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Mandibuloacral dysplasia caused by homozygosity for the
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L
amins are intermediate filament proteins comprising a
major structural component of the nuclear lamina, which
underlies the inner membrane of the nuclear envelope in

most somatic cells. In humans, seven alternatively spliced
forms derive from three genes—LMNA, LMNB1, and LMNB2.
Although their nuclear functions are currently being eluci-
dated, it has been hypothesised that they are involved in
membrane support, pore arrangement, envelope assembly,
and chromatin organisation. Through these associations, the
lamins may have more expanded roles at the cellular level
and control diverse functions such as DNA synthesis, gene
expression, and apoptosis.1–6

Disorders caused by defects in the nuclear lamina
associated proteins are referred to as the laminopathies.
Thus far among the lamins, these have been described only
for LMNA, which maps to chromosome 1q21.2 and encodes
lamin A and lamin C through alternative splicing. A disparate
group of seemingly unrelated diseases with different affected
organ systems has been attributed to lamin A/C mutations.
These include Charcot-Marie-Tooth disease type 2B,7 forms of
dilated cardiomyopathy,8 both autosomal dominant and
autosomal recessive forms of Emery-Dreifuss muscular
dystrophy,9 10 limb girdle muscular dystrophy type 1B,11

Dunnigan-type familial partial lipodystrophy,12–14 and
Hutchinson-Gilford progeria.15 16 Recently, Novelli et al
categorised mandibuloacral dysplasia as a laminopathy
resulting from lamin A/C mutation.17

Mandibuloacral dysplasia (MAD; MIM 248370) is a rare
autosomal recessive disorder. Affected individuals have a
normal appearance at birth, then progressively develop

lipodystrophy and dysmorphic craniofacial and skeletal
features. Characteristic findings in MAD include mandibular
hypoplasia, acro-osteolysis, prominent appearance of the
eyes, dental overcrowding, beaked nose, delayed closure of
the cranial sutures, clavicular dysplasia/osteolysis, joint
contractures, and poikiloderma. Novelli et al analysed lamin
A/C for mutations in five consanguineous Italian families
with MAD.17 Homozygosity for a single mutation (R527H)
was found in all nine affected individuals, who also shared a
common disease haplotype.

In this report, we describe the physical and radiographic
features of a Mexican American boy with MAD. Mutational
analysis of the lamin A/C gene revealed homozygosity for the
identical R527H mutation as reported previously, but with a
distinct haplotype.

METHODS
Clinical information
The patient was the full term product of a consanguineous
union. The pregnancy history was unremarkable and he

Key points

N Mandibuloacral dysplasia (MAD) is a rare disorder
combining a characteristic facial appearance with
acro-osteolysis and lipodystrophy.

N Lamins are integral structural components of the
nuclear lamina hypothesised to be involved in numer-
ous cellular processes. Mutations in these genes result
in diverse diseases collectively referred to as the
laminopathies. Recently, MAD has been shown to be
caused by a specific mutation (R527H) in LMNA, which
encodes lamins A and C.

N A boy with this disorder is described who has a
homozygous R527H substitution in LMNA. Thus far, all
families with MAD in whom a mutation was discovered
harbour the identical base alteration. These families
show distinct haplotypes, which indicates that each
mutation originated independently.

N There is a highly specific genotype–phenotype correla-
tion between the LMNA R527H mutation and MAD.

Figure 1 Photograph of the patient at approximately two years of age.
Note normal overall appearance except for subtle distal phalangeal
swelling.
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appeared normal at birth. Subtle physical changes were first
noted at approximately 18 months of age, when he developed
persistently swollen fingertips (fig 1). Alterations in his skin
and pattern of body fat distribution began when he was six
years old; his mother described puffiness around his cheeks
and neck region, as well as areas of dry and variably
pigmented skin near his eyes, umbilicus, and axillae.
Approximately two years later, he began to show dental
crowding, micrognathia, and marked thickening of the nails
on his fingers and toes. He continued to develop lipodys-
trophic changes and progressive joint contractures until our
first encounter with him at 12 years of age. His past medical
history was otherwise unremarkable, without major or
chronic illnesses. He met his developmental milestones
appropriately and he was enrolled at school in an age
appropriate grade level. No other similarly affected indivi-
duals were reported in this family.

At age 12, many features of MAD were evident (fig 2). His
weight, height, and fronto-occipital circumference were all
within the 5th–10th centiles. He had a lipodystrophic body
habitus with thin extremities and a central distribution of fat
in his face, neck, and trunk. His face showed prominence of
the eyes, a beaked nose, fullness of the cheeks, micrognathia,
inability to open his mouth completely, and dental over-
crowding. Acanthosis nigricans of the neck was present. He
had markedly downward sloping shoulders. Examination of
the lungs, heart, abdomen, and genitals was normal. Patchy

areas of poikiloderma were present on his neck and lower
abdomen and in the axillary and inguinal regions.
Neurologically, his strength was intact without asymmetry,
reflexes were bilaterally normal, and no sensory deficits were
identified.

The most dramatic aspects on examination involved his
musculoskeletal system and extremities. There was extreme
paucity of subcutaneous fat in the extremities, and the
overlying skin was taut and dry. He had mild contractures at
his elbows and a restricted range of motion in his shoulder
girdle and hips. His fingers and toes showed camptodactyly,
short, broad and bulbous distal phalanges, and hypoplastic
nail beds with varying degrees of nail hyperkeratosis.

Imaging and laboratory evaluation
A skeletal survey revealed generalised osteopenia, wormian
bones with persistence of suture lines in his cranium, coxa
valga, and distal phalangeal osteolysis. Clavicular abnormal-
ities were not evident. On biochemical analysis there was
hypercholesterolaemia and dyslipidaemia, but normal glyco-
sylated haemoglobin and non-fasting serum glucose levels.
Chromosome analysis revealed a normal 46,XY complement.

Sequencing of LMNA identified a homozygous GRA
transition at nucleotide position 1580 (1580G.A) which, by
conceptual translation, resulted in a missense arginine to
histidine substitution at amino acid position 527 (R527H)
(fig 3). The nucleotides at the LMNA exonic single nucleotide

Figure 2 Current photographs showing characteristic craniofacial appearance (A), lipodystrophy (B), and distal extremity and phalangeal findings
(C) (D).
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polymorphisms (SNPs) previously reported17 18 were as
follows: position 861, T; position 1338, T; position 1698, T.

DISCUSSION
We describe here another individual with mandibuloacral
dysplasia. Apart from an earlier age of onset (1.5 v 4.3 years),
the findings in this patient typify the physical and radio-
graphic features previously associated with this disorder.19

Another consistently reported aspect of MAD is insulin
resistance and impaired glucose tolerance, and on examina-
tion this patient has acanthosis nigricans. Novelli et al have
identified a homozygous LMNA missense mutation (R527H)
in nine patients with MAD from five consanguineous Italian
families.17 Consistent with a founder effect, all affected
individuals shared a common disease haplotype: LMNA
exonic SNPs at nucleotide positions 861, 1338, and 1698
were C, C, and C. More recently, Simha et al reported two
separate families with MAD in which the R527H substitution
was present as well20; however, the exonic SNPs were
different (T, T, and C at the corresponding SNP nucleotide
positions), and intronic SNPs indicated separate origins for
this mutation in each family. The patient we describe here
harbours the same homozygous R527H lamin A/C mutation
as the previously reported patients; this also originated
independently as evidenced by a different haplotype (T, T,
and T).

An intriguing aspect of the laminopathies is the diversity of
phenotypes, despite the fact that many are caused by
mutations in the same lamin A/C gene. Examples of allelic
affinity include the androgen receptor locus in spinal and
bulbar muscular atrophy (MIM 313200) and testicular femi-
nisation (MIM 300068); fibroblast growth factor receptor

mutations causing distinct craniosynostosis syndromes; and
the ABCR locus and a range of retinal dystrophies and
susceptibility to macular degeneration.21 Diseases caused by
LMNA mutations (MAD, Dunnigan-type familial partial
lipodystrophy, forms of cardiomyopathy, limb girdle muscu-
lar dystrophy type 1B, autosomal dominant Emery-Dreifuss
muscular dystrophy (AD-EDMD), Charcot-Marie-Tooth dis-
ease type 2B, and Hutchinson-Gilford progeria) provide a
further and more dramatic example of this phenomenon as all
manifest separate and distinctive phenotypic features includ-
ing skeletal changes, skin findings, lipodystrophy, cardio-
myopathy, muscular dystrophy, and neuropathy.7–11 15 16 22–26

Although the wide ranging phenotypes of the lamino-
pathies result from LMNA mutations that occur throughout
the gene, a different scenario is emerging with MAD. The
arginine at position 527 is located within the C-terminal
immunoglobulin-like domain in the centre of a b sheet on the
domain surface; mutations at this site are postulated to
disturb intramolecular interactions and disrupt protein
structure.27 28 Substituting a proline in this location (R527P)
results in AD-EDMD with some but not all patients with
lipodystrophy.9 10 29 30 However, substituting a histidine in
this position (R527H) has now been shown in four separate
instances to result in MAD. A founder effect was not
suspected because of differing ethnic backgrounds, and
haplotype analysis indeed supports the likelihood that each
of the R527H mutations arose independently. This raises an
intriguing possibility that there is a very specific genotype–
phenotype correlation between this exact amino acid
substitution and the characteristic constellation of lipodys-
trophy with skeletal and skin manifestations in this rare
disease. Recently, Eriksson et al reported a similar result, as
19 of 20 de novo classical cases of Hutchinson-Gilford
progeria harboured LMNA mutations, each predicted to result
in the same internal 50 amino acid deletion.16

Among the approximately 40 patients with MAD reported
so far, there is a certain degree of phenotypic variability. For
example, the patient described in this report lacked clavicular
hypoplasia. Other affected individuals have differed in the
extent of acro-osteolysis or in whether hypogonadism is
present.31–33 Individuals with Hoepffner-Dreyer-Rudiger syn-
drome34 lack acro-osteolysis but otherwise phenotypically
resemble MAD. Simha and Garg19 proposed two variant
forms of MAD which are distinguished by the pattern of body
fat distribution: type A, with preferential accumulation of
subcutaneous fat centrally, and type B, with generalised loss
of subcutaneous fat. They have recently confirmed that only
type A MAD is caused by the R527H mutation in LMNA; no
mutations were detected in four families with type B MAD.20

Continued molecular analysis of patients with MAD will help
determine the specificity of the LMNA R527H mutation to type
A MAD, the variability of phenotypic expressivity for this muta-
tion, and the molecular basis for additional forms of MAD.

Note added in proofs: Agarwal et al have described a pati-
ent with type B MAD and mutations in the ZMPSTE24 gene.35
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Figure 3 Sequence of LMNA showing the GRA transition and
resulting arginine to histidine missense substitution at amino acid
position 527.
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