
in the electrophoretic conditions used in each study. In
both studies the short MUC2 alleles are very rare in
patients as well as controls (6/136 UK patients and 3/142
UK controls, 2/114 USA patients and 4/106 USA
controls), and there is no significant diVerence in the num-
bers of “small” alleles (smaller than 5.0 kb) and “large”
alleles (greater than 5.0 kb) between patients and controls
(Fisher’s exact test, UK data p=0.29, USA p=0.31). We
also analysed the samples separately after exclusion of the
Jewish subjects because of the suggestion of diVerent
genetic risk in Jewish and non-Jewish groups,25 26 but there
was no diVerence in distribution (not shown). One subject
in the USA group had one unusually large allele. The sig-
nificance of this rare allele is not known though an allele
approaching this in size (12 kb) is found in one of the
CEPH families. Careful scrutiny of the large allele
distribution shows slight but statistically non-significant
diVerence in distribution in the patients and controls
(Mann-Whitney U test, UK data set p=0.11, USA data set
p=0.36) which is in the opposite direction in both groups.

This negative evidence seems to rule out the idea that
short MUC2 allele length predisposes to ulcerative colitis,
but does not exclude the possibility that other variations in
the MUC2 gene, such as “within repeat” sequence
diVerences, or the final fully glycosylated MUC2 mucin
may play a role. Furthermore, in view of the recent results
of Cho et al12 it may be worth studying MUC2 in Crohn’s
disease since some evidence has been obtained for linkage
of Crohn’s disease rather than ulcerative colitis to 11p.
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Mutation analysis of the DKC1 gene in
incontinentia pigmenti

EDITOR—There are a number of monogenic diseases with
complex phenotypes which are clinically distinct but also
overlap in phenotype with one or more other syndromes. If
mutations in the same gene are responsible for causing the
related syndromes, the diseases are allelic. Two diseases
linked to Xq28, incontinentia pigmenti (IP, MIM 308310,
Bloch-Sulzberger syndrome) and dyskeratosis congenita
(DKC, MIM 305000, Zinsser-Cole-Engmann syndrome)

show similarities in phenotype, although the modes of
expression diVer. Whereas IP is X linked dominant with
embryonic lethality in males, the major form of DKC is X
linked recessive. The gene responsible for causing DKC,
DKC1, was recently identified1 and maps about 20 kb
proximal to the factor VIII gene, F8C.2 Linkage analyses
have provided evidence that the IP gene is located in the
telomeric 2 Mb region of Xq28 distal to DXS523 and lod
scores of highest significance were found around F8C.4 5

The physical map position of DKC1 and genetic linkage of
the IP locus, together with the overlap in the DKC and IP
phenotypes (table 1), raised the possibility that these two
diseases could be allelic.
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The IP and DKC phenotypes share abnormalities in
ectodermal derivatives, such as nail dystrophy, alopecia,
hypodontia, and skin manifestations6 7 (table 1). Both IP
and DKC are characterised by the early appearance of
reticulate skin pigmentation, although this manifests
diVerently in the two diseases. In IP the clinical signs
aVecting the skin are initially apparent as an erythematous,
inflammatory vesicular rash. The rash later becomes
verrucous and streaks of hyperpigmentation follow. The
pigmentation then fades in the second decade of life often
leaving scarred and atrophic hypopigmented areas. In
DKC patients the inflammatory and verrucous stages do
not occur and the appearance of hyper- and hypopigmen-
tation is progressive. The overlap in the skin abnormalities
is confirmed by microscopic examination of skin biopsies
from IP and DKC patients, which show common
histological features such as epidermal atrophy and
pigment migration.8 In both disorders a defect in the
immune system may be causing the skin manifestations. In
IP the inflammatory vesicular rash points to an involve-
ment of the immune system and is supported by observa-
tions that the rashes are associated with constitutional
eosinophilia and may recur during feverish infections. Fur-
ther, it has been suggested that the skin phenotype in IP
resembles that observed in patients with graft versus host
(GVH) disease.9 A GVH-like pathogenesis suggestive of an
involvement of the immune system in the skin also occurs
in some DKC cases.10 11

DKC patients develop progressive pancytopenia of one
or more cell lines and bone marrow failure is the main
cause of death in the first or second decade of life in 90%
of the cases.12 This is accompanied by humoral and cellu-
lar disturbances of the immune system.13 Pancytopenia and
bone marrow failure are not associated with IP. There have
been reports, however, of decreases in lymphocyte number
and both neutrophil and lymphocyte dysfunction in IP.14–16

Another abnormality of the peripheral blood system
suggesting an involvement of the immune system is the
occurrence of leucocytosis with eosinophilia in a substan-
tial proportion of newborn females with IP in the absence
of infection. A report on a male IP patient who died post-
natally and showed excessive haemorrhaging and haemoly-
sis at birth further indicates a defect in the haematological
system.17

Extreme skewing of X chromosome inactivation has
been observed in the blood cells of most DKC carrier
females18 19 as well as in the skin and haemopoietic cells of
aVected IP females.20 21 The non-random inactivation of
the X chromosome carrying the mutant allele in the skin
cells of IP females is responsible for the disappearance of
the clinical signs because of a positive selection for cells

expressing the normal allele.20 21 It is conceivable that a
defect in the haemopoietic system leading to bone marrow
failure as is observed in DKC males is not apparent in IP
females because of a similar selective pressure favouring
cells carrying the active normal X chromosome. The
skewed X chromosome inactivation in IP females could in
part explain the diVerence in female presentation and the
more severe phenotype observed in hemizyous IP males.

The hypothesis that a diVerent spectrum of mutations in
the DKC1 gene causes IP is compatible with the ubiquitous
expression pattern of DKC1, its high degree of conserva-
tion, and the putative function of the peptide dyskerin in
rRNA biogenesis.1 22–24 Seventeen diVerent mutations have
been identified in DKC patients of which 82% are
missense mutations.25 To date no premature stop codon
mutations, frameshifts, or whole gene deletions have been
identified. Taken together, these observations strongly sug-
gest an essential function for dyskerin and that complete
loss of function mutations would not be viable. It appears
likely that a null mutation in DKC1 could explain the pre-
natal lethality observed in IP males and that the same
mutation in an IP female might result in the clinical signs
observed.

The genomic structure of the DKC1 gene has been
determined.25 The coding sequence is split into 15 exons
and the gene extends over 15 kb (accession numbers
AJ0101395, AJ0101396). As intronic primers flanking
each of the 15 exons had been designed for mutation
screening of DKC patients, it was possible to screen the
DKC1 gene eYciently for mutations in IP patients. The
analysis of a large number of IP patients of diVerent
nationalities was possible because of the collaborative
eVorts of five research groups. Thirteen of these families
have been described previously.4 5 21 26 All 15 exons of 23
female IP patients and one spontaneously aborted male fetus
carrying the mutant allele5 were subjected to SSCP analyses.
SSCP protocols that had previously been shown to be
eYcient for mutation detection were used and the conditions
for each exon were determined to allow good resolution of
the two single strands.25 27 No shifts were observed for any of
the patients. To exclude point mutations which may have
been missed by SSCP, all exons from two spontaneously
aborted male patients were PCR amplified and sequenced,
but no mutations were found. Furthermore, 18 of the 24
DNA samples analysed by SSCP plus 32 additional IP
females and three additional IP males were analysed by
Southern hybridisation using the full length DKC1 cDNA as
a probe. The following restriction enzyme digests were ana-
lysed: XbaI, BamHI, EcoRI, PstI, HindIII, SacI, NcoI, BglII,
and TaqI. No diVerences in dosage and no aberrant bands
were detected when compared with DNA samples from
normal males and females. The results from Southern
hybridisations and the fact that all exons were amplifiable for
two IP male patients indicate that a partial or whole gene
deletion of DKC1 as a general mechanism for causing IP is
unlikely. Moreover, no mutations were identified in the cod-
ing region or at the exon-intron boundaries of the two IP
male patients. Owing to the diYculty of obtaining suYcient
cells with an active IP mutation bearing X chromosome from
female patients and because very few IP male patients with a
normal XY karyotype exist, no analyses were carried out at
the RNA level. It therefore cannot entirely be ruled out that
there may be mutations in the promoter region or in the 5'
and 3' untranslated regions (UTR) which could alter the
levels of DKC1 mRNA directly or alter the stability of the
transcript in IP patients. However, we consider this to be a
very unlikely possibility and conclude that IP and DKC are
not allelic.

Table 1 Comparison of the IP and DKC phenotypes aVecting ectodermal
tissues and the haemopoietic system

Incontinentia
pigmenti (IP)

Dyskeratosis
congenita (DKC)

Skin
Reticulate

hyperpigmentation
+ (late stage) + (early stage)

Hypopigmentation + (reticulate or linear) + (scattered macules)
Alopecia + (scarring) + (non-scarring)
Epidermal atrophy + (late stage) +
Pigment incontinence + +

Teeth
Hypodontia + (prominent) + (occasional)

Eyes
Retinal involvement + (retinal detachment,

vascular proliferation)
−

Epiphora + (rare, one case) + (frequent)
Haemopoietic system

Pancytopenia − +
Bone marrow failure − +
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A nonsense mutation in the retinal
specific guanylate cyclase gene is the
cause of Leber congenital amaurosis in
a large inbred kindred from Jordan

EDITOR—Leber congenital amaurosis (LCA) (MIM
204000) has the earliest onset and is the most severe form of
retinal dystrophy.1–3 It is an autosomal recessive condition
that is recognised within the first few months of life because
of impaired vision and an extinguished electroretinogram.4

Nystagmus, specifically pendular, and eye poking are
frequently observed early on,5 while hypermetropia and
keratoconus may develop later during the course of the
disease.6 7 Genetic heterogeneity was confirmed when the
first gene of LCA was mapped to chromosome 17p13.1
(LCA1) by homozygosity mapping in consanguineous Arab
families.8 9 Four diVerent mutations in the retinal specific

guanylate cyclase gene (RETGC) were found in four
unrelated probands and thus LCA1 was assumed to result
from homozygous alterations in this gene.10

We report here a nonsense mutation in the RETGC gene,
which in the homozygous state is responsible for LCA in a
large inbred tribe from Jordan. We had already identified a
large, highly inbred family from the Jordan valley consisting
of about 2000 living subjects, in which aVected members
have LCA.11 A 31 member subset of this family was inves-
tigated (fig 1). All members were examined by an ophthal-
mologist and a paediatrician. Four patients had ERG per-
formed (Nos 3, 9, 13, 14). Blood samples were collected
from 28 family members after obtaining informed consent
from them or their legal guardian.

DNA was extracted from peripheral blood samples by
standard procedures.12 Seventeen diVerent dinucleotide
repeat markers reported to be linked to LCA1 on
chromosome 17 were used to test for linkage.8 9 Amplifica-
tion of these markers was performed according to the
manufacturer’s conditions (Research Genetics). Products
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