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This review focuses on genes other than the high
penetrance genes BRCA1 and BRCA2 that are involved
in breast cancer susceptibility. The goal of this review is
the discovery of polymorphisms that are either
associated with breast cancer or that are in strong
linkage disequilibrium with breast cancer causing
variants. An association with breast cancer at a 5%
significance level was found for 13 polymorphisms in
10 genes described in more than one breast cancer
study. Our data will help focus on the further analysis of
genetic polymorphisms in populations of appropriate
size, and especially on the combinations of such
polymorphisms. This will facilitate determination of
population attributable risks, understanding of
gene-gene interactions, and improving estimates of
genetic cancer risks.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Breast cancer is the most common cancer in
women in the western world.1 In breast can-
cer development, genetic and environmental

factors play a role with family history being the
most important factor for determining breast
cancer risk. This risk is a function of the number
of relatives affected with breast and ovarian can-
cer, the degree of relationship to these relatives,
and their age at diagnosis of the disease.2 3

Hereditary breast cancer accounts for 5-9% of
all breast cancers.4 It was estimated that the com-
bination of BRCA1 and BRCA2 gene mutations
was responsible for approximately 80% of the
families with hereditary breast cancer.5 6 These
estimates, however, may be too high owing to the
way patients are selected, namely on the basis of
a pronounced family history of the disease. More
recent estimates put this risk at about 30%.7

Mutations of the BRCA1 and BRCA2 genes do not
explain the occurrence of breast cancer in every
breast cancer prone family.8 At least one other
major breast cancer susceptibility gene is pro-
posed to exist.9 10 In addition, a number of rare
genetic syndromes are associated with high
breast cancer risk. Together, these rare syndromes
account for less than 1% of all hereditary breast
cancers.11

Apart from these well defined, high penetrance
genes, there may be other genes that also increase
the susceptibility to breast cancer. Candidates are
proto-oncogenes and genes involved in metabolic,
oestrogen, and immunomodulatory pathways.12

Each of these genes probably confers only a small

(odds ratio (OR) 1-1.5) to moderate (OR 1.5-2)
increase in the lifetime breast cancer risk.
Because mutations in these so-called low pen-
etrance genes are expected to be present in a large
number of people, the population attributable risk
(PAR) for breast cancer explained by these genes
(in combination with environmental exposures)
may be substantial13 and (potentially) consider-
ably higher than the PAR caused by rare
mutations of high penetrance genes such as
BRCA1 and BRCA2.14 15 The published polymor-
phisms (a locus where two or more alleles are
each present at a frequency >1% in the popula-
tion) were, in general, studied because of their
biological plausibility.16–21 Some polymorphisms
may partly account for the difference in the sen-
sitivity of women to environmental factors, such
as the use of replacement oestrogens.20 In subjects
carrying low penetrance gene mutations, environ-
mental factors might especially affect the risk of
developing breast cancer. One subject may be
10-200 times more sensitive than another22 and
may therefore develop cancer, while others at the
same level of exposure will not. With the identifi-
cation of important low penetrance gene muta-
tions along with their interaction with environ-
mental factors, specific prevention may become
possible. Research on low penetrance genes
involved in breast cancer is still in its infancy.
Whole genome screens for determining low pen-
etrance genes are currently not yet financially

feasible.

This review focuses on genes other than BRCA1
and BRCA2 that may be involved in breast cancer

susceptibility. Although mutations or polymor-

phisms in many of the genes described can also

play a role in other types of common cancer, such

as colorectal, ovarian, or prostate cancer, this

review addresses only breast cancer. The aim of

the pooled analysis was to find polymorphisms

that may either have a causative relation to breast

cancer or that are in strong linkage disequilib-

rium (LD) with breast cancer causing variants

(for example, situations where certain haplotype

combinations of alleles at different loci occur

more frequently than would be expected from

random association). We studied only the relation

of the polymorphisms to breast cancer risk, since

we assumed that environmental factors will play
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an equal role in all studies. The external variables taken into

account were, where possible, menopausal state and ethnicity.

Pooled analyses were performed on all polymorphisms. In

addition, the sample size required to detect an association

with breast cancer susceptibility with sufficient power was

addressed.

METHODS
Search of published studies
Published studies were identified using the PubMed databases

from 1980 to 2000, using the search terms “breast”, “cancer”,

“risk”, and “polymorphism(s)”. For each specific candidate

gene, a separate search was performed. For example, the terms

“HRAS1”, “breast”, “cancer”, and “risk” were used for HRAS1.

In addition, the references of studies identified by the

electronic searches were also evaluated. Studies eligible for our

pooled analysis were those that compared genotype or allele

frequencies of candidate genes in breast cancer cases with

non-breast cancer controls using genomic DNA. The polymor-

phisms reported in breast cancer patients and controls in more

than one study are described separately. When more than one

polymorphism in one gene (for example, CYP1A1) or polymor-

phisms in different genes in the same region (for example, the

HLA region) were examined in only one single study, they are

also included. The different genes along with their localisation

and presumed function are presented in table 1.

Lay out per gene
For the known genetic syndromes associated with increased

breast cancer susceptibility, the possible germline mutations

in familial and sporadic breast cancer patients were addressed,

followed by somatic mutations, loss of heterozygosity (LOH,

the loss of one of the two alleles at a given locus in a tumour),

and hypermethylation. According to Knudson’s “two hit

theory”,23 the two hits required for tumour development are

generally thought of as an intragenic mutation (germline or

somatic) and LOH. Recently, it has been shown that

hypermethylation of the promoter region of a gene can also be

one of the hits required in cancer development24 25 because this

can silence the gene.26

Pooled analysis
For a better insight into the possible effects of the various

genes on breast cancer susceptibility, a pooled analysis for

each polymorphism was performed. The results of this analy-

sis are shown in table 2. The raw numbers of cases and

controls from comparable studies were analysed together. The

genotype specific ORs and the 95% confidence intervals (CIs)

were calculated for all studies combined, without adjustment

for external variables. This can result in values that differ from

those in the original article. Whenever possible, a distinction

was made between women heterozygous and homozygous for

the variant allele. Where metabolic polymorphisms are

assumed to be associated with a specific phenotype, a distinc-

tion was made between phenotype and genotype based stud-

ies (for example, CYP2D6, NAT2). For the genotype studies, the

genotypes were combined according to phenotypic classes.

Also, where possible, separate analyses were performed for the

three major ethnic subgroups, white, African-American, and

Asian.
The ORs and the 95% CIs of the studies used in the pooled

analysis of polymorphisms in three genes are shown in figs 1
(the HRAS1 polymorphism), 2 (the PROGINS polymorphism
of the PR gene), and 3 (the polymorphisms in the vitamin D
receptor (VDR) gene).

Table 1 Breast cancer susceptibility genes with their localisation and presumed function

Gene Location and function

BRCA1 17q21, DNA RP*, guardian of genome integrity292 293

BRCA2 13q12-13, DNA RP, guardian of genome integrity294 295

Tp53 17p13.1, DNA RP, protection against replication of damaged DNA296–298

ATM 11q22-23, DNA RP, sensor in cellular response to DNA double strand breaks299 300

PTEN 10q23.3, TSG†, suppresses cell cycle progression and induction of apoptosis301

LKB1 19p13.3, serine/threonine kinase, otherwise unknown function
HRAS1 11p15, proto-oncogene, control of cell growth and differentiation302

NAT1 8p22, MP‡, detoxification of arylamines17 139 303 304

NAT2 8p22, MP, detoxification of arylamines17 139 303 304

GSTM1 1p13.3, MP, detoxification of a wide range of xenobiotics, including environmental carcinogens, chemotherapeutic
agents, and reactive oxygen species305–307

GSTP1 11q13, MP, detoxification of numerous chemicals including chemotherapy agents and catechol oestrogens170 179 308

GSTT1 11q, MP, detoxification of a wide range of xenobiotics, including environmental carcinogens, chemotherapeutic agents,
and reactive oxygen species17 305 307

CYP1A1 15q, MP, EP§, metabolism of oestrogens and PAHs17 185 309

CYP1B1 2p21, MP, metabolism of PAHs194 310

CYP2D6 22q11-ter, MP, metabolism of many commonly prescribed drugs, including debrisoquine and codeine17 311

CYP17 10q24.3, EP, balance of oestrogens, progesterones, and androgens114 212

CYP19 11q21.1, EP, catalysing the conversion of androgens into oestrogens, determines the local oestrogen level312–314

ER 6q25.1, EP, binding and transfer of oestrogens to the nuclei, ER modulates transcription of a number of growth factors
(IGF-1, TGFα)315–317

PR 11q22-23, EP318

AR Xq11-12, EP
COMT 22q11.2, EP, conjugation and inactivation of catechol oestrogens319–322

UGT1A1 2q37, MP, EP, phase II drugs metabolism and maintain intracellular steady state levels of oestrogen323–325

TNFá 6p21, IP¶, central mediator in the inflammatory response and immunological activities to tumour cells265–267

HSP70 6p21, molecular chaperones, regulation of structure, subcellular localisation, and turnover of cell proteins271 326

HFE 6p21, IMP**
TFR 3q, IMP327

VDR 12q, cell differentiation328–330

APC 5q22, inhibits the progression of cells from G1 to S phase, apoptosis, cell-cell interactions331

APOE 19q13.2, lipid metabolism332

CYP2E1 10q24.3-ter, MP, metabolism of acetone, ethyl glycol, and ethanol17 333

EDH17B2 17q12-21, EP, catalyses the reaction between oestrone and oestradiol334 335

HER2 17q21, proto-oncogene, control of cell growth and proliferation336 337

TâR-I 9q33-34, cell growth338

*DNA RP: DNA repair pathway. †TSG: tumour suppressor gene. ‡MP: metabolic pathway. §EP: oestrogen pathway. ¶IP: immuno pathway. **IMP: iron
metabolism pathway.
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Table 2 Genetic polymorphisms and their allele frequencies, total number of cases and controls published, risk
genotypes with their ORs and 95% confidence intervals, PAR, and sample size required to detect an association

Polymorphisms
Allele
frequency Cases* Controls* Risk G† OR 95% CI PAR Sample size‡

Tp53
Intron 3 0.17 667 1981 W§/V¶ 0.97 0.79-1.18 2900

V/V 0.46 0.25-0.84
Exon 4 0.36 552 2219 W/V 1.08 0.88-1.13 2200

V/V 0.70 0.51-0.95
Intron 6 0.17 733 2160 W/V 0.92 0.75-1.11 1500

V/V 0.30 0.15-0.57
HRAS1 0.08 2029 3252 V carriers 2.04 1.73-2.41 14% 430
L-myc 0.50 593 214 W/V 1.12 0.77-1.63 4000

V/V 1.29 0.82-2.02
NAT1 0.24 646 796 V carriers 1.13 0.91-1.39 5% 9100
NAT2

Phenotype 0.62 476 785 V/V 0.87 0.70-1.10 7400
Genotype 0.61 1665 1809 V/V 0.99 0.87-1.13 1 410 000

GSTM1 0.72 2776 2710 V/V 1.13 1.02-1.26 6% 8900
GSTP1 0.32 538 397 W/V 1.19 0.91-1.56 17% 610

V/V 2.15 1.30-3.56
GSTT1 0.49 1324 1076 V/V 1.04 0.86-1.25 117 000
CYP1A1

m1 0.15 1371 1241 W/V 0.99 0.83-1.19 41 000
V/V 1.20 0.78-1.86

m2 0.11 791 1468 W/V 1.18 0.94-1.48 8000
V/V 0.93 0.51-1.69

m3 0.09 85 178 V carriers 1.04 0.54-2.03 150 000
m4 0.03 223 221 V carriers 0.99 0.43-2.24 5 940 000

CYP1B1
Codon 119 0.14 339 361 W/V 1.62 1.15-2.29 870

V/V 0.60 0.11-3.31
Codon 432 0.66 745 747 W/V 0.84 0.61-1.17 2700

V/V 1.09 0.79-1.50
Codon 453 0.14 223 223 W/V 0.96 0.62-1.49 31 000

V/V 1.24 0.33-4.71
CYP2D6

Phenotype 0.26 335 777 V/V 2.22 1.39-3.55 8% 610
Genotype 0.18 831 1165 W/V 1.19 0.97-1.45 6% 4600

V/V 1.26 0.81-1.96
CYP17 0.40 2725 2531 W/V 0.99 0.88-1.11 82 000

V/V 1.05 0.89-1.23
CYP19

TTTA repeat
*10 allele 0.01 3934 3514 V carriers 1.59 1.01-2.48 1% 6800
*12 allele 0.02 3934 3514 V carriers 1.11 0.83-1.49 77 000

TCT intron 4 0.35 599 433 W/V 0.79 0.61-1.03 4500
V/V 1.03 0.69-1.56

Intron 6 0.48 223 164 W/V 1.15 0.72-1.85 3300
V/V 1.33 0.77-2.29

Codon 264 0.30 160 125 W/V 0.83 0.50-1.35 4600
V/V 0.91 0.38-2.14

ER
PvuII 0.54 704 53 W/V 0.84 0.40-1.78 10 000

V/V 0.93 0.41-2.13
XbaI 0.29 191 204 W/V 0.99 0.65-1.51 1200

V/V 0.50 0.25-0.99
Codon 325 0.21 646 324 W/V 1.04 0.79-1.38 27 000

V/V 1.19 0.54-2.65
PR 0.14 1106 965 W/V 0.95 0.78-1.16 2400

V/V 0.32 0.16-0.65
COMT 0.44 1166 1167 W/V 0.92 0.76-1.10 18 000

V/V 0.89 0.71-1.12
UGT1A1 0.34 655 808 W/V 0.99 0.80-1.24 110 000

V/V 1.05 0.75-1.47
HLA

TNF-alpha 0.21 40 106 W/V 3.49 1.62-7.51 50% 79
V/V 4.80 0.28-81.1

HSP70-2 0.45 40 106 W/V 1.74 0.55-5.52 85% 11
V/V 27.5 4.30-176

HSP70-hom 0.23 40 106 V carriers 3.56 1.26-10.01 23% 84
VDR

ApaI 0.47 135 110 W/V 1.54 0.85-2.80 38% 290
V/V 2.54 1.20-5.39

BmsI 0.35 231 467 W/V 1.16 0.83-1.62 12% 1900
V/V 1.51 0.87-2.64

FokI 0.41 278 410 W/V 1.03 0.73-2.64 3% 41 000
V/V 1.09 0.69-1.73

TaqI 0.57 1197 867 W/V 0.95 0.74-1.20 61 000
V/V 0.93 0.72-1.20

Poly-A 0.27 143 300 W/V 1.59 1.04-2.42 42% 310
V/V 2.76 1.3-5.85

APOE 0.07 260 332 E2 allele 0.99 0.62-1.59 2 800 000
0.13 E4 allele 0.89 0.62-1.26 14 000

EDH17B2 0.54 190 190 W/V 0.59 0.37-0.94 1500
V/V 0.90 0.50-1.60

HER2 0.13 339 359 W/V 1.26 0.88-1.79 20% 110
V/V 12.76 1.62-98.9

TBR-1 0.06 152 735 W/V 1.58 0.96-2.59 6% 1400
TFR 0.40 165 294 W/V 1.01 0.66-1.55 4% 7500

V/V 1.20 0.70-2.05

*Cases and controls: all studies combined. †Risk G: risk genotype. ‡Sample size: the number of patients and controls required to detect an association, with power of 90% and a significance level of
0.0026 (correction for mutiple testing). §W: wild type. ¶V: variant allele.
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The pooled analysis also shows the PAR and sample size

required to detect the association with breast cancer for each

polymorphism, with a power of 90% and a significance level of

0.0026 corrected for multiple testing (also shown in table 2).

A description of the sample size calculation is given in Appen-

dix 1.

RESULTS
The unknown “BRCA3” gene
Based on several studies, a region on chromosome 8p11-21 is

considered to be involved in hereditary and sporadic breast

cancer. Linkage analysis in eight French breast cancer families

showed a multipoint lod of 2.51 (a lod score >3.0 is the

accepted statistical significance level for linkage of a genetic

locus with a disease) with two markers on chromosome 8p.27

Linkage analysis in two large German breast cancer families,

with negative lod scores for the BRCA1 and BRCA2 locus,

showed a multipoint lod score of 3.30 at two other markers,

localised between the two markers in the French study, on

chromosome 8p.28 In studies focusing on chromosome 8p, LOH

Figure 1 The HRAS1 polymorphism and breast cancer risk. The results of 12 studies (OR and 95% CI) are depicted as well as the result of
the pooled analysis comprising 2029 cases and 3252 controls.
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Figure 2 The PR gene and breast cancer risk. The results of four
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was observed in 46-74% of unselected human breast

tumours,27 29–36 in 86% of the familial tumours,32 in 78% of

tumours in women with a specific BRCA2 mutations (that is,

the 999del5 mutation),36 and in 83% of male breast tumours.37

In ductal breast carcinoma in situ, LOH on 8p was observed in

0-37% of cases,30 38 39 suggesting LOH on 8p is associated with

invasive behaviour of the tumour. Based on these LOH studies,

there are at least two different regions of minimal overlap of

LOH on chromosome 8p. The region on 8p discussed

earlier27 28 is localised in one of these regions. Mapped genes in

this region include hEXT1L,34 WRN,40 and LHRH.41 42 No somatic

or germline mutations have, as yet, been detected in these

genes in breast cancer cases.

Rare genetic syndromes with increased breast cancer
risk
The Tp53 gene and Li-Fraumeni syndrome
Inactivating mutations in the Tp53 gene have been found in

many tumour types43 44 including breast cancer.45 Li-Fraumeni

syndrome is an autosomal dominant disorder, caused by

germline mutations in the Tp53 gene. This syndrome is char-

acterised by an increased risk of soft tissue and osteosarco-

mas, leukaemias, brain tumours, adrenocortical carcinomas,

and breast cancers.46 The risk of developing breast cancer

before the age of 45 is 18-fold higher for affected females as

compared to the general population.46 The excess is greatest

below the age of 20 and declines with increasing age (relative

risk (RR) for breast cancer after the age of 45 = 1.8).46 Germ-

line mutations in the Tp53 gene have been estimated to

account for less than 1% of breast cancer cases.47–51 However,

somatic mutations in the Tp53 gene are reported in 19-57% of

human breast cancers52–57 and LOH is found in 30-42%.52 54

There is no association between somatic Tp53 mutations and

LOH at the Tp53 locus,52–55 suggesting that one inactivated

allele may be sufficient for breast cancer development.54

Hypermethylation of the promoter region of the Tp53 gene

does not play a role in breast cancers.58

Three different Tp53 polymorphisms (in intron 3, exon 4,

and intron 6) have been studied in breast cancer patients. All

three polymorphisms exhibit strong linkage disequilibrium

with each other.59 In five studies examining the intron 3 poly-

morphism, none found an association with increased breast

cancer risk.60–64 Surprisingly, the breast cancer risk for

homozygous carriers of the variant allele was decreased.

When all studies were combined, the OR for heterozygous

carriers of the variant allele was 0.97 (95% CI 0.79-1.18) and

was 0.46 (95% CI 0.25-0.84) for homozygous carriers. The

exon 461–65 and the intron 661–64 66 67 polymorphisms showed

similar results. Thus, a decreased breast cancer risk for homo-

zygous variant allele carriers was found for all three polymor-

phisms in the Tp53 gene. These homozygous variant allele car-

riers comprise 3% (intron 3), 13% (exon 4), and 3% (intron 6)

of all the women and, thus, up to 13% of women have

decreased breast cancer risks.

Four studies61–64 examined all three polymorphisms in the

Tp53 gene in relation to breast cancer risk. In one of the two

studies examining haplotypes, an association was observed

between the haplotype composed of the three variant alleles

and the risk of breast cancer among white populations

(OR=2.18, 95% CI 1.17-4.07).62 This association was not found

in Hispanic (OR=0.24, 95% CI 0.05-1.11) or African-American

patients (OR=1.13, 95% CI 0.46-2.81)62 nor in patients from

Pakistan (OR=0.77, 95% CI 0.38-1.56).64 The two other

studies61 63 did not construct haplotypes, but compared

genotype combinations. The first study found a marginally

significant association between breast cancer and the geno-

type combination that is heterozygous for all three polymor-

phisms (OR=1.68, 95% CI 0.99-2.86).63 This genotype combi-

nation did not exclude the haplotype composed of three

variant alleles from being at risk. The second study found

associations between breast cancer and two genotype

combinations.61 With the first genotype combination

(OR=2.94, 95% CI 1.37-6.27), heterozygous for the intron 3

and 6 polymorphisms and homozygous for the exon 4 variant

allele, the haplotype of three variant alleles is still supported.

With the second genotype combination (OR=1.61, 95% CI

1.13-2.30), homozygous for the intron 3 and 6 wild type allele

and heterozygous for the exon 4 polymorphism, the variant

allele haplotype is not possible. The fact that the four studies

used different methods to examine the polymorphisms ham-

pers the comparison of results. However, the analysis showed

that the haplotype composed of the three variant alleles is

associated with an increased breast cancer risk, particularly in

white breast cancer patients.

The ATM gene and ataxia telangiectasia
Most A-T patients do not survive to an age at which breast

cancer generally occurs.68 A-T carriers (heterozygous for ATM
mutations) are sensitive to late onset apoptosis after x ray

irradiation owing to accumulation of cell cycle checkpoint

abnormalities.69 In several studies, A-T carriers appear to have

an increased breast cancer risk (OR 3.3-870–76 and PAR

3.8-8.5%68 73–75). However, in all studies the OR was determined

with the observed/expected method and all groups were small.

One study found no increased breast cancer risk among A-T

carriers.77 The risk of A-T carriers to develop breast cancer is

estimated to be 11% by the age of 50 and 30% by the age of

70.78

Germline mutations in the ATM gene are rare in breast can-

cer families without features of A-T.79 80 In sporadic breast

cancers, germline and somatic mutations in the ATM gene are

also rare,81 82 even in young patients83 84 and patients with

bilateral breast cancer.85 In 88 breast cancer patients with a

family history of breast cancer and leukaemia or lymphoma,

three germline mutations in the ATM gene have been found.79

Chen et al80 examined these three mutations and none

appeared to be causal. In 82 Dutch breast cancer patients

(diagnosed before the age of 45, >5 years survival) including

33 bilateral cases, seven germline mutations were found, one

out of frame splice site mutation (detected three times), three

truncating mutations, and one in frame deletion.86 It was

hypothesised that the existence of two distinct classes of A-T

mutations (truncating and missense) might explain some of

the seemingly contradictory data on cancer risk associated

with the ATM gene.87 88 The truncating mutations act as null

mutations because they produce low cellular levels of an

unstable ATM protein. Because truncating mutation carriers

have 50% of wild type ATM activity, they will have an almost

normal phenotype. Some missense mutations encode stable,

but functionally abnormal proteins that are present at normal

intracellular levels. These proteins could compete in complex

formation with the normal ATM protein, resulting in a domi-

nant negative cellular phenotype. The functional loss in ATM
missense mutation carriers might be more severe than in ATM
truncating mutation carriers and, thus, only ATM missense

mutations might be associated with an increased cancer

risk.88 In most studies, A-T carrier detection in breast cancer

cases was based on the protein truncation test and could only

detect truncating mutations. Support for the existence of two

functionally distinct classes of mutations can be derived from

a study describing an increased breast cancer risk in two A-T

families with a specific ATM missense mutation (T7271G) in

both homozygotes and heterozygotes, with an age specific

incidence rate based OR of 12.7 (95% CI=3.53-45.9).89 This

mutation results in an aberrant full length ATM protein level

comparable with unaffected subjects.89 Another explanation

for the seemingly contradictory data on breast cancer risk is

that the carrier frequency of A-T mutations could be much

lower than the described 1% of the general population causing

a low PAR. If this is the case, the OR for breast cancer in A-T
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carriers can be high (as found in the A-T families), while

mutations in the ATM gene are rarely detected in sporadic

breast cancer patients.

A recent study of 138 Austrian hereditary breast and ovar-

ian cancer (HBOC) patients without BRCA1 and BRCA2
mutations90 showed functionally significant ATM germline

mutations in at least 8.7% of the HBOC patients. The

penetrance for one of the mutations (L1420F) was estimated

to be 85% at age 60.

In conclusion, although the exact association remains

unclear, a role for the ATM gene in breast cancer susceptibility

is plausible.

The PTEN gene and Cowden syndrome
Cowden syndrome is an autosomal dominant disorder,

characterised by the development of hamartomas and benign

tumours. Mutations in the PTEN gene are present in 80% of

Cowden syndrome families.91 92 Truncating PTEN mutations in

Cowden syndrome families are associated with cancer93 and

cause a 25-50% lifetime breast cancer risk in women.92 94 95 No

mutations in the PTEN gene have been detected in breast can-

cer families and families with breast and brain cancer without

features of Cowden syndrome.96–99 In sporadic breast cancer

patients, germline and somatic mutations in the PTEN gene

are rare100–104 even in young patients.96 105 LOH at the PTEN locus

is found in 11-41% of sporadic breast cancers,102–104 106 but no

somatic mutations have been observed in the remaining

allele.103 104 106 It is, however, still possible that an epigenetic

phenomenon such as hypermethylation of the promoter

region inactivates the remaining allele.107 In one study (in 177

breast cancer patients with a positive family history for breast

cancer and without BRCA1 and BRCA2 mutations), an associ-

ation was found between a polymorphism in intron 4 of the

PTEN gene and a lower age of diagnosis of breast cancer (42.7

versus 48.1 years).98 No comparison, however, was made with

healthy controls. In conclusion, the PTEN gene is not likely to

play a role in classical hereditary breast cancer. In sporadic

breast cancers, LOH at the PTEN locus is detected, but since no

alterations have been found in the remaining allele, it is not

currently known whether PTEN plays a role in sporadic breast

cancer susceptibility.

The LKB1 gene and Peutz-Jeghers syndrome
Peutz-Jeghers syndrome is an autosomal dominant disorder

characterised by hamartomatous polyps in the small bowel

and pigmented macules of the buccal mucosa, lips, fingers,

and toes.108 This syndrome is caused by truncating germline

mutations in the LKB1 gene.109 110 Patients with Peutz-Jeghers

syndrome have an increased breast cancer risk.108 111 No germ-

line mutations were detected in 22 patients from 14 breast

cancer families with LOH on chromosome 19p.112 In 62

primary breast cancers in women without Peutz-Jeghers syn-

drome, no somatic mutations were found in the LKB1 gene

and LOH was observed in only 8%.113 In conclusion, the LKB1
gene seems to play a role in breast cancer susceptibility, but

only in patients with Peutz-Jeghers syndrome.

Low penetrant breast cancer susceptibility genes
There are several classes of potential low penetrance breast

cancer susceptibility genes, such as proto-oncogenes, meta-

bolic pathway genes, oestrogen pathway genes, and immu-

nomodulatory pathway genes.

Proto-oncogenes
Proto-oncogenes are involved in the regulation of normal cell

growth and differentiation. Mutations in proto-oncogenes

lead to disturbances in the cell cycle and can result in abnor-

mal growth or proliferation.114 Well known proto-oncogenes

are the RAS genes, the HER2 gene, and the myc genes.

HRAS1
The HRAS1 gene encompasses four exons flanked by a variable

tandem region repeat at the 3′ end.115 116 This minisatellite

locus is composed of four common alleles (94% of the white

population117) and dozens of variants, the so-called intermedi-

ate and rare alleles. Each variant allele is derived from the

common allele nearest in size to it.118 The HRAS1 polymor-

phism was examined in 13 studies.119–131 Positive ORs were

detected in all studies (fig 1), five of which reached

significance119 124 128 129 131 with ORs of 2-7. Combining the stud-

ies showed an association between rare HRAS1 alleles and

breast cancer (OR=2.03, 95% CI 1.72-2.40), with a PAR of

14%. There are, however, several methodological problems in

performing this pooled analysis, since the choice of the cut off

point between rare, intermediate, and common alleles is diffi-

cult to make and the distribution of the alleles in subgroups of

the population varies between studies.132 The choice of rare

alleles (frequency <4%) is not the same for all studies and

does not correspond to any previous biological

interpretation.132 In most studies there are four common alle-

les and the rest of the alleles are listed as rare. With this as the

criterion, our pooled analysis indicated that the rare HRAS1
alleles are associated with a moderately increased risk of

breast cancer.

L-myc
Three studies focused on L-myc and breast cancer risk.133–135 In

one study, no controls were examined.134 Another study found

an association with breast cancer135 for women heterozygous

(OR=2.25, 95% CI 1.12-4.51) and homozygous (OR=2.63,

95% CI 1.22-5.68) for the variant allele. When all three studies

were combined for our pooled analysis, no association with

breast cancer was found.

Metabolic pathway genes
Enzymes involved in metabolic pathways are of interest

because of their possible role in (de)toxification of chemical

compounds.136 A number of metabolic pathway genes, includ-

ing the cytochrome p450 family, the GST family, and the NAT1
and NAT2 genes, are thought to have evolved as an adaptive

response to environmental exposure to toxins, including some

carcinogens. The prediction is therefore that any alteration in

the activity of these enzymes would result in an altered

susceptibility to potentially toxic (mutagenic) compounds.

This may determine the rate at which somatic mutations occur

in genes in response to environmental exposures, resulting in

an altered cancer susceptibility. The cytochrome p450 family

proteins are known as phase I enzymes. In general, these

enzymes metabolically activate carcinogens.137 A genotype

associated with an increased phase I enzyme activity might

therefore increase breast cancer risk.138 The NAT and GST fam-

ily proteins are known as phase II enzymes. These enzymes

metabolically inactivate carcinogens. The substrates for phase

II enzymes include carcinogenic compounds activated by the

phase I enzymes. A genotype associated with decreased phase

II activity might therefore increase breast cancer risk.138

N-acetyl transferase (NAT)
Both NAT1 and NAT2 are polymorphic with so-called fast and

slow phenotypes. Slow acetylators produce proteins that are

either poorly expressed, are unstable, or have partially reduced

catalytic activities.139 In theory, having the slow acetylator

phenotype could mean that aromatic amines are metabolised

more slowly and that slow acetylators might, therefore, be at

increased breast cancer risk.114

NAT1
The NAT1*10 allele is associated with the rapid acetylation

phenotype; all other alleles represent slow alleles.139–141 This

allele is present in 30% of populations of European
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ancestry.142 Two studies found no association with breast can-

cer risk either separately or combined.143 144 The NAT1 polymor-

phism does not appear to play a major role in breast cancer

susceptibility, although a small increase in breast cancer risk

cannot be excluded.

NAT2
The acetylation capacity in NAT2*4 homozygotes in vivo is

higher than in NAT2*4 heterozygotes and all variant alleles

have lower acetylation capacities.145 The population frequency

of the fast acetylator genotype of the NAT2 gene is

22-78%.145–147 None of seven studies found an increased breast

cancer risk for the slow acetylator NAT2 phenotype,148–154 while

two studies found a decreased breast cancer risk.148 153 No

association with breast cancer risk was found when all studies

were combined. The results for the NAT2 genotype were simi-

lar. No effect on breast cancer risk was found when the stud-

ies were combined in our pooled analysis.143 155–159 In conclu-

sion, the NAT2 polymorphism does not play a role in breast

cancer susceptibility.

Combination of NAT1 and NAT2
One study examined both polymorphisms.143 No association

between these polymorphisms and breast cancer was ob-

served for either the NAT1 or NAT2 genes separately or

combined.

Glutathione S-transferase (GST) family
Deletion variants that are associated with a lack of enzyme

function exist at GSTM1 and GSTT1.160 Homozygotes for null

deletions in the GSTM1 and/or GSTT1 genes may have an

impaired ability to eliminate carcinogens metabolically and

may therefore be at increased cancer risk.

GSTM1
GSTM1 is polymorphically expressed as GSTM1-0 or null

(homozygous deletion) and GSTM1a and GSTM1b.160 Between

20 and 60% of the general population are homozygous null for

the GSTM1 gene.161–164 The GSTM1 null variant has been well

examined in breast cancer studies with varying results.165–178

Our pooled analysis showed an association between this poly-

morphism and breast cancer risk, although this increase is

very small and only marginally significant (OR=1.13, 95% CI

1.00-1.26). The combined sample size is large enough to

exclude a moderate increase in breast cancer risk for GSTM1
null homozygous carriers.

GSTP1
In 31% (24/77) of the breast cancer cases, hypermethylation of

the GSTP1 promoter region was detected.179 A polymorphism,

the isoleucine to valine substitution at codon 105, has been

associated with reduced conjugating activity of the gene.180

This polymorphism has been examined in three

studies.170 176 181 Our pooled analysis showed a moderately

increased breast cancer risk for women homozygous for the

Val allele (OR=1.86, 95% CI 1.05-3.3) with a PAR of 14%. Thus,

the GSTP1 polymorphism appears to play a role in breast can-

cer susceptibility, although the total number of cases (n=301)

and controls (n=397) was small.

GSTT1
The GSTT1 gene has two functionally different genotypes,

GSTT1-0 or null (homozygous deletion) and GSTT1+ (one or

two undeleted alleles).160 The GSTT1 null genotype has been

linked to increased DNA damage from experimental

carcinogens.182 In different populations, 9-64% are homo-

zygous null for the GSTT1 gene.164 182–184 Six studies examining

this polymorphism showed no association with breast

cancer.169 170 172 175–177 The results were similar for premenopausal

and postmenopausal women. Based on the combined sample

size, a moderate increase in breast cancer risk can be excluded

for women homozygous null for the GSTT1 polymorphism.

Combination of GSTM1, GSTT1, and GSTP1 polymorphisms
Six studies169 170 172 175–177 examined both GSTM1 and GSTT1 poly-

morphisms and breast cancer risk and four of them170 172 176 177

also analysed the GSTP1 polymorphism. In one study, no con-

trols were examined and it was therefore not included in our

pooled analysis.

Of the five studies that examined the combination of two of

the GST genes, one found an association between the two risk

genotype and breast cancer for all three combinations of GST
genes.170 Another detected an association between the two risk

genotype for the GSTM1 and GSTT1 gene and breast cancer.177

Pooled analysis showed an increased breast cancer risk for the

one and the two risk genotype of all three gene combinations,

although only the two risk genotype of the GSTM1 and GSTP1
combination reached significance (OR=1.65, 95% CI 1.00-

2.71).

For the two studies where all three polymorphisms were

examined, the results were similar.170 176 The study that

observed associations with the two risk genotypes also

showed an association between the three high risk alleles and

breast cancer.170 When both studies were combined, increased

breast cancer risks were observed for carriers of the one, two,

or three risk genotype, although only the two risk genotype

reached significance (OR=1.90, 95% CI 1.13-3.22).

Cytochrome p450 family
Certain substrates, including almost all carcinogens, are

metabolically activated by cytochrome p450 metabolism,

which results in the formation of mutagenic, chemically reac-

tive electrophiles. Most prescribed drugs are substrates for one

or more cytochrome p450 isoenzymes.17 Individual cyto-

chrome p450 isoenzymes have a unique substrate specificity,

although a certain overlap between the enzymes is

observed.17

CYP1A1
This gene codes for aryl hydrocarbon hydroxylase (AHH).114

AHH is strongly inducible; differences in xenobiotic metabolic

activity between subjects even within a family can be over

200-fold.185 Changes in AHH activity, resulting in different

oestrogen levels, could affect breast cancer risk.16 114 Four poly-

morphisms have been described in the CYP1A1 gene, namely

the m1 polymorphism, the m2 polymorphism (associated

with increased enzyme activity in vitro, both for homozygotes

and heterozygotes for the variant allele186 187), the m3 polymor-

phism (only present in African-Americans), and the m4 poly-

morphism. The m1 and m2 polymorphisms are in linkage

disequilibrium,17 whereas the African-American specific poly-

morphism (m3) does not cosegregate.17 Five studies examined

the m1 polymorphism with varying results.169 188–191 Combining

all studies of white populations169 188 189 191 showed an associ-

ation between heterozygous carriers of the variant allele and

an increased breast cancer risk (OR=1.33, 95% CI 1.06-1.66).

Two of the studies also examined African-Americans.169 191 No

association with breast cancer was observed, but the total

number of cases (n=84) and controls (n=177) was small and

a (moderately) increased risk cannot be excluded. No overall

association was detected in a Chinese study.190 An increased

breast cancer risk was found for postmenopausal women

homozygous for the m1 variant allele (OR=2.97, 95% CI 1.14-

7.76), but the number of subjects was small (78 cases and 81

controls). When all studies, regardless of ethnicity, were com-

bined, no association was found between breast cancer and

the m1 polymorphism.

No association with breast cancer risk was found in eight

studies examining the m2 polymorphism16 167 169 189–192 regard-

less of whether they were analysed separately or were
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combined. However, by combining the two studies which ana-

lysed postmenopausal women only,167 190 an association with

breast cancer was found for both heterozygous carriers of the

m2 variant allele (OR=1.59, 95% CI 1.07-2.37) and women

homozygous for the variant allele, although the latter associ-

ation is not significant (OR=2.53, 95% CI 0.92-6.96). This is

probably because of lack of power. The African-American spe-

cific m3 variant allele does not seem to play a role in breast

cancer susceptibility.169 191 No association with breast cancer

was observed in the one study169 that examined the m4 poly-

morphism.

In conclusion, a small increased breast cancer risk was

found in the white population for the m1 polymorphism and

a moderately increased breast cancer risk in postmenopausal

women was detected for the m2 polymorphism. A moderate

increase in breast cancer risk for variant allele carriers cannot

be excluded for all four polymorphisms owing to lack of

power. Additional data are required to define the precise

association between this gene and breast cancer, particularly

in the white population and in postmenopausal women.

CYP1B1
The CYP1B1 enzyme exceeds other p450 enzymes in both oes-

trogen hydroxylation activity and expression in breast

tissue.193 Four polymorphisms have been described in this gene

and all variants have higher hydroxylation activity.193 These

variant alleles may be associated with changes in oestrogen

metabolism and therefore breast cancer risk. Three of these

polymorphisms were examined in breast cancer patients and

controls. The codon 432 polymorphism was examined in three

studies.194–196 Large differences in variant allele frequencies

were found between different populations with the variant

allele frequency ranging from 0.15 to 0.68, with even large

differences between two Asian studies.195 196 When all studies

were combined, our pooled analysis found no association

between the codon 432 polymorphism and breast cancer. The

study examining the codon 119 polymorphism detected an

association with an increased breast cancer risk in women

heterozygous for the variant allele (OR=1.62, 95% CI 1.15-

2.29).195 However, in women homozygous for the variant allele,

a non-significant decrease in risk was found (OR=0.6, 95% CI

0.11-3.31). No association with breast cancer was observed for

the codon 453 polymorphism.194

One study examined both the codon 119 and codon 432

polymorphisms.195 The two polymorphisms were genetically

independent and no association with an increased breast can-

cer risk was found for any combination of them.

CYP2D6
The CYP2D6 variant allele is the result of a deletion of a 17.5 kb

region including the entire CYP2D6 gene.197 In white popula-

tions, 5% are homozygous for this polymorphism.17 198 These

poor metabolisers are unable to metabolise agents such as

debrisoquine and codeine.17 Seven studies, with varying

results, examined this polymorphism, three

phenotypically136 199 200 and four genotypically.197 201–203 When the

phenotype studies were combined, a moderately increased

breast cancer risk was found for poor metabolisers (OR=2.22,

95% CI 1.39-3.55) with a PAR of 8%. When the genotype stud-

ies were combined, an association was detected for carriers

(homozygous and heterozygous combined) of the variant

allele (OR=1.49, 95% CI 1.26-1.77), with a PAR of 6%. In con-

clusion, this polymorphism may play a role in increased breast

cancer susceptibility.

Oestrogen pathway genes
Experimental, clinical, and epidemiological studies show that

oestrogen and progesterone play a major role in growth and

differentiation of normal breast tissue.114 204 A prolonged or

increased exposure to oestrogen is associated with increased

breast cancer risk.205 206 Endogenous and exogenous hormones

stimulate cell proliferation, and thus enhance the chance of

accumulating random genetic errors. The most widely

accepted risk factors for breast cancer such as age at

menarche, age at first pregnancy, number of pregnancies,

breast feeding, age at menopause, and obesity,1 12 207 can be

considered measures of the cumulative dose of oestrogen that

breast epithelium is exposed to over time.205 208 Several oestro-

gen metabolites can directly or indirectly cause oxidative DNA

damage.209 210 In conclusion, genes involved in the metabolism

of sex hormones (that is, oestrogens) are interesting

candidates for breast cancer susceptibility genes.207 211

Cytochrome p450 family
CYP17
A polymorphism in the CYP17 gene was detected in the 5′
untranslated region. The variant allele of this polymorphism

has an additional SpI type promoter site. Since it is thought

that the number of 5′ promoter elements correlates with pro-

moter activity,114 women with this allele might have higher

oestradiol levels.212 An association between the presence of at

least one variant allele and an increased serum oestrogen and

progesterone level at day 11 and day 22 of the menstrual cycle

is found in young, nulliparous women.213 One male breast

cancer study (64 cases and 58 controls) observed an increased

risk for variant allele carriers (OR=2.10, 95% CI 1.04-4.27).214

Ten studies on female breast cancer examined this.18 214–221 One

found an association (OR= 1.99, 1.15-3.45) between variant

allele carriers (homozygous and heterozygous) and breast

cancer in young women (<37 years of age),222 but the number

of cases (n=109) and controls (n=117) were small. Six other

studies in premenopausal women214 216 218 219 221 223 showed no

association between this polymorphism and breast cancer.

When all studies were combined in our pooled analysis, no

association with breast cancer was found. In conclusion, based

on the combined sample size, even a small increase in breast

cancer risk overall can be excluded. However, because the

studies did not further discriminate for age, an increased risk

for breast cancer in young women carrying the variant allele

cannot be excluded.

CYP19
Several polymorphisms have been described in the CYP19
gene. A tetranucleotide repeat polymorphism, (TTTA)n, is

located in intron 4, about 80 nucleotides downstream from

exon 4.224 Our pooled analysis of the five studies examining the

(TTTA)10 allele polymorphism225–229 showed an OR of 1.59

(95% CI 1.01-2.48), with a PAR of 1%. There is, however, a

problem in performing a pooled analysis on this polymor-

phism, because the studies use different methods to detect the

alleles. Two studies found eight different alleles while the

three others found seven, six, and five respectively. Two other

polymorphisms in intron 4 and 6 described in one study were

in strong linkage disequilibrium with the tetranucleotide

polymorphism.229 No association with breast cancer was

detected for either polymorphism. Another polymorphism

(codon 264) also showed no association with breast cancer.230

In conclusion, this gene might play a (minor) role in breast

cancer susceptibility.

Oestrogen receptor (ER) gene
ER is a critical determinant of cellular responsiveness to oes-

trogen and is thought to play an important role in breast can-

cer promotion.114 Germline and somatic mutations in the ER
gene in breast cancer cases are rare.231 Five somatic mutations

in the ER gene have been found in only four out of 300 human

breast tumours.232–234 Methylation of the promoter region of the

ER gene was detected in 25% of ER negative breast cancers,

while no methylation was found in ER positive tumours and

normal breast specimens.235 Several polymorphisms in the ER
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gene have been described. The PvuII polymorphism in intron 1

was examined in three studies,233 236 237 one of which did not use

controls.233 The two other studies found no association with

breast cancer, although the genotypes of cases (and not of

controls) were only given in one.237 When the three studies

were combined, with control genotypes from one study,236 no

association was found. The total number of controls (n=53),

however, is very small. The XbaI polymorphism237 showed a

decreased breast cancer risk (OR=0.50, 95% CI 0.25-0.99) for

homozygous carriers of the variant allele (10.5 kb allele). In

this study, both the number of cases (n=191) and controls

(n=204) was small. A third polymorphism, in codon 325, is

located in the hormone binding domain and might therefore

be correlated with the ER function.234 This was examined in

three studies,233 234 238 including one study without controls.233

No association with breast cancer was found when the three

studies were combined.

Surprisingly, only five relatively small studies examined

polymorphisms in the ER gene. Owing to the small sample

sizes, an association with breast cancer risk can neither be

confirmed nor excluded.

Progesteron receptor (PR) gene
Methylation of the CpG islands in the 5′ region of the PR gene

was found in 40% of PR negative breast cancers cases (6/15)

and not found in 15 PR positive tumours or normal breast

specimens.235 A polymorphism in intron 7 of the PR gene has

been described. The variant PROGINS allele consists of a 306

bp insertion of the Alu subfamily.239 Four studies studied this

polymorphism in relation to breast cancer risk.240–243 Although

the studies observed different ORs for heterozygous carriers,

the ORs for women homozygous for the PROGINS allele were

similar, ranging from 0.27-0.63 (fig 2). Pooled analysis of these

studies showed that the OR for women homozygous for the

variant allele was 0.32 (95% CI 0.16-0.65). Thus, instead of an

increased risk, four studies separately and combined found a

decreased breast cancer risk for homozygous carriers of the

PROGINS allele.

Androgen receptor (AR) gene
A mutation in the AR gene was detected in three male breast

cancer patients with (partial) androgen resistance, two

brothers244 and one sporadic patient.245 An increased risk of

breast cancer was found in women with BRCA1 mutations

(165 women with breast cancer, 139 without) if they inherited

at least one AR allele with >27 CAG repeats.246 Two other stud-

ies in sporadic breast cancer patients found no association

between the number of CAG repeats and breast cancer risk (in

total, 876 cases and 810 controls).247 248 This polymorphism

therefore does not appear to play a major role in breast cancer

susceptibility.

Catechol-O-methyltransferase (COMT)
A polymorphism was identified in the COMT gene at codon

158249; the normal allele was designated COMT-H and the vari-

ant allele COMT-L. The variant allele encodes a thermolabile

form of the enzyme with reduced activity. Four studies exam-

ined this polymorphism.19 219 250 251 No increased breast cancer

risk (overall, for premenopausal or for postmenopausal

women) was found when all studies were combined.

Uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) gene
A TA repeat polymorphism has been reported in the promoter

region of the UGT1A1 gene. Increasing the number of repeats

in this polymorphism leads to a decrease in enzyme

activity.252 253 The wild type allele (UGT1A1*1) contains six TA

repeats and the most common variant allele (UGT1A1*28)

seven. Two other variant alleles (UGT1A1*33, five repeats and

UGT1A1*34, eight repeats) have been found almost exclusively

in the African-American population.252 254 Among premeno-

pausal women, an association was found in an African-

American population.253 An increased breast cancer risk

(OR=1.8, 95% CI 1.0-3.1) was detected for heterozygous and

homozygous carriers of the variant alleles with a decreased

enzyme activity (UGT1A1*28 and UGT1A1*34). In a white

population in another study, no association was found.254 No

association between breast cancer risk and the UGT1A1*28
allele was detected when the studies were combined.

HLA region
The principal function of the highly polymorphic HLA

antigens is to bind peptide fragments, so that they can be

optimally presented to cytotoxic T lymphocytes and natural

killer cells.255 The HLA antigens play a major role in immunity,

self-recognition, and cell and tissue differentiation. Several

studies observed no association with breast cancer.256–259 Other

studies have indicated that different HLA antigens may either

be risk factors for or protective against breast cancer.260–263 No

strong associations with specific alleles were found and (some

of) the results were contradictory. In one study, a family was

examined in which more than 40% of the members of two

generations had cancer (mostly breast, endometrial, and

gastrointestinal).264 Positive lod scores to markers within or

near the HLA region were found. None of the lod scores, how-

ever, reached significance.264 In conclusion, several reports

have indicated that different HLA alleles may be risk factors

for or protective factors against cancer. No clear associations

with specific alleles have been detected.

Tumour necrosis factor á (TNFá) gene
The TNFα gene is a central mediator in the inflammatory

response and immunological activities towards tumour

cells.265–267 One polymorphism in the TNFα gene occurs in a

series of repeating conserved motifs and is not randomly dis-

tributed. It therefore most likely has some functional and

selective effect.268 The rare TNF2 allele of this polymorphism

lies on the extended haplotype A1-B8-DR3-DQ2,266 which is

associated with autoimmunity and high TNFα
production.269 270 A comparison of the data268 suggests that

there may be a small effect of the −308 polymorphism, with

the TNF2 allele being associated with slightly higher levels of

TNFα production. An association between TNF2 allele carriers

(heterozygous and homozygous) and breast cancer risk was

shown in one study which included 40 breast cancer patients

and 106 controls (OR=3.53, 95% CI 1.65-7.54).267

Heat shock protein 70 (HSP70) gene
In the HLA region, three intronless genes encoding members

of HSP70 are located centromerically to the TNF genes. The

genes have been identified as HSP70-1, HSP70-2, and HSP70-

hom.271 HSP70 is a determining factor in immunological

mechanisms against tumour cells267 and HSPs can serve as a

target for anti-tumour immune recognition by antibodies and

T cells.272 273 Conversely, HSP70 expression on tumour cells is

correlated with the inhibition of monocytotoxic activity, which

can protect tumour cells against host immunological

reactions.267 Whether HSP70 acts as an anti-tumour immune

response enhancer or as a tumour promoter may depend on

HSP70 genotypes.267 One study showed that the variant allele

carriership of the HSP70-hom gene was associated with breast

cancer (OR=3.56, 95% CI 1.26-10.01), whereas carriership of

the HSP70-2 gene was not (OR=2.36, 95% CI 0.75-7.33).267

Iron metabolism
Experimental, clinical, and epidemiological investigations

have shown that iron can influence carcinogenesis.274 In-

creased body iron stores have been associated with cancer risk.

A number of genes are involved in iron metabolism, including

the haemochromatosis gene (HFE) and the transferrin recep-

tor (TFR) gene.
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The HFE gene and hereditary haemochromatosis (HH)
So far, two point mutations (Cys282Tyr and His63Asp) have

been detected in the HFE gene of HH patients. Over 80% of

haemochromatosis patients are homozygous for the

Cys282Tyr mutation.275 Heterozygous carriers, comprising 15%

of the American population, have, on average, increased iron

stores as compared to non-carriers.276 277 In a study of 1950 HH

heterozygotes and 1656 controls, no increased breast cancer

risk was detected (OR=0.98, 95% CI 0.81-1.19).277 In another

study with 165 cases and 294 controls, no association was

found between breast cancer and the HFE and TFR genotypes

when the genotypes were tested both separately and

together.278 In conclusion, the HFE and TFR genes do not play

a major role in breast cancer susceptibility.

Other genes
Vitamin D receptor (VDR) gene
Five polymorphisms of the VDR gene have been studied in

breast cancer patients and controls. Four of these, the TaqI,
ApaI, BsmI, and the poly-A polymorphism, are located in the 3′
region of the gene and are in linkage disequilibrium with each

other. One polymorphism, FokI, is located in the 5′ region of

the gene and is not in linkage disequilibrium with the other

polymorphisms. The TaqI polymorphism, associated with

increased serum vitamin D3 levels,279 was examined in three

studies.247 279 280 No association with breast cancer was found in

our pooled analysis (fig 3). The BsmI polymorphism was

investigated in two studies and, when they were combined,

again no association with breast cancer was found (fig

3).281 282 The two other polymorphisms in the 3′ region of the

gene, the ApaI and the poly-A polymorphism, were each

addressed in one small study. For both polymorphisms, an

increased breast cancer risk was found for carriers (hetero-

zygous and homozygous) of the variant allele (ApaI, OR=1.56,

95% CI 1.09-2.24280; poly-A, OR=1.73, 95% CI 1.16-2.59282; fig

3). Pooled analysis of the two studies on the FokI

polymorphism280 282 detected no association with breast cancer

(fig 3). In one study, haplotypes of the ApaI (variant allele a)

and the TaqI (variant allele T) polymorphisms were tested.

Women with the genotype aaTT (homozygous for the

haplotype of both variant alleles) had an increased breast

cancer risk (OR=2.5, 95% CI 1.02-6.5) as compared to women

with the genotype Aatt.280 The results of the different

polymorphisms in this gene are contradictory, and it remains

unclear whether the VDR gene plays a role in breast cancer

susceptibility.

The APC gene
Breast tumours (n=227) were screened for truncating muta-

tions in exon 15 of the APC gene (77% of the coding sequence)

and only one somatic mutation was found.283 Somatic

mutations in the APC gene were detected in 13 of 70 breast

cancer cases in another study.284 Most of these mutations were

outside the mutation cluster region that has been noted for

colorectal cancer.284 One of the polymorphisms in the APC
gene, the I1307K polymorphism, is specific to Ashkenazi Jews.

In Ashkenazi Jewish women with breast cancer without a

BRCA1 or BRCA2 mutation, no association between breast

cancer and the I1307K polymorphism was detected.285 286 In

another study, the presence of the I1307K allele among

BRCA1/2 carriers was not associated with a further increase of

cancer risk.287 This polymorphism probably does not play a role

in breast cancer susceptibility.

Combinations of polymorphisms in different genes
One study examined the four polymorphisms in the CYP1A1
gene and the GSTM1 and GSTT1 polymorphisms.169 None of

these polymorphisms, either separately or combined, was

associated with increased breast cancer risks. Others analysed

a combination of the m2 polymorphism in the CYP1A1 gene

and the GSTM1 polymorphism and again no associations were

found.167 One study219 examined the m1 polymorphisms in the

CYP1A1 gene and the polymorphisms in the CYP17 and COMT
genes. The presence of at least two putative high risk

genotypes was associated with an increased risk of breast

cancer (OR=3.47, 95% CI 1.21-9.99).

In conclusion, in a few studies with small sample sizes,

combinations of polymorphisms were examined.

DISCUSSION
This review, which examined 34 polymorphisms in 18 differ-

ent genes, described in more than one breast cancer study,

whenever possible with pooled analysis, showed an associ-

ation with breast cancer for 13 polymorphisms in 10 genes.

Increased breast cancer risks were found for the polymor-

phisms in HRAS1, GSTM1, GSTP1, CYP1B1 (codon 119),

CYP2D6, CYP19, and VDR (ApaI and poly-A), with PARs ranging

from 1-41%. Interestingly, decreased breast cancer risks were

found for women homozygous for the variant allele for the

intron 3, exon 4, and intron 6 polymorphisms in the Tp53 gene,

the XbaI polymorphism in the ER gene, and the PROGINS

polymorphism in the PR gene. Women with these genotypes

may represent a subpopulation where prevention strategies

can be less intensive than in the general population. The

pooled analysis was performed on large (>2000 cases) sample

sizes for the HRAS1, GSTM1, and CYP19 polymorphisms. There

is, therefore, strong evidence for increased breast cancer risks

associated with these polymorphisms, although the increase

in breast cancer risk for the GSTM1 polymorphism is very

small. More research on these three genes will probably only

narrow the confidence intervals and not change either the

ORs or the allele frequencies. The sample sizes studied for

other polymorphisms, such as Tp53 (intron 3, exon 4, and

intron 6), GSTP1, CYP1B1 (codon 119), ER (XbaI), and VDR
(ApaI and poly-A), were quite small (<1000 cases). Because of

this, the association with increased breast cancer risk is not

confirmed. The sample sizes for the polymorphisms of CYP2D6
and PR were intermediate (between 1000 and 2000 cases). Our

pooled analysis indicated that there is an association with

breast cancer, although more research (larger sample size)

could slightly change both the ORs and the allele frequencies.

The pooled analysis for 12 other polymorphisms in nine genes,

namely L-myc, NAT1, NAT2, GSTT1, CYP1A1, CYP17, AR, COMT,

and UGT1A1, showed no association with breast cancer. For

NAT2, GSTT1, and CYP17, the polymorphisms with large sam-

ple sizes, an association with breast cancer can be excluded.

For polymorphisms with small (L-myc, NAT1, CYP1A1 (m2, m3

and m4), AR, and UGT1A1) or intermediate (CYP1A1 (m1) and

COMT) sample sizes, an association with breast cancer cannot

be excluded.

Somewhat different rules are applicable for polymorphisms

described in only one study. To conclude from a negative result

that the original effect is likely to be an artefact, a sample size

of roughly four times the initial study is needed when

replicating these studies (see Appendix 1). Eight polymor-

phisms (TNF-α,267 HSP70-2,267 HSP70-hom,267 APOE,288

EDH17B2,289 HER2,290 TBR-1,291 and TFR278) are each described in

only one study, all of which have (very) small sample sizes. A

weak association with breast cancer was found for five of these

(TNF-α, HSP70-2, HSP70-hom, EDH17B2, and HER2). Replica-

tion of this is needed either to confirm or reject the tentative

findings.

Strikingly little research has been performed on combina-

tions of polymorphisms which are addressed in only a few

studies in breast cancer patients. An association with

increased breast cancer risk was found for combinations of

polymorphisms in the different GST genes, although the total

number of cases (n=238) and controls (n=240) was small

and the association was only marginally significant. No
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evidence was observed for other associations with breast can-

cer for certain combinations, but this was mainly because of

small sample sizes. For polymorphisms not associated with

breast cancer when studied separately, an association is still

possible in combination with other polymorphisms. Since the

products of several genes interact (almost half of the reviewed

genes play a role in oestrogen metabolism), interactions

between the genes are likely.

When the variant itself is non-functional, but in linkage

disequilibrium with some other functional variant, the overall

risks may not be applicable to all populations, as linkage dis-

equilibrium for certain variants often differ between

populations.21

Finally, it is not unlikely that other genes exist that give rise

to variation in breast cancer susceptibility, but have not yet

been identified and/or tested. A whole genome screen would

be the ideal method to detect new breast cancer susceptibility

genes. This method, however, is still too expensive to carry out

in large study populations. Until this is (economically)

feasible, it would be useful to collect data on an appropriately

sized, well described study population. Analysis of several (or

all) of the polymorphisms already known to be associated

with breast cancer in the same population will increase our

understanding of the aetiology of breast cancer. More specific

risk assessments will become available for women

individually,16 with targeted breast cancer prevention

strategies.13
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Another risk factor for MI?

Platelet receptor gene Ibα-5T/C Kozak polymorphism may influence the risk of MI, concludes a pre-
liminary UK study. In the prelude to MI platelets attach, through a glycoprotein complex GPIb/IX/V,
to von Willebrand factor on plaques in the arterial walls. Four subunits (GPIbα, GPIbβ, GPIX, GPV)

comprise the receptor complex, each specified by a single gene; the GPIbα subunit has the binding site
for von Willebrand factor. Douglas et al speculated that the GPIbα-5T/C sequence Kozak polymorphism—
affecting GPIb/IX/V expression—and GPIbα variable number tandem repeats (VNTRs)—affecting its
structure and lengthening the receptor—might alter the risk of MI. GPIbα Kozak polymorphism is a
thymine (T) or cytosine (C) at position −5 around the ATG initiator codon; GPIbα VNTR has four variants
(A-D) in descending molecular size.

Douglas et al analysed how common these genotypes were in patients aged 33–80 years (180 white, 76
Indian Asian), recruited at cardiac catheterisation, for those with confirmed MI (one group) and without
(another group) but otherwise matched for known risk factors.

GPIbα Kozak homozygous TT genotype was strongly linked with MI (infarct group TT 85.2%, TC 12.5%,
CC 2.3%; non-infarct group TT 67.3%, TC 32.7%, CC 32.7; p=0.001) as was TT versus TC and CC genotypes.
GPIbα VNTR genotypes showed no link, except marginally, between CC and all other genotypes. Neither
polymorphism was linked with severity of arterial disease.

TT Kozak genotype may be important in MI, the authors conclude, but confirmation awaits a larger
prospective study.
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