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Evidence of somatic mosaicism for a MECP2
mutation in females with Rett syndrome:
diagnostic implications

Violaine Bourdon, Christophe Philippe, Thierry Bienvenu, Bernadette Koenig,
Marc Tardieu, Jamel Chelly, Philippe Jonveaux

EDITOR—Rett syndrome (RTT) (MIM
312750) is an X linked dominant neurodevel-
opmental disorder that occurs almost exclu-
sively in females. AVected girls are considered
to have a normal perinatal period followed by a

period of regression, loss of acquired purpose-
ful manual and speech skills, hand wringing,
gait disturbance, and growth retardation.1 2

A gene for RTT has been identified in the
Xq28 region which encodes the methyl-CpG
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binding protein 2 (MeCP2) involved in tran-
scriptional silencing.3 4 This disorder most fre-
quently occurs sporadically and results from a
de novo mutation, although a few familial cases
have been reported. Many studies5–16 have
shown that the MECP2 gene is mutated in
approximately 80% of patients with classical
RTT and the MECP2 mutation spectrum

includes missense, nonsense, and frameshift
mutations, as well as larger rearrangements like
deletions encompassing a few hundred bp.16

The failure to detect MECP2 mutations in the
remaining 20% may indicate the presence of
mutations in unexplored regions of the MECP2
gene, such as regulatory elements or non-
coding regions, notably in the new first exon17

or in an additional RTT locus.
Here, we report for the first time mosaicism

for a somatic MECP2 mutation found in two
unrelated females aVected with RTT. These
two girls were diagnosed according to the
international criteria of the Rett Syndrome
Diagnostic Criteria Work Group.18

Case reports
The first patient (case 1) is 13 years old. She
suVers from classical Rett syndrome with 7/9 of
the necessary criteria, 4/8 of the supportive cri-
teria, and none of the exclusion criteria.18 More
specifically, she had a normal neonatal period
and head circumference at birth and a phase of
social withdrawal at the age of 12 months when
she lost purposeful hand skills and developed
stereotypic hand movements, ataxia, and
apraxia. She suVered from breathing dysfunc-
tion and peripheral vasomotor disturbances.
She had severely impaired development but
acquired independent walking at the age of 24
months. However, she did not acquire micro-
cephaly or develop epilepsy.

The second patient (case 2) was reported as
an atypical case of RTT without any period of
regression. Both mental and motor develop-
ment were very slow. At the age of 4 years, she
had acquired microcephaly (−2 SD) and had
very limited ambulation, but her hand use was
correct without hand wringing movements.
She developed epilepsy and progressive scolio-
sis. She is a placid girl without useful speech
but she communicates well by eye movements.

Methods and results
For case 1, an initial study on DNA extracted
from a lymphoblastoid cell line by denaturing
gradient gel electrophoresis (DGGE) and
sequencing showed that she carried a 26 bp
deletion starting at position 1165. To confirm
this mutation, DNA was extracted from a fresh
blood sample and the deletion was assessed by
direct sequencing. Surprisingly and despite a
careful examination of the sequence, we did
not find the 26 bp deletion with DNA
extracted from leucocytes. This sample was
reanalysed by DGGE and heteroduplexes were
detected while the homoduplex corresponding
to the deleted band was absent (fig 1A). We
confirmed this result by conformation sensitive
gel electrophoresis (CSGE) analysis, which
showed the heteroduplexes but not the mutant
homoduplex (fig 1B). The results obtained
from peripheral blood lymphocytes suggested
mosaicism for a somatic mutation.

In order to determine the level of mosaicism,
we used a semiquantitative approach based on
fluorescent PCR. The MECP2 gene exon 3
portion containing the deletion was PCR
amplified, the reverse primer being conjugated

Figure 1 Detection of the two somatic mutations by
heteroduplex analysis. (A) DGGE results for case 1. DNA
extracted from a lymphoblastoid cell line (lane 1) and a
fresh blood sample (lane 2). The homoduplex band
corresponding to the deleted allele is missing in DNA
extracted from lymphocytes. Ht, heteroduplex; Ho,
homoduplex; 40%-90% formamide gradient. (B) CSGE
results for case 1 (lanes 1-3) and case 2 (lane 5). Case 1:
the somatic mutation is shown on DNA extracted from a
fresh blood sample (lane 1); the father (lane 2) and the
mother (lane 3) do not carry the 26 bp deletion. Case 2: a
somatic deletion was detected on DNA extracted from
lymphocytes as indicated by the absence of the deleted
homoduplex band (lane 5). Lane 4 depicts a CSGE
pattern of a 31 bp deletion localised in the deletion prone
region of the MECP2 gene; the two homoduplex bands are
of equal intensity.
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to 6-FAM (6-carboxy-fluorescein). PCR prod-
ucts were analysed on an ABI 310 sequencer
and peak areas were generated by ABI Gene-
scan and Genotyper software. The ratio
between the deleted and normal peak areas
showed that only 36% of lymphocytes har-
boured the deletion, that is, 18% of X chromo-
somes bore the 26 bp deletion (fig 2A). This
semiquantitative approach confirms that case 1
does have somatic mosaicism for the MECP2
deletion. The relatively low level of somatic
mosaicism could explain the normal sequenc-
ing result. Thus, mosaicism was quantified in
diVerent tissues. DNA was extracted from
buccal mucosa cells19 and hair bulb cells. 20 The
level of mosaicism was about the same in buc-
cal mucosa cells (30%) as in lymphocytes, but
lower in hair bulbs cells (17.5%) (fig 2A).

Discussion
On the basis of these results, we hypothesised
that some patients with RTT may in fact carry
a somatic mutation. Small deletions (from 7 to
170 bp) within the region between bp 1096
and 1165 of the MECP2 gene have been recur-
rently identified.5 7 9 10 12 15 16 They do not aVect

the two functional domains but result in the
loss of one fifth of the protein. Interestingly, it
has been shown that the deletion of the
carboxy-terminal 63 amino acids of the
MeCP2 protein impairs binding with the
nucleosomal DNA during the transcription
regulation process.21 These recurrent deletions
may be the result of palindromic and quasipal-
indromic sequences within this region, which
are believed to form secondary structures that
render the region vulnerable to deletions.
Therefore, using our fluorescent PCR ap-
proach, we reanalysed the 3' region of the
MECP2 gene, between bp 1096 and 1165, in a
cohort of 29 patients diagnosed as typical or
atypical RTT; for these patients, we failed to
detect any mutation using a bidirectional
sequencing strategy of the entire MECP2 cod-
ing region. A second somatic mosaicism for a
27 bp deletion was identified in peripheral
blood lymphocytes from case 2 with atypical
RTT; the mosaicism rate was quantified with
our fluorescent approach to be about 37% (fig
2B). We confirmed this result by CSGE analy-
sis (fig 1B).

Figure 2 Semiquantitative fluorescent PCR of the somatic mosaicism rate. (A) Case 1. Genotyper traces of the fluorescent
PCR products obtained with three diVerent tissues, blood (1), buccal mucosa cells (2), and hair bulb cells (3), shown with
the three respective ratios of peak areas (X1, X2, X3). For each peak, the fragment size in bp and the peak area calculated
by Genescan is indicated. We assumed that the mosaicism rate could be estimated by calculating the ratio between the
deleted and the normal peak areas. (B) Case 2. Genotyper trace of a fluorescent PCR product obtained from blood with the
ratio of peak areas (Y).
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In both cases, numerical aberrations of the X
chromosomes as a cause for the uncommon
fluorescent PCR patterns were excluded by the
presence of a normal 46,XX karyotype.

These two patients show a similar deletion
with an equivalent mosaicism rate in blood, but
a distinct clinical presentation. X inactivation
study on proband 1 with typical Rett syndrome
showed a random pattern of inactivation in the
peripheral blood. Although the results have to
be extrapolated from the peripheral blood cells,
it would suggest that in the brain the majority
of mutated X chromosomes may remain active
in the girl with classical Rett syndrome. Our
results illustrate clearly once again the diYculty
in establishing a correlation between genotype
and phenotype in RTT.

Recently, a boy with a mosaic mutation has
been described.22 To our knowledge, we show
for the first time that somatic mosaicism for
MECP2 mutation in girls is not infrequent (two
somatic mutations on 102 putative RTT cases
studied) and may cause diVerent phenotypes.
These clinical and molecular findings suggest
that multiple forms of mosaicism (X inactiva-
tion mosaicism and somatic mosaicism) may
be present in a single patient with RTT. Mosai-
cism has been documented for chromosomal
abnormalities, mitochondrial mutations, triplet
repeats,23 and in a growing number of domi-
nant and recessive X linked gene disorders,
such as Duchenne muscular dystrophy,24 hae-
mophilia B,25 Conradi-Hünermann-Happle
syndrome,26 and double cortex/lissencephaly
syndrome.27 Because a proportion of cells carry
the mutation not only in blood but also in tis-
sues deriving from other cell lineages, it must
be assumed that the mutation occurred very
early during embryogenesis.

Finally, the detection of mosaic mutation
depends mainly on the method used for the
identification of mutations within the MECP2
gene. Nowadays, the method of choice for
identifying deleterious mutations relies on
direct DNA sequencing. The ability of this
method to detect mosaic mutations is poor,
which is particularly true when the mosaicism
rate is low. Our findings underline the need for
at least two complementary approaches, such
as methods based on heteroduplex analysis and
sequencing, for an eYcient screening of the
MECP2 gene.

We thank Dr Deblay for critical advice, Dr Florence Rousselet
for her technical contribution, and l’Association Française du
Syndrome de Rett, l’Association Française contre les myopa-
thies, and the Ministère de l’Education Nationale, de la Recher-
che et de la Technologie for their financial support.
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Temperature sensitive acyl-CoA oxidase import in
group A peroxisome biogenesis disorders

Atsushi Imamura, Nobuyuki Shimozawa, Yasuyuki Suzuki, Zhongyi Zhang,
Toshiro Tsukamoto, Tadao Orii, Takashi Osumi, Naomi Kondo

EDITOR—Peroxisome biogenesis disorders
(PBDs) are lethal genetic diseases character-
ised by a number of peroxisomal metabolic
abnormalities, including the oxidation of very
long chain fatty acids (VLCFAs), biosynthesis
of bile acids and plasmalogen, and detoxifica-
tion of H2O2. Peroxisomal matrix proteins are
synthesised on free polyribosomes and directed
to the organelle by cis acting peroxisome
targeting signals (PTSs). PTS1 is a C-terminal
tripeptide Ser-Lys-Leu (SKL) sequence and
later the consensus sequence was broadened to
(S/A/C/K/N)-(K/R/H/Q/N/S)-L, based on sub-
sequent studies. Acyl-CoA oxidase (AOX) has
SKL and D bifunctional protein has AKL.1–4

PTS2 is an N-terminal cleavable peptide
(-R/KLX5Q/HL) that resides in peroxisomal
3-ketoacyl CoA thiolase (PT), alkyl-
dihydroxyacetonephosphate synthase, and
phytanoyl-CoA hydroxylase.5–9 PBDs are ge-
netically classified into at least 12 complemen-
tation groups (CGs) and each CG contains
various clinical phenotypes, for example, Zell-
weger syndrome (ZS), neonatal adrenoleuco-
dystrophy (NALD), and infantile Refsum
disease (IRD).10 11 ZS patients have severe
neurological defects, liver dysfunction, and
renal cysts and die before 1 year of age. NALD
patients have symptoms similar to ZS patients,
but they survive a little longer, and IRD
patients show milder abnormalities in the cen-
tral nervous system and survive even longer.
We identified the restoration of peroxisome
biogenesis in a temperature sensitive (TS)
manner in fibroblasts from milder forms of
PBDs, that is, all IRD patients and some
NALD patients belonging to groups CG-A
(CG8), CG-C (CG4), CG-E (CG1), CG-F
(CG10), CG-H, and CG6.12–15 In these cells,
peroxisomes were formed at 30°C and bio-
chemical activities of peroxisomes, including
the oxidation of VLCFAs and dihydroxy-
acetonephosphate acyltransferase (DHAP-
AT), and the import of peroxisomal enzymes,
were also restored.16 However, virtually no per-
oxisomes were formed in ZS cells at 30°C and
import of peroxisomal enzymes did not im-
prove.16 Here, we elucidate temperature de-
pendent import and processing of AOX at
30°C which is unique to fibroblasts from ZS
patients belonging to CG-A. Correlation be-
tween the import of peroxisomal enzymes and
biochemical functions of peroxisomes is also
discussed.

Materials and methods
CELL LINES

Skin fibroblasts from the patients belonging to
CG-A (CG8) including four with ZS (A-02,

06, 10, and 14), two with NALD (A-05 and
08), and one with IRD (A-04) were cultured at
37°C or 30°C in an atmosphere of 5% CO2 in
MEM supplemented with 10% fetal calf
serum. A-02, A-06, and A-14 were Japanese
babies diagnosed as ZS with typical dysmor-
phic features, who died at a few months of age.
The clinical data of A-04 and A-08 have been
previously reported, whereas those of A-05 and
A-10 have not.12 In addition, ZS fibroblasts
belonging to CG-C (C-08), CG-E (E-14), and
CG-F (F-01) were cultured under the same
condition (the numbers and clinical data of
these patients have been previously de-
scribed12). All cell lines were classified by com-
plementation analysis as previously de-
scribed.10 17 18

IMMUNOFLUORESCENCE STUDY

For the detection of peroxisomes and the
import of PTSs, cells were fixed after 72 hours’
incubation at either 37°C or 30°C, permeabi-
lised with 0.1% Triton X-100, and processed
for indirect immunofluorescence staining.19

The first antibodies we used were rabbit
antibodies to human catalase, AOX, D bifunc-
tional protein, and PT, and in double immuno-
fluorescence rabbit anti-rat PMP70 antibody
was used.

BIOCHEMICAL ASSAYS

Peroxisomal VLCFA oxidation in fibroblasts
was assessed by the ratio of lignoceric acid
(C24:0)/palmitic acid (C16:0) oxidation activ-
ity.20 The activity of DHAP-AT, the first
enzyme in the pathway leading to plasmalogen
biosynthesis, was measured as described previ-
ously21 using 14C labelled DHAP as substrate.
Continuous cell labelling with 35S-methionine
and immunoprecipitation of AOX with rabbit
anti-human AOX antibody was performed as
described previously.19 22

Results
IMMUNOFLUORESCENCE STUDY IN FIBROBLASTS

FROM CG-A PATIENTS

The fibroblasts from PBD patients belonging
to the CG-A were examined by immuno-
fluorescence microscopy to determine the
import of PTS1 and PTS2 containing peroxi-
somal matrix proteins. The immunoreactivity
of these proteins in control cells showed the
same punctate pattern as previous reports
(data not shown).23 The most striking result
was that in the fibroblasts from ZS patients, the
import of AOX was rescued apparently after
incubation at 30°C, whereas it was severely
reduced or absent at 37°C (fig 1C, D, table 1).
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