ELECTRONIC LETTER

Single nucleotide polymorphism (SNP) analysis of mouse pulmonary adenoma susceptibility loci 1–4 for identification of candidate genes

W J Lemon, C H Swinton, M Wang, N Berbari, Y Wang, M You

.....

J Med Genet 2003;40:e36(http://www.jmedgenet.com/cgi/content/full/40/4/e36)

Lung cancer is the leading cause of mortality from cancer in both men and women in developed countries. There is evidence that, although incidence is almost always associated with environmental factors such as smoking or occupational exposure, susceptibility has a genetic component with early onset lung cancer following Mendelian inheritance.^{1 2} Moreover, susceptibility is largely intrinsic to the lung itself as shown by the classical experiments involving lung explants from sensitive and resistant mice.³ Identification of the genes predisposing to cancer could yield targets for treatment or chemoprevention. In humans, the wide variety of carcinogens and varying degrees of exposure make identifying the predisposing genes difficult, but in a mouse model, such confounding variables can be controlled.

Previously, classical genetic studies involving cross breeding of mouse strains with differing susceptibilities have identified

Key points

- Past studies have mapped four susceptibility loci (Pas1-4) for pulmonary adenoma in which A/J and C57BL/6J (B6) mice have different alleles that affect incidence and multiplicity of tumours. With the release of a genome wide SNPs database, it has become feasible to analyse these genetically determined QTLs for genes polymorphic in these strains.
- Celera's discovery database (CDS 3.6, SNP 1.0) was scanned for SNPs in the Pas1-4 QTLs. SNPs were first screened according to the following criteria: (1) A/J and B6 were polymorphic for the SNP; (2) SNPs appeared in the coding region, the 5' regulatory region, or the 3' untranslated region; (3) SNPs appeared in known genes; (4) B6 and DBA/2J, phenotypically similar to B6, shared the same allele.
- Genes for which associations or other plausible links with cancer have been published were deemed as final candidates. All 11 selected SNPs within candidate genes were verified by polymerase chain reaction (PCR) sequencing. We have also attempted to verify a series of differentially expressed candidate susceptibility genes to lung tumours in our previous microarray analysis with semiquantitative reverse transcriptase PCR (RT-PCR).
- Differential expression of six of seven candidate genes were confirmed. Candidate Pas genes are Pas1, receptor type protein tyrosine phosphatase and basic helix-loop-helix B3; Pas2, Notch4, CREBL1; Pas3, Minpp1 and FoxD4; and Pas4, TGF β receptor II. Identification of the genes predisposing to mouse lung cancer could have considerable implications for diagnosis, treatment, or chemoprevention of lung cancer in humans.

chromosomal areas associated with predisposition to developing spontaneous and chemically induced lung adenomas.^{4 5} The process involves use of many evenly spaced polymorphic DNA markers to create landmarks across each chromosome. In the process called quantitative trait loci (QTL) mapping, attempts are made to find significant correlations between marker alleles and the phenotypic variation, or disease state.⁶ Inbred mouse strains vary in their susceptibility to cancer and two extreme strains are A/J (susceptible) and C57BL/6J (B6, resistant).^{4 5} Four QTLs identified as pulmonary adenoma susceptibility (Pas) loci 1–4 have been mapped, respectively, to mouse chromosomes 6, 17, 19, and 9. These regions are illustrated in fig 1.

Much genetic variation between people is a result of random mutation at specific nucleotide positions. These single nucleotide polymorphisms (SNPs, pronounced snips) have the potential to produce profound effects on gene expression and consequently phenotype, as shown in fig 2. For example, SNPs in the 3' UTR region can alter the stability of the mRNA, by changing binding sites or secondary structure, thus making it more or less likely to be degraded. A SNP in the 5' region can change promoter binding sites and thereby modify the affinity for a transcription factor. Nonsense mutations are the most severe of the SNPs found in the coding region. Nonsense SNPs are ones that introduce a premature stop codon resulting in a truncated polypeptide, often resulting in loss of function. Missense mutations result in an amino acid change that can be important if the properties of the new amino acid (charge, polarity, etc) are different from the one it replaced. As susceptibility to lung cancer has a strong genetic component, detailed SNP analysis of polymorphisms between A/J and B6 (A-B SNPs) may facilitate the identification of candidate susceptibility genes. The genomes of both strains have been sequenced and assembled, and thus direct comparison is now possible.

Celera's mouse reference SNP database (1.0), the first such resource to become available, includes 2 566 706 SNPs and is based on the first *Mus musculus* assembly release which includes the publicly produced sequence of C57BL/6J and the Celera produced sequences of A/J, DBA/2J (DBA), 129X1/SvJ, and 129S1/SvImJ. The database was scanned for A-B SNPs in the Pas1–4 QTLs. The resulting list of SNPs was analysed to identify the most likely candidate genes. This SNP analysis complements previous gene expression analysis and, as in that work, builds on classic genetic results and integrates newly available genomic data.⁷

Abbreviations: Pas, pulmonary adenoma susceptibility; PCR, polymerase chain reaction; QTL, quantitative trait loci; RT-PCR, reverse transcriptase PCR; SNPs, single nucleotide polymorphisms; Scc1, susceptibility to colon cancer 1

Figure 1 Mouse pulmoary adenoma susceptibility loci (Pas) as mapped in crosses of strains A/J and C57BL/6. Diagrams show chromosomes drawn to a scale of physical length according to Celera CDS 3.6. Pas1 appears at the distal end of chromosome 6 with genetic position of the flanking markers at the left and the marker names and key genes at the right. Pas2–4, respectively on chromosomes 17, 19, and 9, are similarly labelled.

MATERIALS AND METHODS

Approach

Markers flanking each QTL were located in the Celera (Rockville, MD) mouse genome database (www.celera.com, CDS 3.6 release). These markers were used to identify the reference DNA positions within the assembled genome for our database query. The Celera mouse SNP reference database (v1.0) was queried for SNPs within each QTL then filtered to keep only A-B SNPs.

Data filtering

Additional filtering of the A-B SNPs was performed to increase confidence in positive results. Often with screening one seeks to reduce the false negative rate and thereby be inclusive, but owing to the tremendous number of SNPs (~20 000 in Pas1 alone), we sought to minimise the false positive rate. To accomplish this, A-B SNPs that met the following criteria were selected for further analysis: (1) it appeared in the coding region, the 5' regulatory region,

Figure 2 Hypothetical examples of biologically effective single nucleotide polymorphisms (SNPs). Disease producing SNPs in the untranslated regions may influence mRNA stability in the case of 3' UTR (top panel) or promoter activity in the 5' UTR (second panel). Among the coding SNPs, missense SNPs (third panel) could cause an amino acid change that, for example, removes a disulphide bridge. Nonsense SNPs, by definition, introduce truncations that can diminish or obliterate protein function.

nnnnACTTGCACnnn

-Thr-STOP

nnnnACTTGATTGCACnnn

or the 3' untranslated region; (2) it appeared in a known gene; (3) the DBA (another resistant strain) allele was the same as the B6 allele. Intronic, intergenic, and silent SNPs were excluded. This was done for two reasons: (1) the function of intronic and intergenic sequence is a matter of research beyond the scope of this study; (2) the number of these SNPs made their analysis currently untenable. For the resulting genes containing A-B SNPs, further analysis was performed to sequence verify the SNPs with PCR sequencing analysis, and to identify those genes or gene families in which association with lung cancer has been previously established.

Table 1Summary of SNPs found in Celera Mouse SNP Reference database (v 1.0).Total refers to the number of all SNPs (any type, any strain-strain polymorphism) in the
region. Filtered refers to the number of SNPs meeting the criteria described in the text."No of genes" refers to the number of genes associated with the filtered SNPs.
Known genes are any genes having specific functional annotation in the Celera CDS
3.6 database

Locus	Total	Filtered	No of genes	Known Genes	No of genes
Pas 1	19 092	99	65	16	15
Pas2	19 639	69	37	25	14
Pas3	26 916	96	55	16	11
Pas4	21 505	147	88	24	14

Description	Description	Actin related protein 2/3 complex, subunit 4 Wingless related MMTV integration site 5B Murinoaclobulin 2	Activingelocutin (MUG3) Activingtion induced cytidine deaminase	C type lectin Ivmohotoxin B recentor	-Symposocial Second Sec	Killer cell lectin-like receptor, subfamily A, member 2		Protein tyrosine phosphatase, receptor type, O	basic helix-loop-helix domain containing, class B3
SNP RT Pb	SNP RT Pb	~			>	- ≻		, ,	~
DBA	DBA	>	-	≻	~ >	-	≻ >	- > :	~
		Gly Val Stop Arg	Ala Val	Asn Lys	lle Val				Ser Pro
GCG GCA AAC	: GTC CGA GCA AAC	GCA	AAC		GTT	ç	TOO		500
48 48 417 788 4417 76A 4417 776A 4417 776A 1438 6/A 1445 6/A 1445 6/A 1670 71237 7/7 11237 7/7 11237 7/7 11237 1615 6/7 1615 7/7 1615 1615 1615 1615 1615 1615 1615 161	48 GGG 1158 GGG 4417 TGA 788/808 GTA 1703 G/A 1145 G/A 1445 G/A 1445 G/A 1620 ATT 12337 C/T 12337 C/T 1095 T/A	788/808 GTA 1703 G/A 618 AAA 1445 G/A 1670 ATT 1670 CA 1237 C/T 1095 1/A	518 AAA 1445 G/A 1670 ATT 5252 CAA 1237 C/T 1095 T/A 1615 A/G	1670 АП 5252 САА 1237 С/Т 1095 Т/А 1615 А/G	1237 C/T 1095 T/A 1615 A/G	1615 A/G		1929 -/T	812 ICG
5,003 5,500 3,6570 3,6570 8,7737 7,737 7,737 7,737 8,7737 7,737 7,737 7,737 7,819 7,819 7,819 7,819 7,819 7,819 7,819 6,924	5,003 5,570 5,570 8,577 8,7133 7,737 0,1837 0,184 8,076 7,819 7,819 7,819 7,819 7,819 7,91	7,737 7,737 0,184 8,076 1,84725 7,819 7,819 7,819 7,819 6,200 6,200 6,200	0)188 8,076 8,725 7,819 5,2880 6,200 6,200 6,200	3,453 8,725 7,819 3,460 6,220 6,924	2,880 3,400 6,200 6,220	5,924 6,924	6,924		5,561 8
112,20 120,926 120,926 121,352 121,352 133,233 134,666 134,488 134,666 135,28 135,28 135,28 135,28 136,58 137,58 14,5	112,20, 118,26,922, 120,922, 121,352, 121,352, 133,31, 134,663,663, 134,663,663,663,663,663,663,663,663,663,6	120,98 121,352 123,877 123,311 123,233 133,233 134,665 134,488 134,468 135,28 14,28	121,87 123,971 127,18: 132,231 132,523 134,66: 134,66: 135,52	127,18 130,31 134,66 134,66 134,66 135,48 135,48 135,48 135,48	133,23 134,665 134,665 136,486 137,58 145,932	134,66 134,66 137,52 145,93	137,520,440	145,733	
A fissence 3 Vitssence 5 V UTR, missence 3 V UTR, missence 3 V UTR, missence Missence 3 V UTR 3 V UTR 3 V UTR 3 V UTR	Missense 3' UTR Nonsense 5' UTR, missense 3' UTR Missense Missense 3' UTR 3' UTR 3' UTR	5 UTR, missense 37 UTR, missense 37 UTR Missense Missense 33 UTR 37 UTR	Missense 3/ UTR Missense 3/ UTR 3/ UTR 3/ UTR	Missense Missense 3' UTR 3' UTR 3' UTR	3. UTR 3. UTR 3. UTR	3, UTR	Adiana and	3' UTR	Missense
Arpc4 Wni5b Mug2 Mug1 Nug1 1810046124Rik 1810046124Rik 1810046124Rik 20457120Rik 20457120Rik 2830457120Rik 2830457120Rik 2830457120Rik 2830457120Rik 8hihb3	Arpc4 Wni5b Mug2 Mug2 Mug1 Arcda 1810046124Rik Libr A2m Prp2 S130457J20Rik 2330457J20Rik 2330457J20Rik 2410038A03Rik Pipro Bhlibb3	Mug 1 Aicda 1810046/24Rik Ltbr Prp 2 S130457/J20Rik 2410038A03Rik Prpr 0 Bhlhb3	1810046/24Rik Libr A2m Prp2 Klrc2 5830457/20Rik 2410038A03Rik Plpro Bhlhb3	A2m Prp2 Klra2 5830457J20Rik 2410038A03Rik Pipro Bhlhb3	Kira2 5830457J20Rik 2410038A03Rik Pipro Bhihb3	2410038A03Rik Ptpro Bhlhb3	Pipro Bhihb3	Sanna	
BM489316 NM_009525 NM_009525 NM_009523 NM_009545 NM_0075376 NM_007376 NM_007376 NM_0031499 NM_0031499 NM_025589 NM_025589 NM_025589 NM_025589	BM489316 NM_009525 NM_009545 M65237 NM_009545 NM_007376 NM_007376 NM_007376 NM_007376 NM_0031499 NM_0033469 NM_025589 NM_011216 NM_0212469	M65237 NM_007645 NM_027218 NM_02736 NM_07376 NM_031499 NM_031499 NM_026371 NM_025589 NM_025589 NM_025589 NM_024469	NM_027218 NM_010736 NM_007376 NM_031499 NM_028462 NM_026371 NM_025589 NM_012166 NM_024469	NM_007376 NM_007376 NM_008462 NM_026371 NM_025589 NM_025589 NM_024469	NM_008462 NM_026371 NM_02589 NM_011216 NM_024469	NM_025589 NM_011216 NM_024469	NM_011216 NM_024469	NM_024469	
mCV22281390 mCV22281390 mCV225260691 mCV243856024 mCV243856024 mCV224356983 mCV223359506 mCV223359715 mCV23335716 mCV23335716 mCV23335716 mCV23335716 mCV23335716 mCV233381606 mCV24099286	mCV22281390 mCV22584830 mCV22550691 mCV225250751 mCV224335024 mCV224335024 mCV2283350715 mCV223335715 mCV23335715 mCV23335715 mCV23335716 mCV223335716 mCV223335716 mCV224097286	mCV25250751 mCV24835024 mCV24835024 mCV22483598606 mCV22899606 mCV22830505 mCV22830505 mCV223359715 mCV23335716 mCV23335716 mCV23035716 mCV240951616 mCV24099286	mCV24136983 mCV22895056 mCV22895056 mCV22521446 mCV23335715 mCV23359715 mCV23359716 mCV24099286 mCV24099286	mCV25230505 mCV22524446 mCV223529715 mCV23359715 mCV23359716 mCV23335716 mCV24045161 mCV24099286	mCV24262005 mCV24262005 mCV23359715 mCV23359716 mCV23381606 mCV23381606 mCV24099286	mCV23359716 mCV23359716 mCV23381606 mCV24099286	mCV23381606 mCV24099286	mCV24099280	

*A/J allele not reported in Celera SNP Reference Database 1.0.

				Relative positi	on						
SNP ID GenBank ID	Gene name	Туре	Chr	mRNA	Allele/codon	AA	DBA	SNP RT	Pb	Description	
mCV23294255	NM 007650	Cd5	3' UTR	8,418,081	1811	T/C		Y			CD5 antigen
mCV23294266	_		3' UTR	8,418,184	1708	T/C		Y			0
nCV23294598			Missense	8,426,359	100	GTC ATC	Val Ile				
nCV23010981	NM_025658	2210417J23Rik	Missense	9,221,967	437	GTT GCT	Val Ala				
nCV24416503	NM_008139	Gnaq	3' UTR	14,037,739	1241	T/G					Guanine nucleotide binding protein, alpha q polypeptide
CV23044840	NM_010730	Anxa'l	Missense	18,100,327	946	GAA GGA	Glu Gly				Annexin A1
nCV24486668	NM_008022	Foxd4	Missense	22,674,812	1698	CAG CGG	Gln Arg		Y		Forkhead box D4
nCV24486689			Missense	22,675,284	1226	GGG CGG	Gly Arg	Y	Y	Y	
nCV22823123	NM_028785	1200017A24Rik	3' UTR	22,988,476	2509	A/G	, .				
nCV23196871	NM_013703	VldIr	Missense	25,022,920	1118	GGG AGG	Gly Arg				Very low density lipoprotein receptor
nCV23093281	NM_031249	Cstf2t-pending	3' UTR	28,869,655	2056	G/C		Y			Cleavage stimulation factor, 3' pre-RNA subunit 2
nCV23094584	NM_018830	Asah2	5' UTR	29,849,129	306	T/G		Y			N-acylsphingosine amidohydrolase 2
nCV25400117	BB002878	Minpp 1	Nonsense	30,268,848	564	TGA TGG	Stop Trp		Y		Multiple inositol polyphosphate histidine phosphatase 1
nCV25441217	NM_026487	4921525H23Rik	3' UTR	30,455,931	1840	C/T		Y			
nCV25441216			3' UTR	30,455,946	1825	G/A		Y			
nCV25441200			3' UTR	30,456,513	1258	A/G					

				Relative position	I.						
SNP ID	GenBank	Gene Name	Туре	Chr	mRNA	Alelle/codon	AA	DBA	SNP RT	Pb	Description
mCV24278514	NM_013669	Snap91	UTR 5	80,912,581	855	G/A					Synaptosomal associated protein, 91
mCV24278524			UTR 5	80,912,656	780	A/G					
nCV23421071	NM_025360	1200002G13Rik	UTR 3	86,317,238	768	T/C					
nCV25420569	NM_011961	Plod2	UTR 3	89,191,569	2,231	C/T					Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2
nCV23564270	NM_024291	Ky	UTR 3	99,085,849	4114	A/G					Kyphoscoliosis
nCV23564271		,	UTR 3	99,085,879	4144	G/A					
nCV23586226	NM_025371	1110014J22Rik	Missense	103,062,990	533	GTT GCT	Val Ala	Y			Aminoacylase 1
nCV23592429	NM_030730	Srisnf2l-pending	UTR 3	103,313,283	4819	G/A		Y	Y		Steroid receptor-interacting SNF2 domain protein
nCV23592440		, ,	Missense	103,314,355	3747	GTC ATC	Val Ile		Y		, , ,
nCV24367303	NM_010489	Hyal2	UTR 3	104,181,371	1730	T/C		Y		Y	Hyaluronidase 2
CV22576892	NM_025903	lfrd2	Missense	104,196,642	152	TCC CCC	Ser Pro				Interferon related developmental regulator 2
nCV22576749			Missense	104,198,775	329	GCC ACC	Ala Thr				, ,
rCV22576540	BM486632	Sema3b	UTR 3	104,207,874	2139	T/A			Y		
nCV25006051	NM 011634	Traip	Missense	104,559,428	46	GCC ACC	Ala Thr				TRAF interacting protein
CV25024853	NM_007658	Cdc25a+1154	Missense	106,607,499	384	CAC CAA	His Gln		Y		Cell division cycle 25 homologue A
rCV23789456	NM_017466	Cmkbr112	UTR 5	107,780,575	190	C/A					Chemokine (C-C) receptor 1-like 2
CV23789449			UTR 5	107,780,576	189	C/T					
CV23789448			UTR 5	107,780,703	62	G/A					
CV23789447			UTR 5	107,780,748	17	A/C					
CV23303603	NM 009371	Tafbr2	UTR 3	113,551,165	2312	T/G		Y*	N*	Y	Transforming growth factor, beta receptor II
rCV23303602		0	UTR 3	113,551,334	2143	Ċ/T		Y*	N*		00 , 1
CV22520381	NM_025974	3100001N19Rik	Missense	118,043,888	568	GTT GCT	Val Ala				
CV22520379	_		UTR 3	118,044,104	784	A/G					
101220200/7				110 044 140	000	TIC					

SNP annotation

The SNP IDs were used to link SNPs with the genes in which they occur and Celera's mechanism to link its genes with public sequences was used for reporting public accession numbers and descriptions from GenBank (RefSeq when possible).

Sequence verification of SNPs

A-B SNPs were sequence verified with RT-PCR sequencing by the sequencing core facility in the Division of Human Cancer Genetics, Ohio State University. Briefly, the transcript sequence for the candidate genes were downloaded from the Celera database and PCR primers flanking the SNPs were designed such that 200–400 bp fragments were produced. RT-PCR, as described later, was performed to amplify total RNA harvested from lungs of A/J and C57BL/6J mice. These amplified fragments were submitted to the sequencing core facility where they were processed according to standard procedures.

Confirmation of differential gene expression by RT-PCR

Expression of several candidate genes found here by SNP analysis, or previously by array analysis,⁷ were verified by RT-PCR. RNA was harvested from normal lungs of A/J, BALB/cJ, and C57BL/6J mice, reverse transcribed and amplified by PCR. A mixture of 4 µg of total RNA, oligo (dT) primer (Invitrogen, Grand Island, NY, USA), and double distilled water was incubated at 70°C for 10 minutes. This mixture was then added to the reverse transcription reaction mixture containing the following: forward reaction buffer, DTT (Invitrogen, Grand Island, NY, USA), RNasin (Promega, Madison, WI, USA), dNTPs, and M-MLV reverse transcriptase (Invitrogen, Grand Island, NY, USA). This final mixture was incubated at 37°C for one hour. Next, a final incubation at 95°C for two minutes was performed to remove RNA.

For real time PCR, a LightCycler-DNA Master SYBR Green I kit (Roche, Indianapolis, IN, USA) and an iCycler iQ (Biorad, Rodeo, CA, USA) thermocycler were used. Each reaction on a 96 well microtitre plate contained 2 μ l of cDNA template and 2 μ l of master mix. The kit master mix consisted of *Taq* DNA polymerase, reaction buffer, dNTP mix, SYBR Green I dye, and 10 mmol/1 MgCl₂. The final reaction had a 1 μ mol/1 concentration of forward and reverse primers and 2 mmol/1 MgCl₂ concentration, and a final volume of 20 μ l. The PCR variables were as follows: a heating temperature of 95°C, an annealing temperature of 72°C were used for 34 cycles.

The genes examined were *SmarcD3*, *ATFa*, *Cdk5*, *PDCD4*, *Cdc25A*, and *Mbd2* together with β actin as a control. Base 2 logarithm of fold changes were computed, for gene x between strains A and B, as $log_2(x_A)-log_2(\beta \text{ actin}_A)+log_2(\beta \text{ actin}_B)-log_2(x_B)$.

RESULTS

Our approach to identifying candidate susceptibility genes for lung tumours with SNPs complements our earlier work with gene expression analysis.⁷ As in the previous study, this work builds on existing genetic mapping of QTLs, availability of the mouse genome sequence, and SNP data. The genome sequence, combined with previously identified QTLs, allows focus on SNP analysis within the regions known to modulate susceptibility and resistance.

Fig 1 illustrates the physical positions of the Pas QTLs, highlights the flanking markers and shows the corresponding genetic positions. As expected, proximal regions span less genetic distance than equal length distal regions, owing to the higher distal recombination rate. Table 1 shows the number of SNPs found in each QTL and the number of genes containing SNPs in each QTL for each step in the filtering process. For example, 19 092 SNPs were found in Pas1. After removing the silent, intronic, and intergenic SNPs and those not A-B polymorphic, the number was reduced to 99 A-B SNPs associated with 65 genes. After the final step of isolating only the A-B SNPs in known genes, 16 SNPs in 15 genes remained.

Tables 2–5 enumerate, for each Pas QTL, the A-B SNPs found in known genes. Of the 15 A-B genes containing SNPs in Pas1, two stand out as strong candidates: *Ptpro* and *Bhlhb3*. In both genes, the B6 allele is shared with DBA and the sequence of the SNP for *Ptpro* has been verified. *Ptpro* is a receptor type O protein, tyrosine phosphatase. It has been suggested that other members of this family are tumour suppressor genes, including the recent suggestion that *Ptprj* (mouse chromosome 2) is the susceptibility gene to colon cancer 1 (*Scc1*).⁸ *Bhlhb3* contains a basic helix-loop-helix domain and is expressed in late embryogenesis and may be a target of *Notch* ligands.^{9 I0}

Pas2

In this locus, often noted for the preponderance of HLA genes, two non-HLA genes stand out. *Notch4*, as a known oncogene,¹¹ and *CrebL1*, as a member of the cyclic AMP response element binding proteins, could contribute to meta-static potential of melanoma cells.^{12 13} The A/J allele for the *Notch4* SNP was not reported in the Celera database, but sequencing showed it to vary between A/J and B6. Both seem to have a functional relation to tumorigenesis and the B6 allele is shared with DBA.

Pas3

Two genes were found to be candidates, *Minpp1* and *FoxD4*. The sequences of SNPs for both genes were verified. *Forkhead box* D4 is the best candidate, having one B6 allele shared with DBA and being a member of a family of transcription factors that regulate the cell cycle, and it may play a part in tumorigenesis.¹⁴

Pas4

TGFβRII has historically been the primary candidate for Pas4. Both B6 alleles are shared with DBA, but the A/J allele is not reported in the Celera database. As an SNP was found in Celera between B6 and 129X1, we checked the region for a SNP between A/J and B6, but found none. It has been shown that loss of the type II receptor is often associated with a loss of TGF-β induced cell cycle repression.¹⁵ Reduction of type II receptor mRNA is strongly associated with lung adenocarcinoma in mice and humans.^{15 16} However, RT-PCR sequencing showed no SNP between A/J and B6.

Figure 3 Comparison of microarray data with RT-PCR for selected genes. Fold change of gene expression between A/J and C57BL/6J for five genes and between A/J and BALB/cJ for one gene (Mbd2) are compared on a \log_2 basis. Each unit on the y axis represents a twofold change. Negative values represent higher expression in B6.

RT-PCR verification of microarray data

Fig 3 shows RT-PCR follow up on selected genes found to be candidates in our previous microarray study.7 In that study, RNAs from normal mouse tissue from these strains were evaluated for differential expression across strains. Genes within the QTLs that are differentially expressed across strains were deemed as candidates on the basis that expression differences could predispose to tumorigenesis. However, the microarray data were not confirmed by conventional RT-PCR or northern blotting techniques. In this study, we selected seven of the differentially expressed candidate genes found in that study for further confirmation. Six of the seven genes examined by RT-PCR showed differential expression similar to that found with the array, as shown in fig 3. One gene, ATFa, did not show the same pattern with RT-PCR and array. Note that this gene had the lowest level of expression of the seven genes (Li-Wong full model estimates of gene expression: B6=27, A/J=58). Fig 3 shows the correspondence of differential expression measured in the array data with that found by RT-PCR and correspondence between the two assay systems is consistent for six of seven candidate genes assayed.

DISCUSSION

Following the commonly held and straightforward view that genetic determinants of susceptibility may arise from the simplest form of genetic variation, the SNP, we analysed SNPs in four susceptibility loci to pulmonary adenoma. Five strains have been sequenced and assembled to date: A/J (susceptible, s), DBA/2J (resistant, r), C57BL/6J (r), and two substrains of 129, namely 129X1/SvImJ (intermediate, i) and 129S1/SvJ (i).^{5 17} Substrain 129X1/SvJ was contaminated in 1978 and, as a result, contains as much as 25% non-129 DNA. Owing to consequent large scale heterozygosity, it is considered by some as not an inbred strain.¹⁸⁻²⁰ Manenti et al¹⁷ reported 129X1/SvJ to be of intermediate susceptibility which leaves the expectation for Pas genotypes ambiguous. Similarly strain 129S1, the "steel" strain, is an inbred strain, but being of intermediate susceptibility, the expectation for Pas genotypes is also ambiguous. Consequently, our criteria required that DBA and B6 share alleles and that A/J be different, but the 129 alleles were ignored. Analysis was limited to SNPs likely to be detectable in mRNA, namely, coding SNPs, splice site SNPs, and UTR SNPs. As K-ras, which has been a strong Pas1 candidate gene for some time, has polymorphisms between A/J and B6 in intron 2,5 we would have liked to include intronic SNPs. However, so many intronic SNPs were identified that it was deemed at this point untenable to sort out the useful ones.

Pas1 has been shown to be the major locus, accounting for 45% of the phenotypic variance.⁴ Mutant K-ras is found in 80% or more of mouse lung adenomas and adenocarcinomas with mutations of codons 12 and 61 reported in both susceptible and resistant strains.^{21 22} In hybrid animals, mutation occurs at a much higher frequency in susceptible alleles than in resistant alleles.²³ A bioassay in the same study showed that introduction of the mutant allele, derived from either the susceptible or resistant parent, was sufficient to transform NIH 3T3 cells. Recent studies have confirmed the strong association of the locus with cancer in mice and have shown that the homologous human locus, 12p12, is a major susceptibility locus in Italian and Japanese people.^{17 24-26} The entire region between K-ras and ITPR2 is homologous between mouse chromosome 6 and human chromosome 12, and human K-ras has been shown to share mutations associated with cancer at codons 12 and 61.27 Some questions have remained. By what mechanism is the A/J allele of K-ras susceptible? Is there another gene in Pas1 that confers the propensity to mutation? Perhaps is it the *Par2* gene on chromosome 18, which has been shown to modulate the effect of Pas1? According to the present SNP analysis of Pas1, the protein tyrosine phosphatase and the basic helix-loop-helix B3 genes are also candidates. Additional functional analysis of

the allelic differences in cell transformation and carcinogenesis should provide more definitive answers.

Pas2 QTL is located at the H-2 locus the haplotypes of which correlate with the incidence and multiplicity of induction of mouse lung tumour. The primary candidates for this region are *Notch4* and *Crebl1*. *Notch4* has been shown to be susceptible to viral activation, which can transform cells and drive them to a highly invasive phenotype.¹¹ This gene was also a candidate in previous expression studies. *Crebl1*, a SNPs binding protein, has been implicated in transcriptional activation and may contribute to the acquisition of metastatic phenotypes.¹³

Pas 3 was first described by Devereux *et al*²⁸ as flanked by D19MIT42 and D19MIT19. They used linkage analysis of N-ethyl-N-nitrosourea treated (A/J × C57BL/6J) Fl × C57BL/6J) backcross progeny. This finding was later confirmed by Festing *et al*²⁹ with urethane treated (A/J × C57BL/6J) F2 mice. The main candidate in the Pas3 region is *Foxd4*. *Foxd4* is a forkhead transcription factor. Forkhead transcription factors are involved in regulating cell cycle progression and cell death. Long term Forkhead activation causes a sustained but reversible inhibition of proliferation without a marked increase in apoptosis.¹⁴

Finally, Pas4 was mapped by Festing *et al.*²⁹ One of the candidates is *TGF* β *RII*, the expression of which is reduced in urethane induced pulmonary adenoma in A/J mice. Loss of type 2 receptor results in a loss of induction of apoptosis.³⁰ Loss of sensitivity to *TGF* β is a hallmark of invasiveness in some cancers.³¹ However, no SNP between A/J and B6 was found, suggesting that the basis for its candidacy as Pas4 may be intronic or intergenic.

In this study, we also used RT-PCR to corroborate the results for six of seven candidate genes identified by allelic specific differential expression in our earlier study (fig 3).⁷ Other work by us with others showed similar corroboration between RT-PCR and oligonucleotide arrays.^{32 33} This strengthens the case for these genes potentially to play a part in predisposition of lung tumorigenesis in mice. However, the differences between these assays in reported fold change suggests that array results should continue to be taken cautiously and RT-PCR validation of the most important results should continue. Replication of arrays on multiple animals is also recommended. The study on gene expression complements the present study on SNPs in two ways. Firstly, differences in gene expression may not be the result of SNPs, so the gene expression based candidates bring in new information. Secondly, SNPs can have full effect without any change in gene expression whatsoever. So the sets of candidates are not mutually exclusive, nor are they subsets. Instead they are complementary.

In summary, we have described several candidates for the Pas and Par QTLs using the SNP analysis and microarrays. These candidates should accelerate identification of susceptibility genes to mouse lung tumour and potential functional interactions among different Pas and Par QTLs. This and our previous study show the synergies between classical genetic studies and genomic tools such as the SNP database and microarrays in dissecting the genetic basis of susceptibility to lung tumour in mice.

ACKNOWLEDGEMENTS

We are grateful to G Stoner for critical reading of this manuscript and helpful discussions. This work was supported by NIH grants R01CA58554 (MY), R01CA78797 (YW), and P30CA16058.

Authors' affiliations

WJ Lemon, CH Swinton, M Wang, N Berbari, Y Wang, M You, Division of Human Cancer Genetics, Ohio State University Comprehensive Cancer Center, 420 West 12th Avenue, Columbus, Ohio 43210, USA

Correspondence to: Dr M You, Manuel Tzagournis Medical Research Facility, Room 514, 420 West 12th Avenue, Columbus, Ohio 43210, USA; you-1@medctr.osu.edu

REFERENCES

- 1 Sellers TA, Bailey-Wilson JE, Elston RC, Wilson AF, Elston GZ, Ooi WL, Rothschild H. Evidence for mendelian inheritance in the pathogenesis of lung cancer. J Natl Cancer Inst 1990;82:1272-9
- 2 Sellers TA, Chen PL, Potter JD, Bailey-Wilson JE, Rothschild H, Elston RC. Segregation analysis of smoking-associated malignancies: evidence for Mendelian inheritance. *Am J Med Genet* 1994;**52**:308–14. **3 Heston WE**, Dunn TB. Tumor development in susceptible strain A and
- resistant strain L lung transplants. J Natl Cancer Inst 1951;11:1057. 4 Herzog CR, Lubet RA, You M. Genetic epigenetic alterations in mouse
- lung tumors: implications for cancer chemoprevention. J Cell Biochem 1997;28:49-63
- 5 Chen B, Johanson L, Wiest JS, Anderson MW, You M. The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. *Proc Natl Acad Sci USA* 1994;**91**:1589–93.
- 6 Schork NJ, Nath SP, Lindpaintner K, Jacob HJ. Extensions to quantitative trait locus mapping in experimental organisms. *Hypertension* 1996;28:1104–11.
- 7 Lemon WJ, Bernert H, Sun H, Wang Y, You M. Identification of candidate lung cancer susceptibility genes in mouse using
- Buivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikos T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJ, Demant P. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 2002;**31**:295–300.
- 9 Azmi S, Taneja R. Embryonic expression of mSharp-1/mDEC2, which encodes a basic helix-loop-helix transcription factor. *Mech Dev* 2002;114:181.
- 10 Fujimeto K, Shen M, Noshiro M, Matsubara K, Shingu S, Honda K, Yoshida E, Suardita K, Matsuda Y, Kato Y. Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins. Biochem Biophys Res Commun 2001;**280**:164–71. **Callahan R**, Raafat A. Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia 2001;**6**:23–36.
- 11
- 12 Xie S, Price JE, Luca M, Jean D, Ronai Z, Bar-Eli M. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene 1997;15:2069-75
- 13 Jean D, Bar-Eli M. Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. *Mol Cell Biochem* 2000;212:19–28.
- 14 Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, Lam EW, Burgering BM. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. *Mol Cell Biol* 2002:22:2025-36
- 15 Kang Y, Mariano JM, Angdisen J, Moody TW, Diwan BA, Wakefield LM, Jakowlew SB. Enhanced tumorigenesis and reduced transforming growth factor-beta type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-beta 1. Mol Carcinog 2000;**29**:112–26.
- 16 Kim TK, Mo EK, Yoo CG, Lee CT, Han SK, Shim YS, Kim YW. Alteration of cell growth and morphology by overexpression of transforming growth factor beta type II receptor in human lung adenocarcinoma cells. *Lung* Cancer 2001;31:181-91.
- 17 Manenti G, Stafford A, De Gregorio L, Gariboldi M, Falvella FS, Avner P, Dragani TA. Linkage disequilibrium and physical mapping of Pas1 in mice. *Genome Res* 1999;**9**:639–46.

- 18 Festing MF, Simpson EM, Davisson MT, Mobraaten LE. Revised nomenclature for strain 129 mice. Mamm Genome 1999;10:836.
- 19 Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 1997;16:19-27
- 20 Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T. Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 1997;8:390-3.
- 21 Gariboldi M, Manenti G, Canzian F, Falvella FS, Radice MT, Pierotti MA, Della Porta G, Binelli G, Dragani TA. A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nat Genet 1993:3:132-6.
- 22 You M, Candrian U, Maronpot RR, Stoner GD, Anderson MW. Activation of the Kirras protoncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. *Proc Natl Acad* Sci USA 1989;**86**:3070–4.
- 23 You M, Wang Y, Stoner G, You L, Maronpot R, Reynolds SH, Anderson M. Parental bias of Ki-ras oncogenes detected in lung tumors from mouse hybrids. *Proc Natl Acad Sci USA* 1992;**89**:5804–8.
- 24 Manenti G, De Gregorio L, Pilotti S, Falvella FS, Incarbone M, Ravagnani F, Pierotti MA, Dragani TA. Association of chromosome 12p Genetic polymorphisms with lung adenocarcinoma risk and prognosis. Carcinogenesis 1997;**18**:1917–20.
- 25 Manenti G, Nomoto T, De Gregorio L, Gariboldi M, Stefania Falvella F, Nagao M, Dragani TA. Predisposition to lung tumorigenesis. Toxicol Lett 2000;112-113:257-63.
- 26 Dragani TA, Hirohashi S, Juji T, Kawajiri K, Kihara M, Ono-Kihara M, Manenti G, Nomoto T, Sugimura H, Genka K, Yokota J, Takahashi T, Mitsudomi T, Nagao M. Population-based mapping of pulmonary adenoma susceptibility 1 locus. Cancer Res 2000;60:5017-20.
- 27 Abrams ES, Murdaugh SE, Lerman LS. Comprehensive screening of the human KRAS2 gene for sequence variants. Genes Chrom Cancer 1993:6:73-85
- 28 Devereux TR, Wiseman RW, Kaplan N, Garren S, Foley JF, White CM, Anna C, Watson MA, Patel A, Jarchow S, Maronpot RR, Anderson MW. Assignment of a locus for mouse lung tumor susceptibility to proximal chromosome 19. Mamm Genome 1994;5:749-55.
- 29 Festing MFW, Lin L, Devereux TR, Gao F, Yang A, Anna CH, White CM, Malkinson AM, You M. At least four loci associated with susceptibility to the chemical induction of lung adenomas in mice. Genomics 1998;53:129-36.
- 30 de Jonge RR, Garrigue-Antar L, Vellucci VF, Reiss M. Frequent inactivation of the transforming growth factor beta type II receptor in small-cell lung carcinoma cells. Oncol Res 1997;**9**:89–98.
- 31 Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Rev 2001;20:133-43.
- 32 Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA 2001;98:15044-9.
- 33 Virtaneva K, Wright FA, Tanner SM, Yuan B, Lemon WJ, Caligiuri MA, Bloomfield CD, de La Chapelle A, Krahe R. Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc Natl Acad Sci USA 2001;98:1124-9.