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Non-invasive evaluation of arterial involvement in
patients aVected with Fabry disease

Pierre Boutouyrie, Stéphane Laurent, Brigitte Laloux, Olivier Lidove, Jean-Pierre Grunfeld,
Dominique P Germain

EDITOR—Fabry disease (FD) (OMIM
301500) is an X linked recessive disease
resulting from deficiency of the lysosomal
hydrolase á-galactosidase A.1 The enzymatic
defect leads to the widespread deposition of
uncleaved neutral glycosphingolipids in the
plasma and lysosomes, especially in vascular
endothelial and smooth muscle cells. Initial
clinical signs include skin lesions (angiok-
eratoma), excruciating acral pain, and benign
corneal opacities. Progressive glycosphingoli-
pid deposition in the microvasculature of
hemizygous males subsequently leads to fail-
ure of target organs and to ischaemic compli-
cations involving the kidneys, heart, and
brain.2 3 Much interest is currently shown in
emerging therapies for FD and recent studies
have reported that genetic engineering has
removed many of the obstacles to the clinical
use of enzyme replacement and that infusions
of purified á-galactosidase A are safe and bio-
chemically active.4 5 However, clinical and
laboratory indicators of benefit are lacking,
given the slow course of the disease. This
emphasises the need for non-invasive surro-
gate endpoints to delineate target organ dam-
age and to monitor the eYcacy of enzyme
replacement therapies.

Methods and results
In the present study, we determined intima-
media thickness (IMT) at the site of the radial
artery, a distal, muscular, medium sized artery,
in a cohort of 21 hemizygous male FD patients,
with a mean age of 32 years (SD 13, range
13-56 years), compared with 21 age and sex
matched normal controls. All patients were
diagnosed with FD by the presence of both
clinical signs and a markedly decreased
á-galactosidase A activity in leucocytes (<4
nmol/h/mg protein, normal values 25-55 nmol/
h/mg protein). No patient had end stage renal
disease. Measurements of the radial artery
parameters were obtained with a high precision
echotracking device (NIUS 02, SMH, Bienne,
Switzerland) as previously described.6 7 Briefly,
the radiofrequency signal was visualised and
the peaks corresponding to the blood-intima
and media-adventitia interface were electroni-
cally tagged and followed over several cardiac
cycles. Internal diameter and wall thickness
were then measured with a precision of about
10 µm. Four to six measurements were
averaged.6 7 Radial artery IMT was measured 2
cm upstream from the wrist.

Compared to controls, FD patients had con-
siderably higher IMT values at the site of the
radial artery (fig 1). IMT was twice as high in
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FD patients than in controls, even after adjust-
ment for body surface area, age, and mean
blood pressure (p<0.001). Radial artery IMT

increased significantly with age in each group.
However the slope was 2.3-fold higher in FD
patients than in controls (p<0.001) (fig 1).

Discussion
In the present study, we describe evidence of a
major, accelerated hypertrophy of the wall of a
medium sized artery in a cohort of patients
with FD. The magnitude of the diVerence in
radial artery IMT was very large, with virtually
no overlap between FD patients and controls.
With age, the radial artery wall thickening was
2.3-fold faster in FD patients than in controls.
The high definition echotracking system used
in the present study has been previously
validated in large subsets of patients with vari-
ous diseases, and its accuracy and reproduc-
ibility are well accepted.6 7

The most commonly proposed explanation
for the pathogenesis of cardiovascular lesions in
FD patients is the slow deposition of uncleaved
neutral glycosphingolipids within the arterial
and cardiac tissues. However, the hypothesis of

Figure 1 Correlation between radial artery intima-media
thickness and age in patients with Fabry disease (circles)
and in control subjects (triangles). Correlations are
significant (p<0.001) in both populations and slopes diVer
significantly (59 (SD 14) v 25 (SD 4) µm per 10 years,
p<0.001).
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Figure 2 Bidimensional scans and radiofrequency signals (RF) of the right radial artery from a control (A) and a
patient with Fabry disease (B). Lumen and posterior wall contours have been emphasised. Intima-media thickness (IMT)
was measured from the distance between the RF peaks corresponding to the blood-intima and media-adventitia interfaces.
Note the irregularity and the prominent thickening of the arterial wall in the Fabry patient.
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a sole lysosomal accumulation of sphingolipids
is somewhat simplistic since in the most
advanced reported cases of left ventricle hyper-
trophy in FD patients, the amount of uncleaved
glycosphingolipids found in the cardiac tissue
did not exceed 1.6% of tissue weight (10-20
mg/g wet weight).8 Other mechanisms are thus
probably involved. First, although accumula-
tion of globotriaosylceramide is the main
mechanism in FD, the metabolism of other
glycosphingolipids may also be disregulated.9

Among them, lactosylceramide, which mimics
the biological function of cytokines, growth
factors, and stress signalling molecules10 11 and
accumulates in vascular tissues of FD pa-
tients,8 9 could act as a second messenger and
potentiate the hypertrophy of the arterial wall.
Second, the smaller internal diameter of the
radial artery in FD patients may be the result
not only of wall hypertrophy encroaching the
lumen (fig 2), but also endothelial dysfunction.
Deposition of glycosphingolipids occurs pre-
dominantly in the lysosomes of endothelial and
smooth muscle cells, with consequent cellular
dysfunction.3 An altered endothelium depend-
ent relaxation of arterial smooth muscle could
occur at the site of the radial artery or
downstream, in arterioles, influencing the tonic
flow dependent vasodilatation. The mech-
anism of flow dilatation is known to occur
physiologically at the site of the radial and bra-
chial arteries,12 and has been related to changes
in basal and stimulated nitric oxide (NO)
release.12 Finally, both in the media and intima,
smooth muscle cells with glycosphingolipid
inclusions secrete important quantities of
extracellular matrix, notably elastic fibres.8

Proliferation of smooth muscle cells and extra-
cellular matrix deposition may thus contribute
to the hypertrophy of the radial artery observed
in FD patients.

In conclusion, this study presents the first
non-invasive demonstration of a major increase
in arterial wall thickness at the site of the radial
artery in a cohort of patients with confirmed
FD. The assessment of the involvement of the
large arteries, through non-invasive proce-
dures, could prove useful in monitoring new
therapies for FD in providing an intermediate
phenotype or a surrogate marker. However, the
prognostic significance of the radial artery wall
hypertrophy and its ability to regress with

emerging treatments, such us enzyme replace-
ment4 5 13 14 or gene therapy,15 remains to be
determined during follow up studies.

This study received financial support from the Institut National
de la Santé et de la Recherche Médicale (INSERM) and from
Vaincre les Maladies Lysosomales (VML).
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