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Non-hotspot-related breakpoints of common deletions in
Sotos syndrome are located within destabilised DNA

regions

R Visser, O Shimokawa, N Harada, N Niikawa, N Matsumoto

J Med Genet 2005;42:e (http:/ /www.jmedgenet.com/cgi/content/full/42/11/e66). doi: 10.1136/jmg.2005.034355

Background: Sotos syndrome (SoS) is a disorder charac-
terised by excessive growth, typical craniofacial features,
and developmental retardation. It is caused by haploinsuf-
fiency of NSD1 at 5q35. There is a 3.0 kb recombination
hotspot in which the breakpoints of around 80% of SoS
patients with a common deletion can be mapped.
Objective: To identify deletion breakpoints located outside
the SoS recombination hotspot.

Methods: A screening system for the directly orientated
segments of the SoS LCRs was developed for 10 SoS patients
with a common deletion who were negative for the SoS
hotspot. Deletion-junction fragments were analysed for DNA
duplex stability and their relation to scaffold/matrix attach-
ment regions (S/MARs). These features were compared with
the SoS hotspot and recombination hotspots of other genomic
disorders.

Results: The breakpoint was mapped in four SoS patients,
two with a deletion in the maternally derived chromosome.
These breakpoint regions were located ~2.5 kb, ~9.6 kb,
~27.2, and ~27.7 kb telomeric to the SoS hotspot and were
confined to 164 bp, 46 bp, 256 bp, and 124 bp, respec-
tively. Two of the regions were mapped within Alu elements.
All crossover events were found to have occurred within or
adjacent to a highly destabilised DNA duplex with a high S/
MAR probability. In contrast, the SoS hotspot and other
genomic disorders’ recombination hotspots were mapped to
stabilised DNA helix regions, flanked by destabilised regions
with high probability of containing S/MAR elements.
Conclusions: The data suggest that a specific chromatin
structure may increase susceptibility for recurrent crossover
events and thus predispose to recombination hotspots in
genomic disorders.

disorder characterised by overgrowth, distinctive cra-

niofacial features, and various degrees of developmental
delay.! Aberrations of the nuclear receptor binding, SET
domain containing protein 1 (NSDI) at 5q35 include
intragenic mutations or submicroscopic whole gene dele-
tions.>” Microdeletions are found in around 50% of the
Japanese SoS patient population, while they account for
about 10% of non-Japanese SoS patients.'” Recently, we
showed that the 1.9 Mb common microdeletion is caused by
homologous recombination between directly orientated seg-
ments (PLCR-B and DLCR-2B) of the proximal and distal low
copy repeats (PLCR and DLCR)." The unequal strand
exchange region was limited to a 3.0 kb hotspot in which
we mapped the breakpoints of 78.7% (37/47) of our Sotos
patients with a common deletion. This major hotspot was

S otos syndrome (SoS; OMIM No 117550) is a congenital

recently confirmed by others."”” Similar analysis at a nucleo-
tide level of recombination hotspots in other genomic
disorders has identified, among others, regions of unin-
terrupted sequence homology, several sequence motifs, and
raised GC content as hotspot features.'" ”'* However, these
features are not consistent for all hotspots and, owing to the
analytically difficult background of highly homologous LCRs,
the number of identified hotspot related and non-hotspot-
related breakpoints is limited. Other possible contributing
factors—such as epigenetic alterations or specific chromatin
structure—have been suggested.'” Interestingly, breakpoints
of gross deletions were indeed found to coincide with non-B
DNA conformations." Non-B DNA conformation could result
in an increase in accessibility for cleavage enzymes or a
weakened chemical stability of the DNA helix, or both."
Recently, breakpoints of recurrent intragenic deletions of the
retinoblastoma 1 (RB1) gene were located within a transition
region between double stranded B-DNA and single stranded
DNA." This region was adjacent to a strong scaffold/matrix
attachment region (S/MAR)."” S/MARs are responsible for
chromatin attachment to the nuclear matrix and for
organisation of chromatin into loop domains.” Thus chro-
matin organisation in relation to stability of the DNA duplex
may be a contributing factor for hotspot predisposition in
genomic disorders.

In this study, we screened the directly orientated regions
within the Sotos LCRs in order to identify deletion break-
points located outside the SoS recombination hotspot. The
deletion junction fragments found were investigated at
nucleotide level and compared with the SoS hotspot with
regard to their locations, neighbouring structures, stability of
the DNA helix (so called stress induced destabilisation duplex
(SIDD)), and probability of containing an S/MAR element.
Furthermore, the recombination hotspots of other genomic
disorders were analysed for their SIDD and S/MAR profiles.

METHODS

Patients

This study included 10 Japanese patients with Sotos
syndrome who carry a common deletion but from whom
the breakpoint could not be mapped to the SoS hotspot.* '
Furthermore, available parental DNA of patients with newly
identified breakpoints was analysed. The control group

Abbreviations: AF4, ALL-1 fused chromosome 4; CMT1A, Charcot-
Marie-Tooth disease type 1A; DLCR, distal low copy repeat; HNPP,
hereditary neuropathy with liability to pressure pali)sies; LCR, low copy
repeat; MLL, mixed lineage leukaemia gene; NAHR, non-allelic
homologous recombination; NF1, neurofibromatosis type 1; NSD1T,
nuclear receptor binding, SET domain containing protein 1; PLCR,
proximal low copy repeat; PSV, paralogous sequence variant; RBT,
refinoblastoma 1 gene; SIDD, stress induced destabilisation duplex; S/
MAR, scaffold/matrix attachment region; SMS, Smith-Magenis
syndrome; SoS, Sotos syndrome
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Table 1

Primer sequences used for long range polymerase chain reactions

Set Forward primer

Reverse primer

Product length (kb)

CCAGCGTTATATGTTCAGTCCTAGATGAAG
TGGTCTGATTCCTATGTTCTGCTGGHTGT
CACCAAAGGCCAGTGATGCCAATA
GGCCAGTGCATGATGTAGTCA
TTICCTCAGAGAGGCTTCGTTTGHAT
CCCATGTTCAAAGCACAACAgAT

*

*

oA WN —

GCAAAACTGCCGTCCCTCAC 8.3
CCCAGTGCTGGGGCACAAGTgAT 6.8
AGCCCTCCCCTGGCCGACTG 6.9
CAGTCACTGATGCTAACCTTGGAT 11.1
GCTGGGTCCACCTGCATCTA 10.5
TCCACCCCCAGGAAACAGAT 15.8

*Primer sefs 2 and 3 were reporfed previously."'

tMismatched nucleotides introduced to increase the specificity of the long range polymerase chain reaction are shown in small characters.

consisted of 50 healthy Japanese individuals. After informed
consent, genomic DNA was obtained from peripheral blood
cells or lymphoblastoid cell lines using standard methods.
Experimental protocols were approved by the committee for
ethical issues at Yokohama City University School of
Medicine and by the committee for ethical issues on human
genome and gene analysis at Nagasaki University.

Screening by long range polymerase chain reaction
Methods followed were similar to those described pre-
viously." In short, sets of primers with the forward primer
specific for PLCR-B and the reverse for DLCR-2B were
designed with the online version of Primer3 (http:/frodo.
wi.mit.edu/cgi-bin/primer3/primer3 www.cgi).*! Primer
sequences and product length are shown in table 1.

Amplification was tested on PLCR-B BAC-clone RP1I1-
546L14 (GenBank accession number AC108509), DLCR-2B
BAC-clone CTD-251511 (GenBank accession number
AC118457), and genomic DNA from a normal individual.
The annealing temperatures decisive for specific amplifica-
tion of a possible deletion-junction fragment were deter-
mined experimentally. Long range polymerase chain reaction
(PCR) was carried out using the GeneAmp XL PCR Kit
(Applied Biosystems, Foster City, California, USA). Positive
PCR products were amplified with nested primers and
subsequently sequenced. For primer set 6, all products were
first submitted to restriction with FspI to eliminate the
amplified product of the normal DLCR-2B and possible
breakpoint-junction fragments were sequenced. All nested
primer sequences and conditions are available on request.
Paralogous sequence variants (PSVs) (that is, nucleotide
differences between the PLCR-B and DLCR-2B)* were
mapped to the PLCR-B and DLCR-2B according to the
NCBI build 35 (May 2004) database (http:/genome.ucs-
c.edu/).

Analysis of the deletion-junction fragments and
recombination hotspots

The identified SoS deletion-junction fragments were ana-
lysed including 3.0 kb of their flanking sequences. Repetitive
sequence elements were identified with RepeatMasker
(http://www.repeatmasker.org/). The sequences covering the
recombination hotspots of deletions in neurofibromatosis
type 1 (NF1; OMIM No 162200)," of deletions in hereditary
neuropathy with liability to pressure palsies (HNPP; OMIM
No 162500) and its reciprocal duplications in Charcot—Marie—
Tooth disease type 1A (CMT1A; OMIM No 118220),”* of
deletions in Smith-Magenis syndrome (SMS; OMIM No
182290) and its reciprocal duplications in
dup(17)(pl1.2p11.2),"” ** were obtained by use of the
“PCR” and “Blat” functions on the UCSC homepage,
containing the NCBI build 35 (May 2004 version).
WebSIDD was used for the prediction of stress induced,
duplex destabilised (SIDD) sites in double stranded DNA
(http://orange.genomecenter.ucdavis.edu/benham/sidd/).””
Scaffold/matrix attachment regions were predicted with S/
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MAR-Wiz version 1.0 (http:/www.futuresoft.org/MAR-Wiz/).*
Both programs were run under default conditions.

RESULTS

Four primers sets were designed (table 1) and in combination
with the previously designed hotspot primer sets,'' a nearly
complete coverage was achieved of PLCR-B and PLCR-2B
(fig 1, panels A and B). Remaining small gaps included ~1.5
kb, ~0.4 kb and ~0.6 kb, respectively, owing to difficulties in
obtaining amplification of these regions. SoS 85 and SoS 110
showed a ~11.1 kb amplified product for primer set 4, while
their respective parents were negative for the same reaction
(fig 2A). This indicated a deletion-junction fragment. Also 50
control samples were negative for this product. Sequencing
revealed a transition of PSVs mapped to PLCR-B and those
mapped to DLCR-2B for both patients. The breakpoint region
for SoS 85 could be restricted to 164 base pairs (bp) (between
nucleotide position 1319 and 1483) and to 46 bp for SoS 110
(between nucleotide position 8517 and 8563) (fig 2C). PSVs
at position 8975 and 9460 for SoS 110 are likely to be
polymorphisms as they were also mapped to PLCR-B in SoS
85 (data not shown). The breakpoints were located ~2.5 kb
and ~9.6 kb in the telomeric region of the SoS recombination
hotspot for SoS 85 and SoS 110, respectively. SoS 4 and SoS 5
were, after restriction with Fspl, positive for an ~11.3 kb
product, which indicated a breakpoint-junction fragment.
Restriction with FspI was necessary as amplification of the
normal DLCR-2B chromosome was also occasionally
detected. Fifty normal controls were screened and in seven
an amplified product could be obtained. However, none of
the seven controls showed a breakpoint-junction fragment
after restriction with Fspl. Unfortunately, parental DNA could
not be obtained. The breakpoint-junction fragments were
sequenced and the crossover regions based on PSVs were
confined to 256 bp for SoS 5 (between position 5505 and
5761) and 124 bp for SoS 4 (between position 6028 and
6152) (fig 2D). The two breakpoint regions are located
~27.2 kb and ~27.7 kb telomeric to the SoS hotspot and are
separated from each other by ~0.3 kb. In SoS 5, an insertion
of 4 nucleotides (GACA) was found at position 5594. This
could indicate either the exact breakpoint location or a mere
polymorphism.

For SoS 5 and SoS 85, the breakpoint region was mapped
to a sequence not related to any interspersed repeats.
However in SoS 85, a simple repeat (TA)n was found at
position 1308-1319 and a LINE1 element was found in close
proximity—that is, 5 bp telomeric. The crossover event for
SoS 4 occurred within an A/u-Sx element and the region for
SoS 110 overlapped partially with an A/u-Sg element. In the
breakpoint regions for the four patients, only in SoS 5 was
one translin motif (5'- GCCCWSSW-3") detected. This motif
was found increased for the SoS hotspot.'" Patients SoS 85
and SoS 110 were haplotyped previously and confirmed to
carry a deletion in the maternally derived chromosome.* The
parental origin was unknown in SoS 4 and SoS 5. The
deletion-junction fragment of SoS 85 arose through an
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Figure 1

in Sotos syndrome (SoS). Mechanisms o

(A) Schematic presentation of Fossib|e non-allelic homologous recombination (NAHR) events resulting in the common 1.9 Mb microdeletion
genomic rearrangements are reviewed in detail by Stankiewicz and Lupski.?” The upper part depicts the

possible crossover in an interchromosomal or an intrachromosomal recombination event. The lower part shows an intrachromatid crossover event. The
predicted deletion-junction fragment is shown with thick black lines. The segments within the proximal low copy repeat (PLCR) together with
corresponding homologous counterparts in the distal low copy repeat (DLCR), are indicated with blocks and their resFecﬁve letters. PLCR-B is

represented twice in the DLCR (DLCR-1B and DLCR-2B). The arrows indicate the genomic orientation. (B) Presentation o

the deletion-junction fragment

of directly orientated PLCR-B and DLCR-2B. A shaded box indicates the SoS hotspot. Vertical arrows show the breok[()oin’r location of SoS 85, SoS 110,

S0S 5, and SoS 4. Bidirectional arrows above the fragment depict the genomic distances between the different brea

point locations and the remaining

parts. Horizontal black lines below the deletion-junction Frcimeni show the schematic position and length of long PCR products with the used primer
b

sets. The letters X, Y, and Z indicate existing gaps of ~1.5

intrachromosomal recombination event (fig 1A, upper and
lower panels), while this is not known for SoS 110.” The
parents of SoS 85 and SoS 110 had a heterozygous inversion
of the interval between the SoS LCRs." The father of SoS 5
also showed a heterozygous inversion, while the mother did
not carry an inversion.' Parental DNA could not be obtained
for SoS 4.

The results of the SIDD and S/MAR analysis based on the
proximal sequences of the PLCRs involved are shown in fig 3.
Analysis of the distal sequences of the respective LCRs did
not show any significant differences in SIDD and S/MAR
profiles owing to the high homology of proximal and distal

, ~0.4 kb, and ~0.6 kb, respectively. Cen: centromere; Tel: telomere.

LCRs (data not shown). The breakpoints of SoS 85 and SoS
110 (fig 3, panels A and B, respectively) overlapped with DNA
regions which are very susceptible to duplex destabilisation
with G(x) values (that is, the energy needed to force the base
pair at position x always to be unpaired)*” close to 0 kcal/mol.
In concordance, the same regions showed increased S/MAR
potential. The breakpoints of SoS 5 and SoS 4 were mapped
to a transition region with an increased S/MAR potential and
directly adjacent to destabilised DNA (fig 3C). The SoS
hotspot region was mapped to a ~4.8 kb segment of highly
stabilised DNA without S/MAR potential (fig 3D). Also the
recombination hotspots for NF1 (2.1 kb)," for common 4 Mb
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Figure 2 (A) Polymerase chain reaction (PCR) results for primer set 4 in patients SoS 85 and SoS 110 and their parents. Left lane: a 1 kb plus DNA
ladder (Invitrogen, San Diego, California, USA). F 85: father of SoS 85; M 85: mother of SoS 85; F 110: father of SoS 110; M 110: mother of SoS
110. (B) PCR results for primer set 6 before and after restriction with Fspl in SoS 4, SoS 5, DNA of a normal individual and clone CTD-251511. The
detected ~11.3 kb product in SoS 4 and SoS 5 indicates a breakpoint-junction fragment. Left lane: a 1 kb plus DNA ladder. (C) Paralogous sequence
variants (PSVs) identified in the breakpoint regions of SoS 85 (upper) and SoS 110 (lower). Black boxes indicate PSVs of PLCR-B and white boxes show
those of DLCR-2B. The PSVs as deposited in the NCBI build 35 (May version 2004) are shown above the respective patient’s PSVs. The position in bp
indicates the position of the PSVs within the product amplified with primer set 4. (D) PSVs identified in the breakpoint regions of SoS 5 (upper) and SoS
4 (lower). The position in base pairs (bp) indicates the position of the PSVs within the product amplified with primer set 6 and after restriction with Fspl.
The grey boxes show the position of the four inserted nucleotides as found in SoS 5. DLCR, distal low copy repeat; PLCR, proximal low copy repeat;
SoS, Sotos syndrome.
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deletions in SMS (~8 kb),"” and for uncommon deletions in
SMS (577 bp),”® showed similar stretches of stabilised SIDD
sites covering the hotspots, flanked by non-stable regions
with a high S/MAR potential (fig 3, panels E, F, and G,
respectively). The recombination hotspot in CMTIA and
HNPP (557-741 bp)*** was mapped to a stabilised region,
although this region also showed a slightly increased S/MAR
potential (~0.10) (fig 3H). However, the S/MAR potential of
the corresponding sequence of the distal LCR was close to
zero (data not shown).

DISCUSSION

Common deletions in SoS syndrome are caused by non-allelic
homologous recombination (NAHR) between directly orien-
tated LCR segments."' By use of long range PCR screening, we
identified the first non-hotspot-related breakpoints in four
SoS patients with a common microdeletion. These breakpoint
locations are expected to have a low recurrence—first,
because of the low frequency in our SoS patients population
so far (2.1% (1/47) for each of the breakpoint regions of SoS
85 and SoS 110, and 4.3% (2/47) for the region containing the
breakpoints of SoS 4 and SoS 5); and second, in case of SoS
85 and SoS 110, because of a maternal deletion origin, while
all other patients previously haplotyped carried the deletion
in the paternally derived chromosome.*® A rare maternal
deletion origin and uncommon breakpoint locations are
suggestive of a sex biased recombination mechanism in these
two patients, but investigations in larger populations are
necessary for confirmation. It is, however, this low recurrence
characteristic in all four patients, in combination with NAHR
as the general underlying mechanism, which makes them
interesting candidates for comparison with recombination
hotspot features.

In SoS 5 and SoS 85, similar to the hotspot, the break-
points were not located within short repetitive DNA
clements. However, a LINE] element was found in close
proximity in SoS 85. Active human LINEI retrotransposons
in vivo have been shown to induce genomic instability such
as inversions, deletions, and recombination between L1
elements.”' ** However, because of truncating mutations
(data not shown) within the two open reading frames
necessary for retrotransposition, it is unlikely that the LINE1
element near the breakpoint of SoS 85 maintained its
function. On the other hand, the location of LINE elements
has also been proposed to be a marker for the localisation of
S/MARs, as easily unwinding DNA might predispose to their
integration within the genome. In SoS 4, the crossover
event occurred in an Alu-Sx element and in SoS 110 the
breakpoint region partially overlapped with an Aflu-Sg
element. Alu mediated illegitimate recombination is esti-
mated to be responsible for ~0.3% of all human genetic
diseases.” An Alu-Sq/x element was found in the hotspot of
uncommon sized deletions in Smith—-Magenis syndrome and
the recombination interval was mapped to this element in
four patients.* However, this region was also characterised
by a stabilised DNA helix and low S/MAR potential (fig 3G).
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The breakpoints of the other six SoS patients could not be
identified. Although our LCR specific long range PCR proved
its use, it is possible that the remaining primer sets are not
sensitive enough, while only detection of a true positive can
confirm their sensitivity. Also, possible polymorphisms at the
primer sites, unknown complex rearrangements within the
LCRs during deletion-junction formation, or a location of the
breakpoints within the remaining gaps might have inhibited
detection.

To date, analysis of hotspot related and non-hotspot-
related breakpoints have deepened our knowledge about the
underlying causative mechanisms. LCRs in direct orientation
with a high sequence identity are the necessary structures for
rearrangement resulting in deletion and reciprocal duplica-
tion.>* Even higher sequence similarity is usually found
within hotspots in combination with regions of uninter-
rupted sequence homology (~300-500 bp), which are
thought to be necessary for efficient recombination in
mammalian cells.”” > Several sequence motifs have been
described, but neither has a common recombination initiat-
ing factor been found, nor have the identified motifs been
confirmed in vivo." '* > **?° In the quest for an explanation
for the exhibited preference for unequal recombination in a
small region—for example, the 3.0 kb hotspot in SoS is only
~5% of the total PLCR-B in size—other role playing factors
seem likely. A specific chromatin structure was hypothesised
to be such a determining factor.” '* A susceptible conforma-
tion would possibly have increased accessibility for the
double strand break and repair machinery and could thus
predispose to a hotspot location."”

The human chromatin is organised in around 60 000 loop
domains, which are periodically attached at their base to a
supporting skeleton, the so called nuclear scaffold or matrix.*
This compartmentalisation of the genome has an important
regulatory function in gene expression, DNA replication, and
recombination.”® *” As S/MARs are essentially recombinogenic
unpairing regions, a strong correlation has been found
between two basically different algorithms—the S/MAR-wiz
and WebSIDD—with the latter detecting stress induced
destabilised unwound DNA.*® In general, results of in silico
analysis should be considered carefully. However, a good
correlation for the programs used was already confirmed
with the results of in vitro experiments.*’

As many as 74% (23/31) of the breakpoints in the mixed
lineage leukaemia (MLL) gene in de novo leukaemia patients
were mapped to a breakpoint cluster region located between
S/MARs.”® Furthermore, a clustering of breakpoints of t(4;11)
translocations in the human MLL and AF4 (ALL-1 fused
chromosome 4) genes was also found to be located outside
high affinity S/MARs, but with flanking S/MARs in the
vicinity.*  The  hotspots for  SoS, NFl, SMS/
dup(17)(pl1.2p11.2), and uncommon deletions in SMS as
investigated with these programs in this study, showed a
similar pattern of stabilised DNA duplex regions, located
between destabilised regions with a coinciding higher S/MAR
probability. In contrast, the four non-hotspot-related break-
points were found in or at the border of highly destabilised

Figure 3 The stress induced destabilisation duplex (SIDD) energy profile (upper graph) and scaffold/matrix attachment region (S/MAR) potential
(lower) of the proximal sequences of the low copy repeats (LCRs) involved are shown in relation to the breakpoint region in SoS 85 (A), SoS 110 (B),
SoS 5 (C), and SoS 4 (C) (which are ordered based upon their genomic location in DLCR-2B (see fig 1B)), the SoS hotspot (D), NF1 hotspot (E), SMS
hotspot (F), SMS hotspot for uncommon sized deletions (G), ang the CMT1A/HNPP hotspot (H). Analysis of the distal LCR sequences showed similar
patterns (data not shown). Horizontal bidirectional arrows between the SIDD and S/MAR profiles indicate the respective hotspots. Vertical bidirectional
arrows show the breakpoint regions for SoS 85, SoS 110, SoS 5, and SoS 4, respectivef;. In the SIDD profile, the y axis sEows the incremental free
energy G(x) in (kcal/mol), which corresponds to the energy necessary to force the base pair at position x always to be open.?” For example, a G(x)
value of 10.2 keal/mol indicates unstressed stable DNA at that position. The y axis in the S/MAR profile indicates the normalised S/MAR association
potential with values between 0 and 1.0. The higher the predicted value, the more likely it is that the corresponding region contains a S/MAR element.
Both x axes show the sequence distances in base pairs. CMT1A, Charcot-Marie-Tooth J;seqse type 1A; DLCR, distal low copy repeat; HNPP, hereditary
neuropathy with liability to pressure palsies; NF1, neurofibromatosis type 1; SMS, Smith-Magenis syndrome; SoS, Sofos syndrome.
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DNA with an increased S/MAR potential. The patterns of the
hotspot for deletions and reciprocal duplications in HNPP/
CMTI1A were not in complete correlation. The hotspot still
seemed to be located within a stabilised DNA helix, but an S/
MAR potential of ~0.10 was also found. As the S/MAR
potential in the distal LCR was close to zero (data not the
shown), the meaning of such a slightly increased potential
remains to be determined. The differences in DNA destabi-
lisation profiles and in frequency of occurrence between
breakpoints located in and outside the SoS hotspot seem to
support the view that the centre for recombination is located
in stabilised DNA regions and that regions with strand
separation potential (that is, S/MARs) are likely to function
as mediators.” However, it should be noted that the previous
data are based upon somatic events in leukaemia patients
with translocations between different chromosomes.” *
Currently only a limited number of genomic disorders could
be used for analysis. Therefore, future identification and
analysis of other breakpoint clusters and non-hotspot-related
breakpoints mediated by NAHR will possibly determine
whether this analysis could be used in combination with
other hotspot characteristics to predict possible recombina-
tion hotspot locations within LCRs.

In conclusion, the first identification of four non-hotspot-
related breakpoints in SoS in comparison with the SoS and
other recombination hotspots indicates that DNA duplex
stabilisation and specific chromatin organisation might play
arole in predisposition for recombination hotspot locations of
genomic disorders.
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