plasmid was electroporated into competent E. coli HB101 by using a 0.1-cm-gap cuvette at 25 µF, 1.8 to 2.0 kV, and 200 Ω . Since RecA-dependent DNA repair is required for growth in the presence of the DNA-alkylating agent methyl methanesulfonate (MMS), clones that suppressed the RecA⁻ phenotype of HB101 were identified by growth in LB medium containing 2 mM MMS (6). Cultures were incubated overnight at 37°C, and colonies which appeared to be MMS resistant were picked and rescreened in 2 ml of LB broth containing between 2 and 8 mM MMS. Whereas the HB101 host strain was inhibited by 1 mM or more MMS, an isolated E. coli clone carrying the recombinant plasmid designated pX203 grew in the presence of 4 mM MMS (data not shown). This recombinant plasmid was used for further study.

To test for recombinational proficiency, pX203 was electroporated into *E. coli* JC14604. This *recA* mutant of *E. coli* harbors a duplication of the *lacZ* region, each copy containing a different *lacZ* gene missense mutation which, in the presence of a functional *recA*, can give rise to Lac⁺ recombinants via a recombinational event (8). Lac⁺ phenotypes were scored on MacConkey plates after 48 h of culture. More than 10% of

^{*} Corresponding author. Mailing address: Department of Medical Microbiology, University of Manitoba, Room 543, 730 William Avenue, Winnipeg, Manitoba R3E 0W3, Canada. Phone: (204) 789-3524. Fax: (204) 783-5255. Electronic mail address: brunham@bldghsc.lan1. umanitoba.ca.

[†] Permanent address: Norman Bethune University of Medical Sciences, Changchun, People's Republic of China.

CTAGATAAAAAAAGAGTGTAGTTTTTTTGAAATTCTAGCACTTGACTGTTGTCTTTGAAATATTGCAA ACTGACGCCACGAAATATAAGAGGTCGCAGATGGCAACCTCTTAAAGTAGAGTCTTCTAGACAGCGCA											. 68 . 136						
		_		Μ	S	v	P	D	R	к	R	Α	L	Е	A	A	13
ACA	AGGGI	AGTA	TAC	ATG	AGC	GTT	CCC	GAC	CGA	AAA	AGG	GCT	TTG	GAA	GCG	GCC	189
Ι	Α	Y	I	Е	К	Q	F	G	A	G	S	I	Μ	s	\mathbf{L}	G	30
ATT	GCT	TAT	ATC	GAA	AAG	CAA	TTT	GGC	GCA	GGA	TCT	ATC	ATG	AGT	TTA	GGA	240
ĸ	н	S	S	Α	н	я	т	S	т	т	к	т	G	Α	т.	S	47
AAG	CAT	TCT	TCA	GCT	CAT	GAG	АТА	TCA	ACT	ATT	AAA	ACA	GGT	GCA	TTG	TCG	291
L	D	L	A	L	G	I	G	G	v	P	ĸ	G	R	I	v	E	64
TTG	GAT	TTA	GCC	TTA	GGA	ATA	GGC	GGG	GTT	CCT	AAA	GGA	AGA	ATT	GTA	GAG	342
I	F	G	P	Е	S	S	G	K	T	Т	L	A	т	H	I	v	81
ATT	TTC	GGG	CCA	GAG	TCT	TCA	GGG	AAA	ACA	ACT	CTA	GCG	ACG	CAT	ATA	GTG	393
Α	N	Α	Q	к	м	G	G	v	Α	Α	Y	I	D	Α	Е	н	98
GCC	AAT	GCT	CÃA	AAG	ATG	GGA	GGG	GTG	GCG	GCT	TAT	ATT	GAT	GCC	GAG	CAT	444
Α	L	D	Р	N	Y	Α	Α	\mathbf{L}	I	G	Α	N	I	N	D	L	115
GCC	TTA	GAC	CCG	AAT	TAT	GCT	GCG	CTT	ATT	GGA	GCA	AAT	ATT	AAT	GAT	TTA	495
М	I	S	Q	Р	D	С	G	Е	D	Α	\mathbf{L}	S	I	Α	Е	L	132
ATG	ATT	TCT	CAG	CCT	GAC	TGC	GGA	GAA	GAT	GCT	$\mathbf{T}\mathbf{T}\mathbf{G}$	AGT	ATT	GCA	GAG	CTC	546
L	Α	Α	S	G	Α	v	D	V	I	v	I	D	S	V	Α	А	149
TTA	GCG	CGT	TCT	GGA	GCT	GTC	GAT	GTG	ATT	GTG	ATT	GAC	TCG	GTA	GCA	GCA	597
L	v	Ρ	к	S	Е	L	Е	G	Е	I	G	D	v	Н	v	G	166
TTA	GTT	CCA	AAG	AGC	GAG	TTA	GAA	GGG	GAA	TTA	GGA	GAT	GTC	CAT	GTT	GGT	648
L	Q	Α	R	М	М	S	Q	А	L	R	ĸ	L	т	А	т	L	183
TTG	CAA	GCT	CGC	ATG	ATG	TCG	CAG	GCT	CTA	CGC	AAA	TTA	ACT	GCA	ACC	TTA	699
A	R	т	N	т	С	А	I	F	I	N	Q	I	R	Е	ĸ	I	200
GCA	CGA	ACC	AAT	ACT	TGT	GCC	ATT	TTC	ATT	AAC	CAG	ATT	CGG	GAG	AAA	ATA	750
G	v	S	F	G	N	Р	Е	Т	Т	т	G	G	R	A	L	K	217
GGT	GTG	AGT	TTT	GGT	AAT	CCA	GAG	ACT	ACG	ACT	GGA	GGA	CGT	GCA	CTG	AAG	801
F	Y	S	S	I	R	I	D	I	R	R	I	G	S	I	K	G	234
TTT	TAT	TCT	TCG	ATT	CGT	ATC	GAT	ATT	CGT	CGT	ATT	GGC	TCC	ATA	AAG	GGA	852
G	E	N	E.	0	1	G	N	R	1	K		K		A	K	N	251
GGA	GAA	AAC	TTC	GAT	ATA	GGG	AAT	CGT	ATC	AAG	GIG	AAA	GTA	GCA	AAA	AAT	903
K N N N	_ Г.	A	COT P	P	F	R	T	A	E	r mmm		1	ь	L, L	N	E	208
AAA	TTA	GCT	CCT		TTC	CGA	ACT	GCA	GAA	111	GAT	ATC	TTG	TTT V	MAT	GAA	904 205
ccc	ነ አጥጥ	о тст	5	CCN	CCC		лтс	ቷ እጥጥ	С Л Т	070	CCTT	OTC.	слл	ת תתת	או תענ	ች እጥጥ	1005
T	NI I	ICI V	ICC V	GCA	GGG	TGT W	F	M	V		GCT	DIC	U U U	T	-C	<u>.</u>	303
አጥሮ	CAT	770	מממ	CCA	707	TCC	г ттс	חממ		C Å C	CAT	TDD TDD	220	ር በ	CGC		1056
C	D	F	2	V	100	200 7	LIC LIC	T.	K	P	N	K	F	T.	500 F	слл и	319
CCT	CCA	CNC.	ana	CTT	CCA	622	CAC	CTC	מממ	200	ייעמ	220	CAC	ካሞር	TTC.	CAC	1107
E.	T.	F	500	D D	T	v	5AG F	C10	V	0	741	c c	040	710	11C	AC	336
242	TTG	GAN	CGC	CGT	» ጥጥ	т <u>а</u> т	GAG	TCT	GTA	CÃG	GCT	TCA	CÃA	GCT	CCA	a2a	1158
A	A	C	v	D	s	E	S	R	E	v	A	E	A	A	ĸ	-	352
GCA	GCT	TGC	GTG	GAT	TCA	GAG	TCT	CGC	GAG	GTA	GCA	GAG	GCT	GCG	AAA	TAG	1209
AGGO	GTGT/	ATTC	CCTA	TCGA'	TTCT	AATC	AAGG	AAAA	GAAG	TTTT	TCTT	CTTT	TCCT	TGGT	AGTT	TCT	1275
TTT	CTCC	CCCG	TCTT	TGTT	GTGG	TTCT	CTAC	ATAG	GTTT	GGTA	ATTC	CCGG	AAGC	TGTA	GAGC	CAA	1341
TTTC	CATA	ATTT	TTCT	TTGA	AAGG	CTAA	AATT	TTTT	GGTG	ТААА	CTCC	ACGG	ATCT	TTGG	TGTG	CGA	1407
CTTC	CTTT	ATAG	TGTT	GAGG'	TTAG	ATAA	AAGA	GACT	тсаа	AGAG	TAAG	GCAC	CTAG	AGAT	CAAG	CAT	1473
TTT	AACGI	AGCG	AGAA	GGCT	TTGT	GGTT	CGCG	TTTT	CTTG	TTAG	TGGT	TTTT	CTCC	TTTC	TTGT	TTC	1539
TCTO	GCAGO	GCGG	AAGA	TCAT	ATGT	ATTT	TTTT	CTTC	GAGA	GACG	ATTC	TCCA	TCGC	ATTA	TGAT	CAT	1605
ACAG	CATCO	SAAC	TGTT	GCAA	GATT	AAGA	GAGG	GAAG	TACC	TTGT	CAGA	AGGT	CTTT	CCAT	GGAA	CAA	1671
• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •	2140

FIG. 1. DNA sequence of the *C. trachomatis recA* gene from plasmid pX203. The predicted amino acid residues are shown in the single-letter code. The open reading frame starting at bp 150 and ending at bp 1209 contains 1,059 bp and codes for 352 amino acids. The numbers on the right are nucleotide numbers (top) and predicted amino acid residues (bottom). The solid line 5' to the open reading frame indicates a potential ribosome-binding site, and the solid line 3' to the open reading frame indicates the sequence of a stable secondary stem and loop structure which is compatible with a rho-independent terminator. The ATGs at codon 1 and codon 27 are in boldface type and may represent alternative start sites in *E. coli*.

more than 1,000 colonies contained Lac^+ papillae. The frequency of *lac* recombination was almost the same as that obtained with plasmid pJB4, which contains the *Francisella novicida recA* gene (2). No Lac⁺ papillae appeared when *E. coli* JC14604 was electroporated with pUC19 alone. Thus, pX203 restored recombinational proficiency in *E. coli* JC14604.

Because pX203 exhibited two traits characteristic of RecA, the 2.1-kb *C. trachomatis* DNA insert was sequenced in its entirety using forward and reverse primers in both directions. DNA sequencing was carried out with double-stranded cycle sequencing based on the dideoxy chain termination method as previously described (18). The insert contained 2,140 bp and one major open reading frame of 1,056 bp, encoding a 352amino-acid protein (Fig. 1). The 2.1-kbp sequence is available in GenBank under accession number U15281. No classic *E. coli* σ^{70} -10 and -35 promoter sequences were identified upstream of the putative ATG initiation codon. A possible ribosome-binding site (GGGAG) was identified 5 bp upstream from the presumed initiation codon. The open reading frame terminates with a TAG stop codon followed by a potential

C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	MSVPDRKRALEAAIAYIEKQFGAGSIMSLGKHSSAHEIST NI.KEIAL.QSY.KVMKQRPNV-D.EA .EENKQK.SVSQ.RK.V.RM.DSTVSRD.EA .DKSK.A.L.QS.KA.KMDGSQQEENLEV .QNSLRLVEDNSV.KTKD.LSQIERA.KR.QNDQVV.E. .AIDEN.QKAL.ALGQIEKQFGKGSIMRLGEDRSMDVE.	40 39 39 39 50 40
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	* * IKTGALSLDLALGIGGVPKGRIVEIFGPESSGKTTLATHIVANAQKMGGV .SS.GII	90 89 89 100 90
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	AAYIDAEHALDPNYAALIGANINDLMISQPDCGEDALSIAELLARSGAVD C.FA.KKL.V.DE.IT.Q.E.DT.IGI FS.QKL.VKVDE.LV.T.Q.E.TDM.V.A. C.FVF.V.RKL.VKVEE.YLT.Q.E.CDT.VGI C.FVV.RKL.VHLFN.LIT.Q.E.TDT.VI C.FI.RKL.VD.DN.LCT.Q.E.CDA	140 139 139 139 150 140
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	* * VIVIDSVAALVPKSELEGEIGDVHVGLGARMMSQALRKLTATLARTNTCA M.ISINCIT .VIT.A.IM.SLNIK.S.LV MV.VADLGHIKKLV .L.VT.RAM.SLVGSIS.S.CMV VT.A.IS.M.AM.AGN.KQS.LL	190 189 189 189 199 190
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	* IFINQIREKIGVSFGNPETTTGGRALKFYSSIRIDIRRIGSIKGGENFDI VMM.SNA.VDK.EVM.S.N.N.V.T.K.EI-L VM.S.N.N.V.C.T.K.EV-LM.M.S.N.N.A.V.LERDEV-VM.M.N.N.A.V.LAV.EVVG	240 238 238 238 248 248 240
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	GNRIKVKVAKNKLAPPFRTAEFDILFNEGISSAGCIIDLAVEKNIIDKKG .SQTVVSK.DMYGSKE.EG.KLE.E.S. .SETRVVKMTYRESE.N.G.QLE.S. .ETRIVQYGWE.EL.IG.KNDI.N.S. .QTRV.KQVMYGA.V.KV.ELV.G.KAGVVE.S. SETRVKV.KNKIAFKQAEFQILYGEGINFYGELVDLGVKL.EKAGA	290 288 288 288 298 298 290
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	* SW-FNYQDRKLGQGREAVREELKRNKELFHELERRIYESVQASQAPAAAC S.NKIRIN.KQYEHPQISN.I.KI.REKSSAITNINLDQ AYSYKQE.IK.N.LY.E.PQVAAQQ.RTEL-LEKKLSVLA AS.NGA.IKDNVWE.P.ISD.IDAKIRA-L-NGVEMHITE AS.NSQRNAKQYD.P.VAR.I.TTLRQNAGLIAEQFLDD WYSYKGEKIGQ.KANATAWLKDNPETAKEI.KKV.ELLLSNPNST.DFSV	339 337 336 335 347 340
C.trachomatis R.prowazekii L.pneumophila N.gonorrhoeae B.abortus E.coli	VDSESREVAEAAK 352 Identity (%) TEE 340 59 SSDL-FETIDD 348 58 GTQDETDGERPEE 348 56 GGP.EDAAGA.EM 360 44 DGVAETNEDF 353 44	

FIG. 2. Amino acid alignments of C. trachomatis RecA protein and five other bacterial RecA proteins. Dots represent identity with the C. trachomatis RecA sequence. Stars represent amino acids known to be essential for homologous recombination.

"hairpin" structure (beginning 30 bp after the stop codon), compatible with a rho-independent terminator whose predicted free energy value is -19.2 kcal. The G+C content of the open reading frame is 44.7%.

When the deduced amino acid sequence was compared with the sequences of known selected RecA proteins, a high degree of identity was observed (Fig. 2). In comparison with the chlamydial RecA, *E. coli* and *Brucella abortus* RecA exhibited 44% sequence identity, *Neisseria gonorrhoeae* RecA showed 56% identity, *Legionella pneumophila* RecA showed 58% identity, and *Rickettsia prowazekii* RecA showed 59% identity. Mutational analysis of *E. coli* RecA has shown that six amino acids

FIG. 3. Southern blot analysis of the *recA* gene in genomic DNA of *C. trachomatis* serovar L₂ (B and C) and *C. trachomatis* serovar C (D and E). Two micrograms of genomic DNA was digested to completion with either *Hind*III (C and D) or *PstI* (B and E), electrophoresed through a 0.75% agarose gel, and then transferred to a nylon membrane. Blots were hybridized with a ³²P-labelled probe of the entire *recA* open reading frame. Hybridization in 6× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate)–0.5% sodium dodecyl sulfate (SDS) was carried out overnight at 65°C, and then the filter was subjected to high-stringency washing (last washing step was 0.1× SSC–0.1% SDS at 65°C). Lane A, molecular weight markers.

(recA1 Gly-161 \rightarrow Asp, recA13 Leu-52 \rightarrow Phe, recA56 Arg-61 \rightarrow Cys, recA1203 Arg-170 \rightarrow Cys, recA1601 Gly-302 \rightarrow Ser, recA1207 Gly-302 \rightarrow Asp, and recA142 Ile-226 \rightarrow Val) are essential to the function of homologous recombination (12). All six positions are conserved in the *C. trachomatis* RecA sequence (marked with a star in Fig. 2).

A nick-translated, α -³²P-labelled probe of the entire RecA open reading frame was used for Southern hybridization to *Hind*III- or *Pst*I-restricted genomic DNA from *C. trachomatis* serovars L₂ and C. The chlamydial *recA* sequence contains one internal *Pst*I site and no internal *Hind*III sites. A single *Hind*III band and two *Pst*I bands of similar size for each serovar were

FIG. 4. Immunologic cross-reactivity of the *C. trachomatis* RecA protein expressed in *E. coli* with rabbit polyclonal RecA antiserum. The extracts from different strains of *E. coli* were electrophoresed in a 12% polyacrylamide gel and transferred to a nitrocellulose membrane for immunoblotting. Lane 1, purified *E. coli* K-12 RecA protein; lane 2, *E. coli* HB101 with pX203; lane 3, HB101 alone; lane 4, HB101 with pUC19; lane 5, HB101 with pJB4; lane 6, *E. coli* JC14604 with pX203; lane 7, JC14604 with pJB4; lane 8, JC14604 alone; lane 9, *E. coli* BL21 (RecA⁺). An antigen of >45 kDa is observed in all *E. coli* antigen. *E. coli* HB101 has a *recA* point mutation (*recA13*) and expresses an immunoreactive protein product of 37 kDa (lanes 2, 3, and 4), whereas *E. coli* JC14604 has a deleted *recA* gene and expresses no immunoreactive RecA protein (lanes 6 and 8).

observed on Southern hybridization, suggesting that *C. trachomatis recA* is a single-copy gene present in a similar genomic context for both serovars L_2 and C (Fig. 3).

Expression. It has been shown that the sequence requirements for chlamydial promoters differ from those for E. coli promoters (11, 15). In pX203, the recA open reading frame lies 423 bp downstream of the vector β -galactosidase promoter. To determine if the vector promoter played a role in expression of the chlamydial RecA homolog, the 2.1-kb insert was excised from pX203 with XbaI and recloned into pUC19. PCR amplification was used to determine the orientation by employing an internal primer to the recA open reading frame (primer 14, 5'-TTG GCT CTA CAG CTT CCG-3') and either the universal pUC19 primer (5'-GCA ACA AGG GAG TAT ACA TG-3') or the reverse primer (5'-AGC GGA TAA CAA TTT CAC ACA GGA-3'). Four clones with forward orientation and four with reverse orientation were identified and tested for growth in the presence of 2 mM MMS. All were capable of growth in 2 mM MMS. Thus, the orientation of the insert in pUC19 does not determine the expression of MMS resistance.

Rabbit antiserum to commercially available purified RecA from *E. coli* (Pharmacia Ltd., Baie d'Urfe, Quebec, Canada) was prepared by four weekly subcutaneous injections of 200 μ g of RecA protein in Freund's incomplete adjuvant. A 1:500 dilution of antiserum was used for immunoblotting with crude soluble extracts of *E. coli* HB101 and JC14604 with and without pUC19, pX203, and pJB4. A wild-type *E. coli* strain (BL21), which contains an intact *recA* gene, was used as an additional positive control (Fig. 4). The antiserum reacted with purified RecA at the approximate molecular mass of 37 kDa (lane 1) and with an antigen of the same molecular mass in wild-type *E. coli* BL21 (lane 9). *E. coli* HB101 and JC14604

TABLE 1. Bacterial strains and plasmids

	•					
Strain or plasmid	Relevant characteristics					
C. trachomatis L ₂ /Bu/434	trachomatis L ₂ /Bu/434					
E. coli						
HB101	F^{-} hsdS20 (r_{-B}^{-} , m_{-B}^{-}) supE44 ara-14 galK-2 lacY1 proA2 rpsL20 (Str ^r) xyl-5 mtl-12 recA13	3				
JC14604	F^{-} lac MS28608II lacBK1 Δ (srl-recA) hsr supE44	8				
Plasmids						
pUC19	Ap ^r					
pX203	Ap^{r} , 2.1-kb XbaI C. trachomatis serovar L ₂ DNA in pUC19	This study				
pJB4	Km ^r , recA region of F. novicida in pBGS19	2				

containing pJB4, which specifies the *F. novicida* RecA, also had an antigen of the same molecular mass (lanes 5 and 7, respectively). *E. coli* HB101 and JC14604 containing pX203 (lanes 2 and 6) expressed an immunoreactive protein of approximately 34 kDa. This is presumably the *C. trachomatis* RecA. DNA sequencing shows that the *E. coli* and *C. trachomatis* RecA proteins differ in size by only a single amino acid. The discrepancy in size seen on the immunoblot is unexplained but may represent translational start at the second ATG (methionine) codon (codon 27). Translation from codon 27 yields a predicted protein product of approximately 34 kDa.

In aggregate, these results demonstrate that the recA gene from C. trachomatis servor L_2 has been isolated by heterospecific complementation in E. coli. To date, C. trachomatis genes have been identified through antibody-reactive expression clones (usually as fusion proteins), by degenerate PCR amplification of conserved genes, or with mRNA probes. Palmer and Falkow (14) previously attempted heterospecific complementation in E. coli for chlamydial genes involved in proline, leucine, and threonine biosynthesis as well as RecA activity, but were unsuccessful. They attributed failure to absent or poor expression of chlamydial genes in E. coli. In general, this has been the experience of subsequent investigators. Our success in cloning the chlamydial recA gene by complementation is likely due to the presence of a 5' upstream DNA sequence that contains an authentic or fortuitous promoter-like sequence capable of recognition by the E. coli RNA polymerase.

We were prompted to search for the *C. trachomatis recA* gene because DNA sequencing of selected regions of the *C. trachomatis omp1* gene from clinical samples suggested that homologous recombination might generate mosaic MOMP molecules. The identification of the *recA* gene in *C. trachomatis* supports the notion that this organism can undergo homologous recombination and may contribute to the pathogen's virulence by generating novel antigenic variants of the MOMP. The cloning of the *C. trachomatis recA* gene will be useful in the construction of a *recA* mutant which will be beneficial in genetic manipulations once a gene transfer system for chlamydiae is established.

This work was supported by a grant from the Medical Research Council of Canada (SP 27).

REFERENCES

 Baehr, W., Y. Zhang, T. Joseph, S. Hua, F. E. Nano, K. D. E. Everett, and H. D. Caldwell. 1988. Mapping antigenic domains expressed by *Chlamydia trachomatis* major outer membrane protein genes. Proc. Natl. Acad. Sci. USA 85:4000–4004.

- Berg, J. M., K. E. Mdluli, and F. E. Nano. 1992. Molecular cloning of the recA gene and construction of a recA strain of Francisella novicida. Infect. Immun. 60:690–693.
- Boyer, H. W., and D. Roulland-Dussoix. 1969. A complementation analysis of the restriction and modification of DNA in *Escherichia coli*. J. Mol. Biol. 41:459–472.
- Brunham, R., C. Yang, I. Maclean, J. Kimani, G. Maitha, and F. Plummer. 1994. *Chlamydia trachomatis* from individuals in a sexually transmitted disease core group exhibit frequent sequence variation in the major outer membrane protein (omp1) gene. J. Clin. Invest. 94:458–463.
- Dean, D., J. Schachter, C. R. Dawson, and R. S. Stephens. 1992. Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: a molecular epidemiologic approach to *Chlamydia trachomatis* infections. J. Infect. Dis. 166:383–392.
- Goldberg, I., and J. J. Mekalanos. 1986. Cloning of the Vibrio cholerae recA gene and construction of a Vibrio cholerae recA mutant. J. Bacteriol. 165: 715–722.
- Hayes, L. J., R. L. Bailey, D. C. W. Mabey, I. N. Clarke, M. A. Pickett, P. J. Watt, and M. E. Ward. 1992. Genotyping of *Chlamydia trachomatis* from a trachoma-endemic village in The Gambia by a nested polymerase chain reaction: identification of strain variants. J. Infect. Dis. 166:1173–1177.
- Keener, S. L., K. P. McNamee, and K. McEntee. 1984. Cloning and characterization of *recA* genes from *Proteus vulgaris*, *Erwinia carotovora*, *Shigella flexneri*, and *Escherichia coli* B/r. J. Bacteriol. 160:153–160.
- Kuo, C.-C., S.-P. Wang, and J. T. Grayston. 1973. Effect of polycations, polyanions, and neuraminidase on the infectivity of trachoma-inclusion conjunctivitis and lymphogranuloma venereum organisms in HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunctivitis. Infect. Immun. 8:74–79.
- Lampe, M. F., R. J. Suchland, and W. E. Stamm. 1993. Nucleotide sequence of the variable domains within the major outer membrane protein gene from serovariants of *Chlamydia trachomatis*. Infect. Immun. 61:213–219.
- Mathews, S. A., and K. S. Sriprakash. 1994. The RNA polymerase of *Chlamydia trachomatis* has a flexible sequence requirement at the -10 and -35 boxes of its promoters. J. Bacteriol. 176:3785–3789.
- Miller, R. V., and T. A. Kokjohn. 1990. General microbiology of *recA*: environmental and evolutionary significance. Annu. Rev. Microbiol. 44:365– 394.
- Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55:143–190.
- Palmer, L., and S. Falkow. 1986. Characterization of cloned genes from *Chlamydia trachomatis*, p. 91–95. *In* L. Leive (ed.), Microbiology—1986. American Society for Microbiology, Washington, D.C.
- Sardinia, L. M., J. N. Engel, and D. Ganem. 1989. Chlamydial gene encoding a 70-kilodalton antigen in *Escherichia coli*: analysis of expression signals and identification of the gene product. J. Bacteriol. 171:335–341.
- Stephens, R. S., R. Sanchez-Pescador, E. A. Wagar, C. Inouye, and M. Urdea. 1987. Diversity of *Chlamydia trachomatis* major outer membrane protein genes. J. Bacteriol. 169:3879–3885.
- Storey, C. C., M. Lusher, S. J. Richmond, and J. Bacon. 1989. Further characterization of a bacteriophage recovered from an avian strain of *Chlamydia psittaci*. J. Gen. Microbiol. **70**:1321–1327.
- Yang, C., I. Maclean, and R. C. Brunham. 1993. DNA sequence polymorphism of the *Chlamydia trachomatis* omp1 gene. J. Infect. Dis. 168:1225–1230.