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Background: Approximately 80% of the o- and 10% of the B-thalassaemias are caused by genomic
deletions involving the o- and B-globin gene clusters on chromosomes 16p13.3 and 11p15.5,
respectively. Gap-PCR, Southern blot andlysis, and fluorescent in situ hybridisation are commonly used
to identify these deletions; however, many deletions go undetected using conventional techniques.
Methods: Patient samples for which no abnormalities had been found using conventional DNA techniques
were analysed by a three colour multiplex ligation-dependent probe amplification assay. Two sets of 35
and 50 probes, covering a region of 700 kb of the a- and 500 kb of the B-globin gene cluster,
respectively, were designed to detect rearrangements in the o- and B-globin gene clusters.

Results: In 19 out of 38 patient samples, we found 11 different o-thalassaemia deletions, six of which were
not previously described. Two novel deletions leaving the a-globin gene cluster intact were found to cause
a complete downregulation of the downstream a-genes. Similarly, 31 out of 51 patient samples were
found to carry 10 different deletions involving the B-globin gene cluster, three of which were not previously
described. One involves the deletion of the locus control region leaving the B-globin gene cluster intact.
Conclusions: These deletions, which are not easily detected by conventional techniques, may have clinical
implications during pregnancy ranging from mild to life threatening microcytic haemolytic anaemia in
neonates. The approach as described here is a rapid and sensitive method for high resolution analysis of

acterised by a quantitative reduction of the a- or $-globin

chains.'” Genomic deletions involving the a-globin gene
cluster on chromosome 16pl3.3 are the most common
molecular cause of o-thalassaemia (~80-90% of cases).
Rearrangements in the B-globin gene cluster on 11pl5.4
account for ~10% of all B-thalassaemia mutations and
hereditary persistence of fetal haemoglobin (HPFH) syn-
dromes. Besides the most common deletions, a large variety
of less frequently occurring thalassaemia deletions have been
found in different populations. At least 60 different deletions
involving the B- and more than 50 involving the o-globin
gene cluster have been described to date* > (http://globin.cse.
psu.edu/hbvar/menu.html).

The molecular tests commonly used to identify these
deletions are gap-PCR, Southern blot analysis, and fluores-
cent in situ hybridisation (FISH) analysis.'* Gap-PCR can
only be applied to known deletions, Southern blot analysis is
time consuming and technically demanding and success is
very much dependent upon the hybridisation probes avail-
able, and FISH analysis involves laborious cell culturing to
generate metaphase chromosome spreads and has a low
resolution (>20 kb).

Recently, a simple technique suitable for rapid quantitative
analysis, multiplex ligation-dependent probe amplification
(MLPA), has been described." This technique is based on the
ligation and PCR amplification of two adjacently hybridising
oligonucleotides. Each oligonucleotide pair is designed to give
a product of a unique length, and by using common ends all
probes can be amplified with one primer pair. Using a
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the globin gene clusters and for any region of the genome.

fluorescent label allows probe separation on a capillary
sequencing system. This method has been applied success-
fully in a number of genes in which deletions and
duplications are common.” ' In the original description,
the probes were generated by cloning into specially developed
M13 vectors. Recently, we have simplified this method by
using chemically synthesised oligonucleotides.
Discrimination of probes based on chemically synthesised
oligonucleotides (~40-60 nt) was doubled using two uni-
versal primer sets each labelled with a different fluorophore,
allowing up to 40 probes to be used in a single reaction."”

To simplify the detection of ao- and B-thalassaemia
deletions and increase the resolutions, we designed two
probe sets for each cluster. For the a-cluster, two probe sets of
35 probe pairs in total were designed with an average
distance of ~20 kb, covering a genomic region of ~700 kb.
For the B-cluster, a total of three probe sets consisting of 50
probe pairs were designed covering a region of ~500 kb and
an average distance of ~10 kb. Control DNA of known o- and
B-thalassaemia deletion carriers was used and the deletion
characterised by an independent method. Two groups of
patient samples suspected of having a (large) deletion in
either the o- or B-globin gene cluster, based on haematolo-
gical findings, were analysed in this assay.

Abbreviations: ATR-16, a-thalassaemia mental retardation syndrome;
FISH, fluorescent in situ hybridisation; HbH, haemoglobin H; HPFH,
hereditary persistence of fetal haemoglobin; MAPH, multiplex
amplifiable probe hybridisation; MLPA, multiplex ligation-dependent
probe amplification
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Figure 1 (A) Schematic representation of the short arm of chromosome 16 (16p13.3), showing a 700 kb region containing the a-globin gene cluster.
Grey bars above the cluster indicate the minimal tiling path of clones covering this region. Oval shape denotes the telomeric repeat region and solid
boxes the genes throughout the regions (adapted from Daniels et af®). Vertical arrows show locations of probe pairs; colours correspond to colour
label used in MLPA reaction and probe numbers to numbers in table 3. Bars below the figure indicate deletions found by MLPA, vertical lines marking
the first and last probe deleted. Open boxes mark the region where deletion breakpoint should be located. Red indicates novel deletions found in this
study. Blue indicates deletions previously described, but more accurately mapped by MLPA. The number of unrelated individuals found during analysis
is indicated between brackets. (B) Schematic presentation of part of 16p13.3 showing the a-globin gene cluster. Black bars show deletions (all
confirmed by gap-PCR or Southern blot analysis) used as positive controls to set up the assay. Green bars show deletions resembling described
deletions in length and position of the breakpoints. The identity can only be determined by gap-PCR and direct sequencing.
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METHODS

Patients

Patients suspected of having haemoglobinopathies were
referred to our laboratory for haematological, biochemical,
and DNA analysis.'” Based on this analysis, they were
diagnosed as a- and/or B-thalassaemia carriers. The patients
suspected of having a-thalassaemia in whom no abnormal-
ities were found by gap-PCR for the seven most common o-
thalassaemia deletions and non-deletion types of a-thalas-
saemia were excluded by direct sequencing of the a-genes,
were selected for MLPA. Some showed either an unbalanced
a/f chain synthesis ratio (<0.8) and/or inclusion bodies"”
indicative for a deletion of both a-genes on the same allele.'®
In addition, a few patients presented with haemoglobin H
(HbH) disease, but analysis thus far only revealed one
mutation, suggesting a deleted allele in trans. Some showed
the presence of possible junction fragments by Southern blot,
in which the deletion could not be characterised due to lack
of probes in the region flanking the potential deletion. In
total, 38 possible a-thalassaemia carriers were selected to be
screened for rearrangements in 16p13.3. These samples were
collected during a period of approximately 5 years.

Patients were selected who presented with a microcytic
hypochromic anaemia in the presence of elevated HbA,
levels, for which standard DNA analysis revealed no
abnormalities in the B-globin gene sequence or the 5’ and
3'UTR. These samples include patients showing a high HbF
expression, indicative for HPFH, (8B)°- or Sy(*y8p)°-thalas-
saemia, and patients showing normal HbA, and HbF levels
with o/p chain synthesis ratios higher than 1.5, indicative for
deletions involving the complete cluster and/or the regulatory
elements. A total of 51 samples were analysed by MLPA.

As positive controls for MLPA of the a-globin gene cluster,
we used seven deletions confirmed previously by gap-PCR
(- - SEA 37 A2 Med 1 L. THAL apq ()20,
indicated as black bars in fig 1B). Two other deletions (33 kb
- Puth Tand -o”) were previously characterised by Southern
blot analysis and direct sequencing of the amplified break
point fragments." ** For MLPA of the B-cluster, the Dutch III
(eSy™y) OB-thalassaemia of 112 kb,** the 50 kb Belgian
(vdB) *thalassaemia, the 25-30 kb Chinese B°-thalassae-
mia,” the 12.6 kb Dutch I B°-thalassaemia,** and the Indian
(—619 bp) p°-thalassaemia deletions,” all previously char-
acterised by Southern blot analysis, were used as positive
controls (fig 2).

Probe design

In total 35 probe pairs were designed to detect rearrange-
ments on 16pl3.3, covering approximately 700 kb from the
telomere to the MSLN gene (table 3, fig 1). For each probe
pair, the common ends correspond to either the MLPA
amplification primers (forward tag 5'-GGGTTCCCTAAGGGTT
GGA-3'; reverse tag 5'-TCTAGATTGGATCTTGCTGGC-3")"" or
the multiplex amplifiable probe hybridisation (MAPH)
primers (forward tag 5'-GGCCGCGGGAATTCGATT-3';
reverse tag 5'-CACTAGTGAATTCGCGGC-3"),* which allows
simultaneous amplification and detection of the separated
fragments in different colours.

Similarly, 34 probe pairs to be analysed in two colours were
designed to detect rearrangements on 11pl15.4 (table 1, fig 2).
A third probe set, consisting of an additional 16 probe pairs,
was designed for fine mapping some of the deletions found
by MLPA (table 2). In order to detect all 50 probe sets in the
same fragment analysis sample run, a third common
extension was used for the additional probe set, which
allowed the use of a third colour (M13 forward tag 5'-
GGCGATTAAGTTGGGTAAC-3'; MI13 reverse tag 5'-
GTTCACACAGGAAACAGC-3').
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Unique sequence was identified using the BLAT program
(http://genome.ucsc.edu),” and care was taken that no
known sequence variants were present in the primer
annealing site. Probes within each set were designed to
produce PCR products differing by 2 bp in length to allow
separation in the size range of 80-125 bp using capillary
electrophoresis on an ABI 3700 sequencer (Applied
Biosystems, Foster City, CA). Primers have been designed
using the RAW program (MRC-Holland, Amsterdam, The
Netherlands) such that the melting temperature of the
hybridising regions of each probe was at least 65°C, with a
GC percentage between 35% and 60%.

The oligonucleotides were from Illumina (San Diego, CA),
synthesised in a salt-free environment (50 nmol scale) and
used without further purification. The downstream primer of
cach probe pair was 5’ phosphorylated to allow ligation.
Separate probe mixes were prepared to allow the detection of
deletions in either the a- or B-globin gene clusters, combining
two sets of probes with MLPA and MAPH common ends at a
final concentration of 4 fmol/pul. The o- and B-globin gene
MLPA probe mixes are available upon request (http:/
www.LGTC.nl).

MLPA reaction

Reagents for MLPA and subsequent PCR amplification were
purchased from MRC-Holland. All primers used for PCR
amplification ~ were purchased from Sigma-Genosys
(Cambridge, UK). The MLPA reactions were performed as
described by Schouten ef al'' and White ef al.” In brief,
approximately 200 ng of genomic DNA in a final volume of
5 ul was heated for 5 min at 98°C. After cooling to room
temperature, 1.5 ul of the probe mix and 1.5 ul SALSA
hybridisation buffer (MRC-Holland) were added to each
sample, followed by heat denaturation (2 min at 95°C) and
hybridisation (16 h at 60°C). Ligation was performed by
adding 32 ul of ligation mix at 54°C for 10 min and the
reaction was stopped by incubating for 5 min at 95°C. PCR
amplification was carried out for 33 cycles in a final volume
of 25 ul, adding both the MAPH-F and -R and the MLPA-F
and -R primer sets to a final concentration of 100 and
200 nM, respectively, with MAPH-F being labelled with HEX
and MLPA-F being labelled with FAM. The third common
primer set used for the B-globin gene cluster were M13-F and
M13-R; the primers were labelled with ROX and added to a
final concentration of 100 nM. A size standard (0.05 pl ROX
500; Applied Biosystems, http://www.appliedbiosystems.-
com) was added to each well and products were separated
by capillary electrophoresis on the ABI 3700 sequencer (fig 3).

Data analysis
For quantitative analysis, trace data from GeneScan (Applied
Biosystems) were exported to Excel (Microsoft, www.micro-
soft.com) to calculate allelic loss in the patient samples
tested.” In brief, two probes for unlinked loci were included
per probe set as a reference in each sample. The height of
each a- (or B-) globin cluster specific probe peak was divided
by the sum of the heights of the two reference probe peaks to
give a ratio. The median ratio for each probe across all
samples was calculated and this value was used to normalise
each probe to 1.0, which corresponds to a copy number of
two. The upper threshold for deletions was set at 0.75 and the
lower threshold for duplications at 1.25. The normalising
factor for each sample was calculated as the mean value of
the unaffected probes within a sample (defined as falling
between 0.8 and 1.2) and dividing all values within that
sample by this value.

All samples were tested at least twice. Detection of
deletions is simplified by the fact that a series of flanking
probes all generate a decreased signal. In cases of unlinked or
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Figure 2 (A) Schematic representation of the short arm of chromosome 11 (11p15.4), showing a 500 kb region containing the B-globin gene cluster.
The genes throughout the regions are indicated as solid boxes. The minimal tiling path of clones covering this region is indicated by grey bars above the
cluster. Deletions found by MLPA are shown as bars below the figure; the colours of the bars are as indicated in fig 1. The brown gars represent
deletions found during this analysis and confirmed by gap-PCR. (B) Schematic presentation of the region surrounding the B-globin gene and deletions
found during this qnoﬁysis or used as positive controls.

single probe deletions, the region covering the MLPA probes differing by 2 bp in length. To maximise the number of loci

is amplified and sequenced to rule out the presence of rare that can be analysed in a single MLPA assay, we used a
sequence variants under the ligation site. second primer set with common ends, to allow co-amplifica-

tion of the two primer sets under the same PCR conditions.
RESULTS Probes were designed for each gene and pseudo-gene in the
Design of the MLPA assay for a-thalassaemia a-globin gene cluster, in the unique sequences Lo and L;, at
rearrangements the HS-40, the MPG gene, and more proximal at conserved
Fragment analysis in the size range of 80-125 bp allows the sequences, respectively, 20 and 9 kb from the MPG gene
simultaneous amplification of approximately 20 probes (fig 1). More distally, two probes were designed flanking the
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Table 2 Names and sequences of third probe set for the B-globin gene cluster designed to map the large deletions
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No.
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CTCCTTGCCTGAAAAGAGCTTTCAATAGAAAATCCCC
TGTCCTAAGGAGGAGGTTTTAAGTAACCTCTGTCCTC

CACAATAGGGGAAGGATAGTCTCCTC
GCACGATCTTAGACTACTTAAATAGAAACTCAGCA

TTCCTGAGGATCACCCAGCTTAGTATCATGCCTCT
AGGAGCTTTTGGGGCCTTCAGCCTTC
TITCTTAAAGGATCAATGTAATGCCCTGCTCTGA
TACTGGTCTCTCTGAGCCTTATAACCTTTCAA
AGGGCTCATAGGCAAGTCATGTCATG
CATTGATTTGGGCAAATACTGTCTATGAGACTTC
CCAGAGACTCAACATCATGGTTTACAAGTTAC
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3'HVR, known to be involved in many rearrangements of the
a-cluster, and 15 probes at approximate intervals of 13-50 kb
with the most proximal probe localised in the MSLN gene,
known to be deleted in the a-thalassaemia mental retarda-
tion syndrome (ATR-16).”** The 35 probe pairs shown in
table 3 can detect all the deletions described to date.

Of the 35 probes tested in triplicate on 14 healthy
individuals, two gave a standard deviation of greater than
12% (table 3, probes 17a and 2la). These probes were
considered to be unreliable and were excluded from further
calculations. To investigate the efficacy of the assay, DNA
samples of nine carriers with known deletions were used as
positive controls. All could be detected unequivocally and
their extent could be confirmed (black bars in fig 1B).

To demonstrate that duplications are also reliably detected,
we tested a homozygote and heterozygote carrier for the
common -o°7 deletion, which results in the loss of the 0ly-
specific 3'UTR and a heterozygote for the so called o-
triplication, which is characterised by a duplication of the a,-
specific 3'UTR. The results are summarised in fig 3.

MLPA for B-thalassaemia rearrangements and HPFH
Similar to the a-cluster, 34 probes were designed for loci in
the B-globin gene cluster and flanking regions. The region
spans from the olfactory receptor gene OR52D1 to OR52A4
and covers an area of approximately 370 kb (table 1, fig 2).
Most large deletions reported so far are located in this region
and all should be detectable. In order to detect small
deletions removing part or all of the B-gene,’® a subset of
closely spaced probes (fig 2B) surrounding the B-globin gene
were selected. A third probe set was designed with different
common ends (M13-F and -R) to allow amplification and
detection with a third colour. Loci were selected in between
some widely spaced probes and towards the centromere.
Standard deviations for these probe sets were calculated in 19
healthy individuals; none showed standard deviations greater
than 12%.

Positive controls (marked as black bars in fig 2) were used
to test the capacity of the MLPA assay to detect the deletions
found by other methods in these patients. Probes covering
deleted loci showed half the intensity of the surrounding
probes, matching the positions and extensions of all the six
known deletions.

Patient samples for a-thalassaemia

Our MLPA analysis revealed a large deletion involving the a-
globin genes in 19 out of 38 patients. In the remaining 19
patients, 11 different deletions were detected, affecting either
the o-globin genes or the regulatory elements known to be
involved in globin gene expression. Six showed no resemblance
to previously described deletions and were considered to be new
(- - 9%, 2O (o) (a)?W, - - AB .- MKy Ope has been
described (Dutch II «’-thalassaemia) but the breakpoint
position and deletion length could not be determined at the
time*'; FISH analysis performed in John Radcliff Hospital in
Oxford revealed an approximate deletion length of 300 kb
(Higgs, personal communication). Four deletions show simi-
larity with previously described deletions (fig 1B, last four
deletions). One 14 year old Dutch girl showed haematological
parameters typical for an «°-thalassaemia carrier (MCV 65 fl,
MCH 19.5 pg, RBC 5.79x10'%, and positive HbH inclusion
bodies test). The a-genes were structurally intact and we only
detected the deletion of a single probe 5a (fig 1A (ot)*"). The
location of this probe coincides with one of the cis acting
elements that regulate a-gene expression, known as the HS-40.

Patient sample for f-thalassaemia
Analysis of the 51 samples suspected for B-thalassemic
rearrangements or HPFH using MLPA revealed 10 different
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Characterisation of thalassaemia deletions by MLPA

deletions in 31 out of 51 patient samples. In the remaining 20
samples, a deletion of the probe sets tested could be excluded.
In three cases, deletions were detected which do not match
those described to date and are considered to be new. All
three deletions, found in Dutch carriers, silence the expres-
sion of the complete globin gene locus and were named
Dutch IV (€Sy*y)8p%, Dutch V €Sy*y8p°-, and Dutch VI
(eSy*ydP)°-thalassaemia. One matched the HPFH-2 deletion
and was confirmed by breakpoint PCR.* One sample belonged
to a patient described in 1996 by Abels et al’* as a carrier of
Dutch II (e°y*y8p)°-thalassaemia, however the deletion
length was not determined at that time. Now the deletion
length is estimated to be at least larger than 400 kb and the
5’ breakpoint located between position 5408246 and 5387552
(UCSC Genome Browser, May 2004) (fig 2A). Five deletions
match the length and breakpoint locations of previously
described deletions, two of which, the Croatian (ey8f)°- (at
least >108 kb) and the Filipino p°-thalassaemia (at least
>45 kb), were incompletely mapped. More accurate length
estimations were obtained by MLPA, being between 128-
143 kb and 109-122 kb, respectively. The other three showed
similarity to the Dutch I 12.6 kb p°-thalassaemia deletion (in
seven independent patients of Dutch origin), the 13.4 kb
Sicilian (8p)°-thalassaemia deletion, which are also fre-
quently found in the Mediterranean basin,”** and the
32.6 kb Indian Sy*y(8B)°-thalassacmia,”® found in four
independent chromosomes from Surinam-Hindustani sub-
jects (fig 2B).

DISCUSSION

We describe the application of MLPA for high resolution
mapping of deletions causing o- and B-thalassaemia. Using
synthetic oligonucleotides, 35 loci along a genomic region of
700 kb from the tip of the short arm of chromosome 16,
containing the a-globin gene cluster, could be analysed in
two colours in a single reaction. More loci could be analysed
simultaneously by using a third pair of amplification primers,
labelled with a third fluorophore. This increased the number
of probes to 50 loci spanning a genomic region of 500 kb on
11p15.4 and used to detect rearrangements causing p-
thalassaemia or HPFH. Although slightly better results can
be obtained when performing the PCR with the three sets of
labelled universal primers separately, the ligation of all 50
probes was done in a single tube reaction. The fragment
analysis was performed on a single sample of the three
pooled PCR products per patient, which allowed the
simultaneous analysis of 86 patient samples along with 10
normal controls in a 96 well format fragment analysis run on
the ABI 3700.

The use of chemically synthesised oligonucleotides instead
of cloning the half probes into M13 vectors, as originally
described for MLPA," allows cheap and rapid probe devel-
opment, which increases the flexibility of MLPA for
characterising genomic rearrangements. Only two out of 85
probes (2%) were excluded from further calculations due to
standard deviations higher than 12% when tested on a
validation set of 12 wildtype controls. The majority showed
standard deviations of between 0.05 and 0.08. Although these
deviations seem significant, please note that due to the probe
density rearrangements are mostly detected using a series of
flanking probes (>2).

The ability to detect rearrangements in both regions was
tested using positive controls, heterozygous for the seven
most common o-thalassaemia deletions confirmed by gap-
PCR, and for two less frequent mutations, Dutch I and -0,
confirmed by Southern blot analysis. By selecting 12 probes
closely distributed along the 40 kb a-globin gene cluster, all
of the common deletion types (except for the - - and
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- -THAT) could be distinguished from each other by MLPA. In

our eyes, the simplicity, work-load, and cost make MLPA a
superior alternative to Southern blot analysis when a single
technique is preferred for the detection of deletions causing
a-thalassaemia in a research setting. When desired, gap-PCR
can be used for independent confirmation. Similarly, six
positive controls were selected, based on confirmation by
different methods (Southern blotting and/or direct sequen-
cing of break point fragments) and tested for the B-cluster
probe set. All the probes expected to be deleted were
confirmed in the heterozygotes tested.

In 19 and 20 samples large rearrangements involving the o-
and f-globin genes, respectively, could be excluded. Point
mutations or micro-deletions affecting expression and
located in between the probes, would not be picked up by
MLPA. However, since iron levels were not known for some
patients and anaemia due to iron deficiency could easily be
mistaken for o- or normal HbA, B-thalassaemia, we believe
that negative samples may fall into this category.

Polymorphisms in the genome, interfering with probe
annealing and ligation of the two probe pairs, may cause the
loss of probe signal leading to a false positive MLPA
result."" " *¢ During the screening of patient samples sus-
pected for a-thalassaemia, one case repeatedly showed the
deletion of a single probe 5a (in fig 2A), named the (owo)*"
deletion found in an adopted child. This probe was selected in
a highly conserved region of the HS-40, not containing the
polymorphic sites known to be present in human popula-
tions.”” Deletion of this regulatory element is expected to
cause severe down regulation of a-gene expression of the
affected chromosome. Even though nothing can be said
about the extent of deletion, the fact that the HbH inclusion
bodies test was positive and that no other rearrangements
involving the a-genes were found, is strongly in favour of a
deletion involving the HS-40. Whether or not this deletion,
which is at maximum 30 kb in length, also involves HS-33 as
found by Higgs et al’® needs further analysis. These types of
deletions in human carriers may contribute to understanding
the mechanisms involved in regulation of downstream o-
gene expression® and will be studied further.

In conclusion, MLPA is an attractive alternative for FISH
analysis for screening large deletions, for example in ATR-16
syndrome.” ' The tiling paths of cloned probes currently
available for cytogenetic analysis of 16p13.3 and 11pl5.4 are
shown in figs 1 and 2. The distribution of synthetic probes
coincides with the available cosmids, and allows a higher
resolution of mapping than the available BAC or PAC probes.
In contrast to in situ hybridisation, no laborious cell culture
to generate metaphase spreads is necessary. MLPA can be
performed directly on (stored) DNA samples.

MLPA uses standard technology only, that is, hybridisa-
tion, ligation, PCR, and capillary electrophoresis. Since most
diagnostic laboratories have these technologies operational,
implementation of MLPA should be straightforward. The
robustness, simplicity, and intrinsic redundancy (probe
density) of this approach, and the additional specificity
offered by the ligation step, make MLPA an attractive
technique for the detection and characterisation of copy
number variation (deletions/duplications) in any region of
the genome, particularly for high resolution analysis, and
those regions not amenable to analysis by array comparative
genomic hybridisation (array CGH).*
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ELECTRONIC-DATABASE INFORMATION

The following URLs have been mentioned in this
article: HbVar: A Database of Human Hemoglobin
Variants and Thalassemias, http://globin.cse.p-
su.edu/hbvar/menu.html; UCSC Genome
Bioinformatics, hﬁp://genome.ucsc.edu; and Leiden
Genome Technology Center (LGTC"), http://
www.LGTC.nl; Applied Biosystems: http://www.
appliedbiosystems.com; Microsoft; http://www.
microsoft.com/.
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