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The RET proto-oncogene on 10q11.2, which encodes a
receptor tyrosine kinase expressed in neural crest and its
derivatives, is the susceptibility gene for multiple endo-

crine neoplasia type 2 (MEN 2), characterised by medullary
thyroid carcinoma, phaeochromocytoma, and hyperparathy-
roidism, and one of several susceptibility genes for Hirsch-
sprung disease (HSCR).1–4 HSCR is characterised by aganglio-
nosis of the gut resulting from inappropriate and premature
apoptosis of the enteric ganglia. Initially, it was believed that
approximately 50% of familial HSCR and 30% of isolated
HSCR were the result of germline loss of function mutations
in the RET proto-oncogene5 6 (reviewed by Eng and Mulli-
gan7). However, these data were obtained with highly selected
series of families and patients with HSCR. A population based
survey of HSCR cases showed that only 3% of isolated HSCR
carried traditional germline RET mutations.8 In the context of
these data and the anecdotal observation that a RET codon 45
variant seemed to modify the expression of HSCR in a MEN
2/HSCR family with RET codon 618 mutation,9 we began to
examine the polymorphic alleles at codon 45 and the other
coding variants as common low penetrance alleles for HSCR
susceptibility. Indeed, we found that certain haplotypes or
pairs of haplotypes (“genotypes”) comprising specific combi-
nations of RET polymorphic sequence variants were highly
associated with isolated HSCR.9–11 These observations were
also noted among HSCR populations from elsewhere in the
world.12–14 These data implied that RET and/or loci in proximity
to it could act as common low penetrance alleles which
predisposed to isolated HSCR.

There are perhaps seven susceptibility genes for syndromic
and non-syndromic HSCR.3 4 15–25 Among these seven genes,
RET is considered a major susceptibility gene for HSCR. RET is
an unusual receptor tyrosine kinase in that it requires one of
four co-receptors, GFRα-1, GFRα-2, GFRα-3, and GFRα-4,
before it can bind one of four specific related ligands, GDNF,
neurturin, persefin, and artemin.26–43 While germline muta-
tions in the genes encoding GDNF and neurturin, GDNF and
NTN, have been rarely described in HSCR,18 21 44 there has yet to
be convincing data suggesting that GFRA1 (10q26), GFRA2
(8p21), or GFRA3 (5q31) can act as “traditional” susceptibility
genes for HSCR.45–48 Thus, the genes which encode the
co-receptors of RET are excellent candidates to serve as com-
mon low penetrance alleles for predisposition to isolated
HSCR as well, and may interact with the RET sequence
variants, and perhaps other variants, to modulate disease. To
test our hypothesis, we examined a population based series of
isolated HSCR cases for association with sequence variants
within the genes which encode the four known co-receptors of
RET. In addition, because GFRA4 (20p12-p13), which encodes
one of the four RET co-receptors and which is expressed in the
derivatives of the neural crest including the enteric nervous
system,49 has not been evaluated as a traditional susceptibility

gene for HSCR, we also performed mutation analysis of the

entire gene in our HSCR cohort.

MATERIALS AND METHODS
Subjects
Seventy-two consenting cases of isolated HSCR originating

from southern Spain were ascertained within a 16 month

period, in accordance with the respective human subjects pro-

tection committees. Further, at least one of the two unaffected

Key points

• Hirschsprung disease (HSCR) occurs in 1:5000 live
births and is currently acknowledged as having a poly-
genic aetiology. Originally reported as the major
susceptibility gene for both inherited and isolated
HSCR, germline loss of function mutations in the RET
proto-oncogene, encoding a receptor tyrosine kinase on
10q11.2, have only been implicated in 3% of a popu-
lation based series of HSCR.

• Recently, we and others have shown that germline
sequence variants within the RET coding sequence are
significantly associated with isolated HSCR cases. In
fact, when cases were compared to controls, HSCR
cases were found to have specific RET haplotypes and
pairs of haplotypes which were distinct from those of
controls. Thus, the genes which encode the four known
co-receptors of RET, GFRA1-4, are excellent candidates
to play roles in the aetiology of HSCR.

• It has already been shown that traditional mutations in
GFRA1-3 do not play a prominent role in HSCR. Here,
we have found that among 72 isolated HSCR cases
from the population base of southern Spain, there were
no traditional germline mutations in GFRA4. We have
also investigated this cohort for associations with
sequence variants spanning GFRA1-4 to search for the
possibility that these genes serve to harbour common
low penetrance alleles for HSCR.

• None of the sequence variants within these four genes
was associated with HSCR compared to controls.
Further, no variants considered at single loci or
haplotypes or haplotype combinations were associated
with clinical parameters. We did find, however, a large
germline deletion in GFRA1 of unknown significance.

• In sum, our data suggest that GFRA1-4 are not major
contributors of high or low penetrance alleles for
susceptibility to isolated HSCR. This may reflect their
overlapping function.
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parents of each of the 70 isolated HSCR cases also donated

their blood for these studies. One hundred and fifteen race

matched, geographically matched normal controls were also

gathered.

Single nucleotide polymorphism (SNP) and mutation
analysis
Genomic DNA was extracted according to standard

protocols.9 10 50 Genotyping at each SNP locus within GFRA1,

GFRA2, GFRA3, and GFRA4 was performed as previously

described, either by SSCP or FRET, and if necessary confirmed

with differential restriction digestion or direct sequence

analysis.10 11 51 52 A total of 14 SNP loci within the four

co-receptor genes were examined. Well documented biallelic

SNPs at each locus belonging to GFRA1 (seven loci), GFRA2
(one locus), and GFRA3 (two loci)46 47 51 were analysed.

Because GFRA4 had not been previously examined in HSCR,

its exons and flanking intronic regions were analysed in their

entirety using a combination of SSCP and semi-automated

sequence analysis as previously described.53 Four SNPs in

GFRA4 were uncovered using SSCP and confirmed with

sequencing (see Results below).

For each subject, haplotypes comprising combinations of

alleles at each SNP locus within each gene were formed for

every HSCR case and control, where possible. Haplotype

formation was made possible because phase could be

determined by having available genotypes among HSCR cases

and their unaffected parents in a similar manner as previously

described for haplotype formation within RET.11

Statistical analysis
The frequencies of each allele at each SNP locus was compared

between cases and controls using chi-squared analysis with

Yates’ correction as previously described.10 Frequencies of hap-

lotypes across each of the four genes were then compared

between cases and controls also using chi-squared analysis

with Yates’ correction as previously described11; p<0.05 was

considered significant. In addition, haplotype frequencies

were compared against various demographic and clinical fea-

tures among all HSCR cases, such as sex, age at diagnosis, and

length of segment involved (short segment v long segment

disease) using either chi-squared analysis with Yates’ correc-

tion or Fisher’s exact test (two tailed).

RESULTS
Because GFRA4 had not been previously analysed as a suscep-

tibility gene for HSCR, the exons, respective exon-intron

boundaries, and flanking intronic regions were examined in

their entirety. Of note, no germline mutations were found

among 72 unrelated isolated HSCR cases. We did, however,

find four polymorphic sequence variants within the exonic

sequences of this gene, c.102G>A (T34T, exon 2), c.711G>A

(P237P, exon 5), c.847C>T, and c.867G>A (exon 6, 3′UTR).

The frequencies of the alleles at each of the SNPs at every

locus for each of the four co-receptor genes were not

significantly different between HSCR cases and controls. Hap-

lotypes could be formed for 63 of the 72 HSCR cases and 77 of

the 115 controls. Nonetheless, no particular haplotype was

observed to be particularly prevalent among HSCR cases and

normal controls. Pairs of haplotype combinations (genotypes)

across all four genes were noted and none was found to be

particularly associated with cases compared to controls.

Haplotypes across each of the genes were formed and com-

pared to various demographic and clinical parameters in all

HSCR cases. No associations were found between specific

Figure 1 (A) Segregation of the polymorphisms of the GFRA1 gene in a family carrying a deletion in the 5′ end of this gene. (B) FRET
analysis of –78T>C (5′UTR of GFRA1) in the family carrying the GFRA1 deletion. The homozygous genotype for the wild type allele has a
higher melting temperature than the homozygous genotype for the mutant allele (71.9°C v 65.1°C ); heterozygotes for this polymorphism show
both peaks . (C) Schematic representation of the 5′ end of the GFRA1 gene.
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haplotypes across all four genes and sex, age at diagnosis, and

length of segment involved.

While examining haplotypes in HSCR cases and their unaf-

fected parents, we initially thought that we had made either

technical or administrative errors in one family as the haplo-

types of the parents and the proband were not compatible

with Mendelian inheritance (fig 1). More specifically, the

results of the genotyping of the –78T>C variant, located in the

5′UTR of the GFRA1 gene, showed discordant results in the

patient and his father (fig 1). Haplotyping at GFRA2, GFRA3,

and GFRA4 and genotyping at 10 other polymorphic microsat-

ellite loci distant from GFRA1 excluded non-paternity. Thus,

we proceeded to perform further analysis of this family and

the results showed a large deletion extending from within

intron 3 at the 3′ end to as 5′ as the 5′UTR within GFRA1. Sur-

prisingly, analysis of the unaffected father and three

unaffected sibs showed this identical deletion (fig 1). Refine-

ment of the GFRA1 deleted region in this family was carried

out by genotyping of three new informative STRs (D10S1211,

D10S1907, and D10S0108) as well as by Southern blotting.

The 3′ boundary of the deletion is delimited by the D10S0108

microsatellite, which is located over 39 kb from the exon

3-intron 3 boundary. In addition, mutational screening in the

RET, GDNF, NTN, GFRA2, GFRA3, GFRA4, and EDNRB genes

was performed in the index patient, in order to find any

mutation which explains why the rest of his relatives carrying

the same rearrangement were healthy. However, no significant

sequence changes were found in any of these genes. The pre-

cise functional significance of the GFRA1 deletion is currently

unknown.

DISCUSSION
Like the genes encoding the first three co-receptors of RET, no

traditional germline mutations in GFRA4 were found in HSCR.

Thus, none of the four co-receptor genes appears to contribute,

to a significant degree, to the aetiology of HSCR, at least in the

non-familial form. It is difficult to explain the lack of

traditional germline mutations in the four co-receptor genes

given the prominent involvement of RET, both in the

traditional and low penetrance sense, in the pathogenesis of

isolated and familial HSCR. One plausible explanation might

be the overlapping functions of the co-receptors and cross

reactivity of ligands, albeit with different affinities and with

some tissue specific differences (see introduction). However, if

this were a plausible explanation, it remains to be explained

why germline variants in GFRA1 appear to play low penetrance

susceptibility roles in the aetiology of isolated medullary thy-

roid carcinoma (MTC), at least in Germany.51

Because traditional germline mutations in the four GFRA
genes have not been shown to play pivotal roles in the patho-

genesis of HSCR, we examined them for low penetrance alle-

les predisposing to isolated HSCR. We have comprehensively

excluded this possibility by examining associations at the

genotype level, haplotype level, and then combined haplotype

level. Furthermore, none of the genotypes, single gene haplo-

types, or combined haplotypes were associated with clinical

presentation.

Each of the known traditional susceptibility genes for HSCR

can also be considered candidates to contribute low pen-

etrance alleles of susceptibility or phenotype modification.

RET is one such example. Given the limitations of sample size

and small effects, none of the genes which encode the four

co-receptors of RET appears to play a prominent role as a tra-

ditional susceptibility gene or a gene which lends low

penetrance susceptibility to isolated HSCR. Nonetheless, many

other HSCR susceptibility genes exist as candidates, as well as

those which encode molecules upstream and downstream of

the proteins encoded by the known susceptibility genes for

HSCR.
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