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Abstract
Background—As the definitional formula
for population attributable fraction is not
usually directly usable in applications,
separate estimation formulas are re-
quired. However, most epidemiology text-
books limit their coverage to Levin’s
formula, based on the (dichotomous) dis-
tribution of the exposure of interest in the
population. Few present or explain Miet-
tinen’s formula, based on the distribution
of the exposure in the cases; and even
fewer present the corresponding formulas
for situations with more than two levels of
exposure. Thus, many health researchers
and public health practitioners are una-
ware of, or are not confident in their use
of, these formulas, particularly when they
involve several exposure levels, or con-
founding factors.
Methods/Results—A heuristic approach,
coupled with pictorial representations, is
oVered to help understand and intercon-
nect the structures behind the Levin and
Miettinen formulas. The pictorial rep-
resentation shows how to deal correctly
with several exposure levels, and why a
commonly used approach is incorrect.
Correct and incorrect approaches are also
presented for situations where estimates
must be aggregated over strata of a
confounding factor.
(J Epidemiol Community Health 2001;55:508–514)

The population attributable fraction (AFp) is
defined1 (page 295) as “the fraction of all cases
(exposed and unexposed) that would not have
occurred if exposure had not occurred.” This
fraction can be estimated using two equivalent
formulas, based on the distribution of exposure
in the population,2 or in the cases.3 Most text-
books deal only with the exposure in the popu-
lation and do not consider confounding
factors. Many of them focus on deriving the
formula algebraically or minimising the

number of computational steps, thereby pro-
viding limited insight into the structure of the
formula. Only a few texts elaborate on the
“case-based” formula. As a result, although it is
increasingly used to derive estimates of AFps
from complex data,4–8 the case-based formula is
less widely known and less well understood.

Likewise, despite the long existence3 9 of the
corresponding AFp formulas for more than two
levels of an exposure of interest, and despite the
fact that three advanced textbooks10–12 do
present and even illustrate them, many authors
seem to be unaware of them. This author has
recently encountered three pre-publication
examples where, with multiple exposure levels,
the AFp was calculated incorrectly. Table 1
shows a published example13 of this same error.

Stratification and—increasingly—regression
models are used to provide confounder ad-
justed rate ratio (RR) estimates as inputs to the
calculation of AFps. As textbooks do not
discuss such situations, and understanding of
first principles is limited, the AFp is often mis-
calculated in such instances too.14 Indeed, in
addition to mishandling a trichotomous expo-
sure, the above cited report13 also fails to
correctly incorporate the adjusted RR into the
AFp calculation.

The primary aim of this article is to promote
understanding of the AFp formulas for a
polytomous exposure. To do so, the article
begins with the more familiar all or none expo-
sure. A numerical example and a diagram allow
the Levin and the Miettinen formulas to be
understood directly from first principles, with-
out algebra. This heuristic approach provides a
foundation from which to extend the AFp

formulas correctly to polytomous exposure
data, and to data stratified on a confounding
variable.

Population (or population time) at risk and
cases will be denoted by the letters P and C
respectively. The fractions of the population (or
population time) in the various exposure
categories are denoted by “population frac-
tions” (PFs), while the distribution of exposure
in the cases is denoted by “case fractions”
(CFs).3 The terms overall and population
attributable fraction are used interchangeably.
Given the diYculties15 of interpreting it as a
true “aetiological” fraction, particularly when a
long time span and competing risks can
substantially change denominators, the AFp is
simply regarded as an “excess” fraction.15

All or none exposure
The exposed and unexposed categories are
denoted by 1 and 0 and the ratio of the event
rates in these two categories as RR: 1.

Table 1 Example of incorrect and correct calculation of population attributable fraction for
trichotomous “Exposure”*

Exposure level % of population RR

Calculation of population attributable
fraction (%)

Incorrect† Correct‡

Low 50 1.0 — —
Moderate 30 1.4 10.7 9.5
High 20 1.7 12.3 11.1

All 100 23.0 20.6

*Adapted from table 4 of reference13 by rounding the reported exposure percentages and RRs.
†(0.4 × 0.3) / (1 + 0.4 × 0.3 ) and (0.7 × 0.2) / (1 + 0.7 × 0.2). ‡(0.4 × 0.3) / (1 + 0.4 × 0.3 + 0.7
× 0.2 ) and (0.7 × 0.2) / (1 + 0.4 × 0.3 + 0.7 × 0.2).
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FORMULAS

Classic (Levin) structure for AFp, based on
distribution of exposure in population
Denote by PF1 the proportion (or fraction) of
the total population time in the exposed
category, and by PF0 the proportion in the
unexposed category. The most popular1 11 16–18

formula for AFp is Levin’s original version.
Levin began by defining the AFp: its denomina-
tor is the rate (or number of cases) in the over-
all population, and its numerator is the
diVerence between this and the one that would

prevail if all of the person time were in the
unexposed category. From this, he algebraically
derived the estimating formula

Attributable fractions for specific exposure
categories.
The case-based version uses as one of its inputs
the “attributable fraction in the exposed”,
namely

This is a specific AF, as it restricts attention to
exposed cases. To emphasise this specificity, we
label it AF1. The under-appreciated fact that
the “attributable fraction in the unexposed” is 0
becomes important later, and so we label the
AF specific to cases in that category as AF0 = 0.

(Miettinen) structure for AFp, based on
distribution of exposure in cases
The case-based version uses as its other input
the number of exposed cases, expressed as a
fraction of the overall number of cases. Denote
this fraction as the “case fraction”,3 CF1. Then
the case-based formula for AFp is

or in the notation used here,

AFp = AF1 × CF1. [1C]

NUMERICAL EXAMPLE

Suppose, as is depicted in figure 1, that PF1 =
2/5th of the population time (PT) is in the
exposed category. Although the AFp involves
relative rather than absolute rates, suppose—
for concreteness—that the event rates in the
exposed and unexposed categories are 1.5 and
1.0 cases per 104 PT units, so that the RR =
1.5, and the rate diVerence = 0.5 cases per 104

PT units. Suppose further that the total popu-
lation time is 106 PT units.

Substitution of PF1 = 2/5 and RR—1 = 0.5
into formula [1P] yields

THE NUMBERS AND STRUCTURES BEHIND THE

FORMULAS

Conceptually, the Levin formula directly di-
vides the total number of cases into “expected”
cases—those that would occur even if all of the
PT were in the unexposed category—and
“excess” cases. With a total of 106 units of PT,
there are 106 × (1.0 × 10–4) = 100 “expected”
cases. Some 2/5th of the overall 106 PT units
are in the exposed category, where the excess
rate is 0.5 per 104 PT units. The product of this
PT and the excess rate in this category is 20
“excess” cases. These 20 represent 1/6th of the
overall total of 100 + 20 = 120 cases. Note that
the 20 can also be represented as the
“observed−expected” number, while the 120

Figure 1 Population (that is, “overall”) attributable fraction (AFp) when exposure is
all(1) or none(0), based on distribution of exposure in population (P) and in cases (C).

The PF0 = 3/5th of the population time (PT) in the unexposed category is shown in
white at the bottom of the diagram, and the PF1 = 2/5th of the population time (PT) in the
exposed category is shown shaded. Relative rates in these categories are RR=1 and 1.5. The
corresponding numbers of cases arising from the two exposure categories are shown as white
and shaded circles. The number of “excess” cases is depicted as shaded circles marked with
an “X” (for “excess”).

In the classic AFp structure (summarised in inset “P”, with numbers of cases scaled up
by 100), the total number of cases is divided into the lower (square) array denoting the
number of expected cases (circles without an “X”, irrespective of exposure category) and the
upper rectangular array denoting the number of excess cases. As the square array of
“expected” cases has a base of width 1, and a height of RR = 1, it has an area of 1,
representing one expected case. With these relative horizontal and vertical scales, the
rectangle of excess cases has a base of PF1 = 2/5 and a height of RR—1 = 1.5—1 = 0.5, so
that its area (the “number of excess cases per 1 expected case”) is (RR—1) × PF1 = 0.5 ×
2/5 = 0.2. This 0.2 is 1/6th of the overall total of 1.2 cases.

In the case-based AFp structure (summarised in inset “C”), the total number of cases is
divided first by exposure category. None of the unexposed cases (white circles) are “excess”
cases. Of the exposed cases (shaded circles, constituting 1/2 of all cases), only a fraction
represent excess cases. As 1 of every 1.5 exposed cases is “expected”, some 0.5 of the 1.5, or
1/3rd, are excess. Thus, 1/3 of 1/2 = 1/6 of all cases are excess cases.
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represent the “observed” number, in keeping
with the structure in Miettinen’s 1985 text
(page 254–256),3 and Levin’s2 original concep-
tualisation.

The case-based formula begins with the
same total of 120 cases and immediately “rules
out” all unexposed cases, as, by definition,
none of them are “excess” cases. Based on the
amount of unexposed PT, they number 60, or
3/5th of the 100 “expected” cases discussed
above. This leaves 60 exposed cases (1/2 of the
overall total); if RR > 1 and finite, then only a
fraction of these 60 exposed cases (or of the
1/2) are excess cases (that is, the maximum
possible AFp is 1/2). What fraction of these 60

represent excess cases? The RR=1.5 implies
that of every 1.5 exposed cases, 1 is “ex-
pected”, while 0.5 of the 1.5, or 1/3rd, are
excess. Thus, of the subtotal of exposed 60
cases, 20 are “excess” cases. As the subtotal of
60 exposed cases constitute 1/2 of all cases, and
as only 1/3rd of the 60 are excess, then 1/3rd of
1/2, that is, 1/6 of all cases are excess cases.
This 1/6th is thus a “fraction of a fraction”.
The one fraction (1/2) is simply what fraction
of all cases are exposed cases—which we have
denoted by CF1. The other, RR—1 as a
fraction of RR, that is, 1/3, is the AF specific to
the exposed category, namely AF1.

THESE NUMBERS AND FORMULAS REPRESENTED

PICTORIALLY

Figure 1 begins “at the base” with the
denominators—the PT distribution—that gen-
erated the cases. Some 3/5th (= PF0) of the PT
are in the unexposed category (empty area)
and 2/5th (= PF1) are in the exposed category
(shaded area). The cases that arise from these
are represented by empty or shaded circles
respectively; “excess” cases are marked with an
“X” (for “excess”), while “expected” cases are
not.

The number of excess cases as a fraction of
all cases can be seen from two diVerent views.
In the first (Levin), the total number of cases is
directly subdivided into two arrays—the (bot-
tom) square array of expected cases, and the
(upper) rectangular array of excess cases. With
its height (representing the rate in category 0)
arbitrarily scaled to 1, and with its entire base
of 1, the square array of “expected” cases has
an area of 1, representing one expected case.
The width of the rectangle of excess cases is
PF1 = 2/5 and its height is RR—1 = 1.5—1 =
0.5, so that its area (the number of “excess
cases per one expected case”) is (RR—1) × PF1

= 0.5 × 2/5 = 0.2, yielding AFp = 0.2/(1 + 0.2)
= 0.2/1.2 = 1/6.

In the other view (Miettinen), the total
number of cases is first subdivided into two
arrays (and thus “case-fractions”) on the basis
of exposure. Only the exposed (shaded) cases
(a fraction CF1 of all cases) are “eligible” to be
excess cases. These exposed cases are then fur-
ther subdivided into subarrays of excess and
expected cases, yielding the attributable frac-
tion AF1 specific to the exposed cases. An
attraction of this “fraction of a fraction” struc-
ture of the overall AFp is that it does not explic-
itly involve the 3/5 : 2/5 exposure distribution
in the source PT—a distribution that is not
always easy to estimate—but rather the 60:60
split of the cases themselves.

For those who prefer algebra to pictures, an
algebraic derivation of the case-based formula
is given in the appendix.

POPULATION ATTRIBUTABLE FRACTION AS A

WEIGHTED AVERAGE

Unfortunately, immediately “eliminating” the
unexposed cases, and focusing on the exposed
ones, distracts from the fact that the case-based
AFp can also be viewed as a weighted average of
the two category specific attributable fractions
AF0(= 0) and AF1. Naturally, as the focus is on

Figure 2 Population (that is, “overall”) attributable fraction (AFp) when exposure is
trichotomous, based on distribution of exposure in population (P) and in cases (C). Data
are from table 1.

The PF0 = 5/10th, PF1 = 3/10th, and PF2 = 2/10th of the population time (PT) in the
low, moderate, and high exposure categories are shown at the bottom of the diagram using
increasing levels of shading. Relative rates in these categories are RR0 = 1, RR1 = 1.4 and
RR2 = 1.7. The numbers of cases arising from the three categories are shown as
correspondingly shaded circles. The number of “excess” cases in each category is depicted as
circles marked with an “X” (for “excess”).

In the classic AFp structure (summarised in inset “P”, with numbers of cases scaled up
by 100), the total number of cases is divided into the lower (square) array denoting the
number of expected cases (circles without an “X”, irrespective of exposure category) and the
two (upper) rectangular arrays denoting the numbers of excess cases.

In the case-based AFp structure (summarised in inset “C”), the total number of cases is
divided first by exposure category—CF0 = 50/126, CF1 = 42/126 and CF2 = 34/126. None
of those occurring in the lowest risk category (white circles) are “excess” cases, while 4/14th
and 7/17th of the fractions in the higher risk categories are. Thus, 4/14th of 42/126 +
7/17th of 34/126 = 20.6% of all cases are excess cases.
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all cases, the weights are given by the relative
numbers of cases in exposure categories 0 and
1—that is, by the proportions CF0 and CF1.
Thus the weighted average of the two category
specific fractions AF0 and AF1 across both cat-
egories of cases is 0 × CF0 + AF1 × CF1 = AF1 ×
CF1. This representation of AFp as a weighted
average3 is key to understanding the case-based
formula for the polytomous exposure situation
considered next.

Polytomous exposure
Figure 2 depicts the data, and illustrates the
correct AFp calculations, for the “three expo-
sure levels” example given in table 1.

CLASSIC STRUCTURE, BASED ON DISTRIBUTION OF

EXPOSURE IN POPULATION

Again, the expected cases are shown in the
square array of unmarked circles. Now, there
are two sets of excess cases, denoted by the
lightly shaded and more heavily shaded rectan-
gular arrays of cases marked with an “X”. The
scaled heights, {RR1—1} and {RR2—1}, of
these rectangles, multiplied by their widths,
PF1 and PF2 , yield excess “areas” of {RR1—1}
× PF1 and {RR2—1} × PF2 respectively. These
products represent the number of excess cases
for every one “expected”. This “expected” ver-
sus “excess” partition of the cases leads imme-
diately to the formula

For every one expected case, there are 0.12 +
0.14 = 0.26 “excess” cases, yielding an AFp of
0.26/1.26 = 20.6% (last column of table 1).
Note that applying formula 1P [all or none
exposure] twice13 (second last column of table
1), overestimates the overall fraction of excess
cases.

STRUCTURE BASED ON DISTRIBUTION OF

EXPOSURE IN CASES

In this view, the AFp is a sum of 2 “fractions of
fractions”, that is,

as originally given in reference 3. As AF0=0, the
AFp can also be seen as a weighted average of
the category specific AFs over all 3 levels 0, 1
and 2

AFp = CF0 × AF0 + CF1 × AF1 + CF2 × AF2

[2C’]

For the data in table 1 and figure 2, the
appropriate calculation is

(50/126) × 0 + (42/126) × (0.4/1.4) +
(34/126) × (0.7/1.7),

yielding the “CF weighed” average, AFp =
20.6%.

The appendix explains a version that is use-
ful when there are several strata or covariate
patterns.

EFFECT OF COLLAPSING CATEGORIES OF HIGHER

RISK INTO ONE

Several authors have noted11 19 20 or shown7 that
the AFp involving an exposure with levels 0, 1,
..., k is the same as if one first combined
categories 1 to k and used the formula for the
“all or none” situation. This is easy to see from
figure 2, where the RR for the “moderate or
high” category, relative to low, is 1.52, and
PFmoderate/high = 0.5. Thus, for every one expected
case, there are 0.5 × 0.52 = 0.26 excess cases,
yielding AFp = 0.26/1.26 = 20.6%.

The “distributive”21 property of the AFp is
useful in multiple regression if, instead of
aggregating exposure categories, one subdi-
vides them, to the point that each case defines
its own exposure category. Details are given in
the appendix.

Stratified data
To correctly understand how to aggregate stra-
tum specific AFps, first write

Then, with Ó denoting summation over the
strata that form the aggregate, dis-aggregate
the numbers of cases so that

Finally, rewrite this as

that is, as a weighted average of stratum specific
AFps, with the numbers of cases in the each
stratum as weights.

Figure 3 illustrates the correct calculation.
Whether one arrives at the stratum specific
AFps “by P or by C”, one must average them
using the stratum specific numbers (or propor-
tions) of cases as weights. The figure also illus-
trates the commonly used, but incorrect
practice of coupling adjusted (RR-1)s with the
marginal distribution of exposure in the overall
source.

Discussion
The primary aim of this article is to promote
understanding of the AFp formulas for a
polytomous exposure, and for stratified data.
To this end, you must begin with the simpler
and more familiar, but not fully understood,
representations for an all or none exposure.
The article also shows how the two seemingly
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very diVerent representations can both be
derived—without algebraic manipulations—
directly from the same diagram. A third aim is
to increase awareness of the case-based formu-
las.

There are a number of possible explanations
for the limited awareness and understanding of
the case-based formulas. Some textbooks focus
on the overall AF before (or without ever)
dealing with the specific AFs that are aggre-
gated to create the overall AF. Also, the
case-based formula is given in fewer textbooks,
usually without a complete derivation. The
usually cited source3 does not explicitly derive
it; instead it cites another source,22 which in
turn cites an unpublished source. It was
acknowledged (page 331)3 that the basis for the
formula “may not be immediately obvious”
and a cryptic explanation was oVered. The
“fraction of a fraction” formula is derived 11
years later (equation A.2.17, page 256)10 but in
a seemingly diVerent context, and using a

purely algebraic manoeuvre that does not
reveal the logic behind it (see appendix). The
lengthy way in which the formula continues to
be algebraically derived in subsequent articles
and textbooks4 5 7 11 23 suggests that the simplic-
ity and “immediate obviousness” of its struc-
ture have not been fully or widely understood.

The most important practical benefit of the
case-based version is AFp estimation from
stratified, or individually matched, case-control
studies22 where the classic formula is inappro-
priate.19 24 25 Variations on this version (see
appendix) are also increasingly used to
derive—and quantify the sampling variability
of—estimators of AFp from stratified data or
multiple logistic regression.4–8

The case-based structure also has concep-
tual benefits. Firstly, it emphasises that AFs
refer to cases, and that the observed numbers
of cases are the denominators of these AFs.
This is in contrast with most epidemiological
calculations, where numbers of cases serve as

Figure 3 Incorrect and correct calcuation of population attributable fraction in presence of confounding factor
(hypothetical data).
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the numerators of statistics. As exemplified in
figure 3, this diVerence has important implica-
tions for how to correctly aggregate stratum
specific AFps—no matter which version of the
formula (classic or case-based) is used to
calculate the stratum specific AFps. Failure to
appreciate this focus on cases may explain why
authors, such as those of reference 13,
incorrectly couple adjusted (RR-1)s with the
marginal distribution of exposure in the source
via formulas [1P] and [2P]. This is a common
mistake.14 It is of note, and testimony to the
naturalness of the case-based representation,
that in the example in figure 3, the weighted
average of the stratum specific AFps (the AFps
having been derived from adjusted RRs), using
the stratum specific numbers (or proportions)
of cases as weights, yields the correct AFp for
the aggregate.

Secondly, although originally derived for
empirical estimates from case-control studies,
the versatility of the case-based representation
can be used in a broader context—for example,
to structure the very AFp parameter itself.3 8

(section 2, page 866). For these practical and
conceptual reasons, the case-based represen-
tation needs to be better understood, and not
presented in textbooks and articles simply as an
algebraic fact.

Greater awareness and understanding of the
formulas for polytomous exposure should also
decrease computational errors. Even in the
absence of confounding, the repeated applica-
tion of formula [1P], once for each exposure
category separately13 yields an overestimate of
AFp. As is made obvious by figure 2, a single
application of formula [2P] yields the correct
estimate.

Although its purpose was “multivariate”
from the outset, the paper by Eide and
Gefeller26 uses a graphical depiction similar to
that presented here. It is helpful to think all of
the covariate patterns shown in figure 1 of the
Eide and Gefeller article as diVerent levels of a
single composite factor, in the spirit of the sin-
gle polytomous factor in figure 2 of the present
article.

The heuristic approach also gives insights
into more realistic, and more complex, sce-
narios than are discussed in introductory text-
books. Indeed, it was questions from a
colleague, in a study involving four levels of
risk, and the consequences of switching, not to
the lowest risk category, but to lower risk
categories, that prompted the author to pro-
duce diagrams similar to figure 2. Readers are
referred elsewhere10 (appendix 2.3, page 254–
6)12 27 28 for more on this topic.

Technical details on estimating AFp from
regression models can be found in papers by
Benichou7 and Greenland and Dresher (page
1763).8 Benichou warns that his method for
calculating the precision of the estimates is
“complex”. The methods used by Greenland
and Dresher are more tractable, but the matrix
notation and associated calculations may still
require the help of a statistician. The portion of
the article by Oja et al29 that deals with conven-
tional logistic regression modelling, and in par-
ticular the hand workable example in the

appendix, is a useful point of departure before
tackling either of these papers. If you wish to
avoid matrix calculations, then bootstrap confi-
dence intervals are an attractive alternative.30

Appendix
FORMAL ALGEBRAIC DERIVATION OF CASE-BASED FORMULA

1C

Even for those who prefer algebra to pictures, the
majority of the published derivations of formula 1C are
much more tedious than they need be. The simplest
algebraic derivation is found in Miettinen’s text (page
256).10 It uses the same “fraction of a fraction” logic
used to determine that the percentage of eligible
subjects who respond to a survey is the percentage of
eligible subjects contacted × the percentage of contacted
subjects who respond.

A USEFUL RE-EXPRESSION OF THE CASE-BASED FORMULAS

The version of the “case-based” structure that has
become popular as a point of departure for multivariate
applications in the past 15 years is, for the three
exposure levels example (equation 12, page 327).3

where RR0 = 1. One can algebraically derive formula
2C* from formula 2C, by rewriting each specific AF in
terms of the corresponding RR, and simplifying terms.
However, it is more instructive to view the process as
taking the complement of the “expected” fraction. In
figure 2, the overall “expected” fraction is the sum of
three fractions: Of the (50) cases in exposure category 0,
the fraction of “expected” cases is 1; of the (42 and 34)
cases in categories 1 and 2, the corresponding fractions
are 1/RR1 = 10/14th, and 1/RR2 = 10/17th. Thus, the
fraction of the overall cases that are “expected” is the
weighted average of the fractions 1, 10/14, and 10/17,
with weights given by the case fractions CF0 = 50/126,
CF1 = 42/126, and CF2 = 34/126.

Thus, the complement of AFp

= (50/126) × 1 + (42/126) × 10/14 +

(34/126) × 10/17

= 100/126,

leading immediately, by subtraction, to formula 2C*.
Note, however, that unlike formula 2C, this “comple-
ment” method requires summation over all levels of the
exposure.

EFFECT OF SUBDIVIDING (INDIVIDUALISING) CATEGORIES OF

HIGHER RISK

Imagine that, instead of aggregating exposure catego-
ries, you continue to subdivide them, to the point that
each case defines its own exposure category (this would
happen if the exposure takes on values on a continuum,
or is a multivariate “x” vector in a multiple regression.
Then by the “distributive” property21 of the AFp,

Population attributable fraction 513

www.jech.com

http://jech.bmj.com


where RRi is the (unconfounded) RR for the covariate
pattern of the i-th case, and where the summation is
over all of the individual cases. This structure is useful in
complex designs30 and when constructing AFp from a
logistic regression in which each case has a unique cov-
ariate pattern.
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