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I S D Roberts, P E C Brenchley

Abstract
Background/Aims—Mast cells, when acti-
vated, secrete a large number of fibro-
genic factors and have been implicated in
the development of fibrotic conditions of
the liver, lung, and skin. There is evidence
that renal fibrosis is closely linked with a
chronic inflammatory cell infiltrate
within the interstitium, but a potential
role for mast cells in this process has yet to
be defined. Therefore, the numbers of
mast cells in normal and fibrotic kidneys
with various pathologies were investi-
gated.
Methods—Mast cells were quantified in
renal transplants showing acute and
chronic rejection and cyclosporin toxicity,
kidneys removed for chronic pyelonephri-
tis, and renal biopsies from patients with
IgA nephropathy, membranous nephropa-
thy, and diabetic nephropathy. Mast cells
were stained using two methods: acid
toluidine blue detected less than 30% of
the mast cells revealed by immunohisto-
chemistry for mast cell tryptase.
Results—Mast cells were scarce or absent
in normal kidney (median, 1.6 mast
cells/mm2) but numerous throughout the
cortex and medulla in all specimens that
showed fibrosis. They were almost entirely
confined to the renal interstitium. Mast
cells were present in large numbers in
biopsies from patients with membranous
nephropathy (median, 21.7 mast cells/
mm2) and diabetic nephropathy (median,
29.2 mast cells/mm2), which were selected
on the basis of showing chronic injury. In
24 unselected IgA nephropathy biopsies
there was a close correlation between
numbers of mast cells and the extent of
interstitial fibrosis (r = 0.771; p < 0.0001).
In renal transplant biopsies, mast cells
were associated with allograft fibrosis in
chronic rejection (median, 27.1 mast cells/
mm2) and chronic cyclosporin toxicity
(median, 10.6 mast cells/mm2) but not
acute rejection (median, 2.7 mast cells/
mm2) or acute cyclosporin toxicity (me-
dian, 2.0 mast cells/mm2). There was no
detectable increase in mast cell numbers
during acute rejection in those transplants
that subsequently progressed to chronic
rejection. In some biopsies the mast cells
were largely intact, but in most cases some
or all were degranulated.
Conclusions—An increased number of
mast cells is a consistent feature of renal
fibrosis, whatever the underlying pathol-
ogy, and the number of mast cells corre-
lates with the extent of interstitial fibrosis.

This suggests that mast cells might play a
pathogenetic role in the fibrotic process.
(J Clin Pathol 2000;53:858–862)
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Mast cells are a heterogenous group of cells,
first identified by the dye binding characteris-
tics of their proteoglycan rich granules.1–3 Their
precursors originate from the bone marrow
and circulate within peripheral blood4 5; the
mature tissue mast cells are widespread, being
present in virtually every organ in the body. In
addition to glycosaminoglycans, mast cells
store, or are capable of synthesising, a wide
variety of proinflammatory and vasoactive
mediators, cytokines, and enzymes. The varied
activity of mast cell products and their
potential biological functions are multiple and
diverse and they have been implicated in many
pathological situations. In addition to type I
hypersensitivity reactions there is evidence that
mast cells play a role in acute inflammation,6

modulation of cellular immune responses,7

angiogenesis,8 turnover of connective tissue,
and fibrosis.

Mast cells are known to secrete a range of
cytokines including interleukin 3 (IL-3), IL-4,
IL-5, IL-13,9 IL-6,10 and IL-8.11 Similarly,
human mast cells constitutively express vascu-
lar endothelial growth factor (VEGF)12 and
basic fibroblast growth factor (bFGF), which is
localised to 97% of tryptase positive mast cells
in human fibrotic lung tissue.13 Mast cells also
contain specific proteases that display a range
of biological functions. Mast cell tryptase is a
mitogen both for epithelial cells, stimulating
the production of IL-8 and intercellular adhe-
sion molecule 1 (ICAM-1) expression,14 and
for microvascular endothelial cells, inducing
angiogenesis and capillary tube formation.15

Chemoattractant factors controlling mast cell
recruitment into inflammatory lesions have
been identified as extracellular matrix compo-
nents, including laminin,16 c-kit ligand (stem
cell factor),17 platelet derived growth factor
(PDGF), bFGF, VEGF,18 and the most potent
of all, transforming growth factor â1 (TGF-
â1).19 In peripheral lung tissue from patients
with chronic obstructive pulmonary disease,
associated with increased numbers of tissue
mast cells, intraepithelial mast cell numbers
correlate with TGF-â1 mRNA expression.

Mast cells have been implicated in pathologi-
cal fibrosis in several conditions including
hypertrophic scars,20 chronic atopic dermatitis,21

hepatic cirrhosis,22 fibrosing alveolitis,23 24 and
cardiac fibrosis.25 In lung allograft rejection
their numbers increase with the severity of
acute rejection and the greatest numbers are
associated with chronic rejection.26 Mast cells

J Clin Pathol 2000;53:858–862858

Department of
Cellular Pathology,
Level 1, The John
RadcliVe Hospital,
Headley Way,
Headington, Oxford
OX3 9DU, UK
I S D Roberts

Manchester Institute
of Nephrology and
Transplantation,
Manchester Royal
Infirmary, Manchester
M13 9PT, UK
P E C Brenchley

Correspondence to:
Dr Roberts
isdroberts@yahoo.co.uk

Accepted for publication
7 March 2000

www.jclinpath.com

http://jcp.bmj.com


might potentiate fibrosis by a variety of mecha-
nisms. There is evidence that they are capable
of synthesising several fibrogenic cytokines,
including bFGF27 and TGF-â1.28 Mast cell
proteases might also contribute to matrix
remodelling and fibrosis; in vitro studies have
demonstrated activation of matrix metallopro-
teinases by mast cell degranulation.29 Mast cell
tryptase is a profibrogenic factor, stimulating
type I collagen synthesis by fibroblasts30 and
inducing chemotaxis in fibroblasts comparable
to that of TGF-â1.31 Human mast cell chymase
is eVective at releasing latent TGF-â1 from
extracellular matrix but does not appear to
convert TGF-â1 to the active 25 kDa species.32

Furthermore, histamine and heparin control
fibroblast proliferation and stimulate collagen
synthesis in vitro.33 34 Coculture of mast cells
and fibroblasts results in fibroblast prolifera-
tion, which is modulated by direct cell–cell
contact.35 Mast cell granules are phagocytosed
by fibroblasts in coculture36 and ultrastructural
studies have confirmed an intimate association
between mast cells and fibroblasts in vivo. The
interaction between mast cells and stromal
cells has been studied in several pathological
tissues, including haemangiomas,37 spindle cell
lipomas,38 and neurofibromas.39 Intercellular
contacts, membrane fusion, and endocytotic
vesicles have been described, and it is possible
that direct cell–cell contact might be more
important than mast cell degranulation or
cytokine secretion in the control of connective
tissue turnover.

Renal fibrosis is the major cause of end stage
renal failure. Glomerulonephritis, diabetic ne-
phropathy, pyelonephritis, and renovascular
disease together account for over 75% of
patients requiring renal replacement
treatment.40 41 In these conditions, it is more
commonly chronic progressive renal fibrosis,
with associated loss of functioning nephrons,
than a severe acute insult, that results in
irreversible renal injury. There is abundant evi-
dence that the long term outcome of chronic
renal disease depends to a great extent upon
changes within the tubulointerstitial compart-
ment. This includes conditions in which the
primary insult is within the glomeruli; the
extent and severity of interstitial fibrosis and
tubular atrophy are the most powerful histo-
logical markers of renal function and long term
prognosis in chronic glomerulonephritis.42–44

Early on, this fibrotic process is characterised
by an interstitial chronic inflammatory cell
infiltrate and the proliferation of interstitial
myofibroblasts.45–48 This is driven by a cytokine
network that includes growth factors for
myofibroblasts such as PDGF, bFGF, and
TGF-â1, an important trigger of matrix
synthesis.49 The tubular epithelium is an
important source of cytokines that act on
interstitial fibroblasts50 and in addition
stimulate the infiltration of T cells and macro-
phages, which then secrete several fibrogenic
cytokines.51 52 The epithelial cells are also capa-
ble of transdiVerentiation into myofibroblasts53

and elaborating matrix proteins.54 In chronic
glomerulonephritis, cytokines secreted by
glomerular epithelial cells, together with fil-

tered proteins, play a role in producing tubular
epithelial cell injury and activation, thus
providing a major trigger for the fibroinflam-
matory response within the interstitium.55

There is evidence that similar processes
underlie the progressive interstitial fibrosis in
chronic renal allograft rejection. Chronic rejec-
tion, the major cause of graft loss after renal
transplantation, is characterised histologically
by progressive vascular, glomerular, and inter-
stitial fibrosis. As in native renal disease, TGF-
â1, secreted by tubular epithelium and infiltrat-
ing leucocytes, might play a central role in
driving new matrix production.56

Although there is an extensive literature on
the role of lymphocytes and macrophages in the
pathogenesis of renal fibrosis, a potential role of
interstitial mast cells has been largely ignored.
Other than within the matrix around the major
vessels, mast cells are absent from normal
kidney, but their role in renal disease is yet to be
defined. Only recently has it been reported that
mast cell infiltration is associated with chronic
injury in diabetic nephropathy57 and IgA
nephropathy.58 Here, we report the quantifica-
tion of renal mast cell infiltrates in several
fibrotic conditions. We demonstrate that in-
creased numbers of mast cells is a consistent
feature of renal fibrosis, whatever the underlying
pathology, and that the number of mast cells
correlates with the extent of fibrosis.

Methods
TISSUES

Archival renal tissue, fixed in neutral buVered
formalin (10% vol/vol) and embedded in paraf-
fin wax, with the following diagnoses was used:
“normal kidney” obtained from nephrectomy
for renal cell carcinoma (n = 5); transplant
nephrectomy for chronic vascular rejection
(n = 5); nephrectomy for chronic obstructive
pyelonephritis (n = 5); biopsies from renal
transplants showing acute rejection (n = 19)
and chronic vascular rejection (n = 8), acute
cyclosporin toxicity (n = 13), and chronic
cyclosporin toxicity (n = 12); and diagnostic
renal biopsies from patients with IgA nephropa-
thy (n = 24), membranous nephropathy
(n = 4), and diabetic nephropathy (n = 6). The
acute rejection transplant biopsies were con-
secutive and unselected from 19 patients. Of
these, eight patients subsequently developed
biopsy confirmed chronic rejection (group 1).
The eight biopsies showing chronic rejection
were from this same group of patients. The
remaining 11 patients (group 2) showed stable
long term graft function. The IgA nephropathy
biopsies were consecutive primary diagnoses
over a two year period and were unselected. The
membranous and diabetic nephropathy biop-
sies were selected on the basis of the haema-
toxylin and eosin sections showing mild to
moderate chronic tubulointerstitial injury.

QUANTIFICATION OF MAST CELLS

The following two methods were used for the
detection of mast cells in nephrectomy tissue:
(1) 1% (wt/vol) toluidine blue, pH 1.0, staining
time 30 minutes; and (2) immunohistochemis-
try for mast cell tryptase (Dako Ltd, High
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Wycombe, UK) using a standard immunoper-
oxidase technique. Sections were pretreated
with hyaluronidase. The toluidine blue stain
detected only a small proportion of the total
mast cells present (table 1) and in all renal
biopsies mast cells were detected immunohis-
tochemically. In biopsy material the entire
renal cortex was examined. In nephrectomy
tissue mast cells were counted in 20 ×40 objec-
tive fields of the outer cortex (within two ×40
objective fields of the renal capsule), inner cor-
tex (within two ×40 objective fields of the cor-
ticomedullary junction), and outer medulla.
Numbers of mast cells/mm2 were then calcu-
lated; each field had an area of 0.4 mm2.

MORPHOMETRIC ANALYSIS

Biopsies on which the diagnosis of IgA
nephropathy was made were analysed further
to determine the extent of interstitial fibrosis. A
Chalkley 25 point graticule (Graticules Ltd,
Tonbridge, UK) was used to calculate the area
of the interstitium, expressed as a percentage of
the total renal cortical area. Periodic acid SchiV
stained sections from each biopsy were used.
Fields containing large arteries were excluded
but otherwise the entire renal cortex in each
biopsy was analysed. None of the biopsies
showed pronounced oedema and, therefore,
the interstitial area was a measure of the extent
of interstitial fibrosis.

Results
NEPHRECTOMY SPECIMENS

In the “normal” renal tissue, obtained from
kidneys that contained renal cell carcinomas,
mast cells were present within the matrix
around lobar and arcuate arteries, but absent
from both the cortex and medulla, other than
in small foci of subcapsular fibrosis. In
contrast, large numbers of mast cells were
present within the interstitium of kidneys
showing chronic allograft rejection and chronic
obstructive pyelonephritis (table 2; fig 1A and
B). In chronic rejection, numbers of mast cells
were generally greater in the cortex than in the
medulla. There was no significant diVerence in
numbers between the inner and outer cortex.

Mast cells were rarely seen in the glomeruli and
tubules.

GLOMERULONEPHRITIS

Mast cells were present in large numbers
within the interstitium in biopsies from pa-
tients with membranous nephropathy (median,
21.7 mast cells/mm2; range, 11.9–33.3) and
diabetic nephropathy (median, 29.2 mast cells/
mm2; range, 3.2–34.3). In the IgA nephropathy
biopsies, there was a close correlation between
numbers of mast cells and the extent of
interstitial fibrosis (fig 2). In some biopsies the
mast cells were largely intact, but in most cases
some or all showed evidence of degranulation
(fig 1C).

ALLOGRAFT BIOPSIES

Mast cells were sparse in transplant biopsies
showing acute rejection and acute cyclosporin
toxicity (table 3). There was no diVerence in
mast cell numbers between the acute rejection
biopsies from group 1, patients who subse-
quently developed chronic vascular rejection,
and those from group 2 with long term
stable graft function. The subsequent biopsies

Table 1 Numbers of mast cells detected by toluidine blue compared with mast cell tryptase
immunostaining

Diagnosis

Mast cells/mm2 of cortex median (range)

Toluidine blue (pH 1.0) Mast cell tryptase p Value

Normal kidney 0.2 (0–0.8) 1.4 (0.3–3.6) 0.03
CVR 12.5 (6.9–14.3) 41.3 (25.3–52.3) <0.01
CPN 7 (1.6–12) 37.8 (23.5–47.1) <0.01

p Values were calculated using the Mann-Whitney U test.
CPN, chronic obstructive pyelonephritis; CVR, chronic vascular rejection.

Table 2 Numbers of mast cells detected in nephrectomy specimens using
immunohistochemistry for mast cell tryptase

Diagnosis

Mast cells/mm2 median (range)

Outer cortex Inner cortex Medulla

Normal kidney 2.5 (0.3–4.3) 0.3 (0.3–3.8) 1.0 (0–5)
CVR 35 (15.3–53.3) 47 (29–51.3) 22.5 (15.3–39.8)
CPN 30.5 (23.5–41.8) 48.1 (32.5–63.8) 45.3 (23.8–55)

CVR and CPN v normal kidney: p < 0.01 for cortex and medulla; CVR v CPN, not significant.
CPN, chronic obstructive pyelonephritis; CVR, chronic vascular rejection.

Figure 1 Mast cell infiltration in (A) the cortex and (B)
the medulla in chronic renal allograft rejection. (C; IgA
nephropathy) Cortical interstitial mast cells frequently show
evidence of degranulation, with positivity for tryptase seen
in the surrounding matrix.
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showing chronic rejection from group 2
patients contained large numbers of interstitial
mast cells, as did the biopsies that showed
chronic cyclosporin toxicity (table 3). Of the
biopsies with chronic cyclosporin toxicity, five
exhibited mild chronic allograft nephropathy
(grade 1) and these contained fewer mast cells
(median, 7.5/mm2) than the seven biopsies that
showed chronic cyclosporin toxicity and
chronic allograft nephropathy, grade 2–3 (me-
dian, 15.4/mm2), but this diVerence was not
significant.

Discussion
We have demonstrated that an interstitial infil-
trate of mast cells is a consistent feature of renal
fibrosis, whatever the aetiology, and that the
number of mast cells present correlates closely
with the extent of fibrosis. The presence of
mast cells is not confined to immune mediated
or postinflammatory fibrosis, as indicated by
increased numbers in chronic cyclosporin tox-
icity, in the absence of rejection.

The study of the role of mast cells in human
pathology has been facilitated by the availabil-
ity of antibodies to mast cell tryptase, an
enzyme specific for mast cells, which can be
used in formalin fixed tissues. The formalin
sensitivity of traditional histochemical stains
for mast cells, such as toluidine blue and alcian
blue, has long been recognised59 and prevents
the accurate quantification of mast cells in rou-
tinely processed tissue. Our initial quantifica-
tion of toluidine blue stained mast cells in
nephrectomy specimens indicates that around
75% of renal mast cells are formalin sensitive.

In renal allografts that show progression
from acute to chronic rejection mast cells are
not seen until the chronic phase, indicating that

it is fibrosis itself, rather than the inflammatory
process, that is the major stimulus for mast cell
recruitment. It has been proposed that mast
cells are a result, rather than a cause, of tissue
fibrosis.60 However, in many of the renal tissues
studied there is evidence of extensive mast cell
degranulation. In view of the profibrotic prop-
erties of mast cell products it appears likely that
these cells play an active pathogenetic role in
the fibrotic process, rather than being merely
innocent bystanders. Ehara et al reported
bFGF production by interstitial mast cells in
renal fibrosis associated with IgA
nephropathy.58 We suggest that transiently
increased TGF-â1 expression and activation in
acute inflammation and immune responses is
insuYcient to establish a chemoattractant
gradient necessary to sustain mast cell influx
because of competition for the bioactive
TGF-â1 from resident fibroblasts, smooth
muscle and endothelial cells, and infiltrating
leucocytes. However, in a scenario of contin-
ued activation of TGF-â1 at the site of persist-
ent chronic inflammation, high concentrations
of bioactive TGF-â1 can bind to heparan
sulphate glycosaminoglycan in the extracellular
matrix61 and establish and sustain a haptotactic
solid phase gradient, enabling mast cell recruit-
ment. This mechanism is testable in models of
TGF-â1 transfection with the use of selective
neutralising anti-TGF-â1 antibodies.

Because many fibrogenic mast cell cytokines
are also produced by other cell types involved
in renal fibrosis, such as macrophages and
tubular epithelial cells, it is diYcult to define
the precise role that mast cells play in the
fibrotic process. One model that oVers the
potential for further investigation is the geneti-
cally mast cell deficient W/Wv mouse.62 If these
animals show an impaired fibrogenic response
after the induction of chronic renal injury that
is not seen in the wild-type littermates with
normal numbers of mast cells, and this is
reversible after reconstitution with wild-type
bone marrow cells, then an important role for
mast cells in renal fibrosis is established. It has
already been demonstrated in an animal model
that cutaneous fibrosis may be inhibited by
mast cell stabilising agents.63 If an active patho-
genetic role for mast cells in renal fibrosis is
demonstrated, these compounds oVer the
potential for a new approach to antifibrotic
treatment in the management of chronic renal
disease.
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