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H
ereditary motor and sensory neuropathies, commonly
referred to as Charcot-Marie-Tooth disease (CMT), are
among the most common inherited neurological

diseases, with an overall prevalence of about 1–4/10 000.1

Clinically, the hereditary motor and sensory neuropathies are
characterised by progressive muscular and sensory loss in the
distal extremities with chronic distal weakness, deformation
of the feet (pes cavus), and loss of deep tendon reflexes.2 Two
main subgroups have been defined on the basis of electro-
physiological and histopathological characteristics: the
demyelinating form (CMT1) and the axonal form (CMT2).
CMT1 can be distinguished from CMT2 by measuring motor
nerve conduction velocities in the median nerve: patients
affected by CMT1 show reduced velocities (,38 m/s),
whereas those affected by CMT2 show velocities of >38 m/s,
the normal value being >48 m/s. Recently, a new group of
CMT has been described, referred to as intermediate CMT3 4; in
this, nerve conduction velocities overlap CMT1 and CMT2,
and nerve biopsies present characteristics of both demyelina-
tion and axonal loss.
CMT is also characterised by great genetic heterogeneity,

with more than 30 loci and 19 genes identified to date5 6

(inherited peripheral neuropathy mutation database,
IPNMDB, http://www.molgen.ua.ac.be/CMTMutations). All
modes of inheritance have been reported: autosomal domi-
nant, autosomal recessive, and X linked. Autosomal recessive
demyelinating forms (CMT4) are, in most cases, less
frequent, of earlier onset, and more severe than the
autosomal dominant CMT forms (CMT1), with a fast
progression to severe disability leading to a higher frequency
of wheelchair dependency early in life.7 To date, at least seven
demyelinating forms with autosomal recessive inheritance
have been identified:

N CMT4A (MIM 214400) at chromosome 8q13–q21.18 9

caused by mutations in the ganglioside induced differ-
entiation associated protein 1 gene (GDAP1, MIM
606598),10 11 together with mixed demyelinating and
axonal autosomal recessive phenotypes12–14;

N CMT4B1 (MIM 601382) at chromosome 11q22,15 caused
by mutations in the myotubularin related protein 2 gene
(MTMR2, MIM 603557)16;

N CMT4B2 (MIM 604563 and 607739)17 at chromosome
11p15, caused by mutations in the set binding factor 2/
myotubularin related protein 13 gene (SBF2/MTMR13,
MIM 607697)18;

N CMT4C (MIM 601596)19 20 at chromosome 5q23–q33,
caused by mutations in KIAA1985,21 encoding a protein
containing SH3 and TPR domains (MIM 608206);

N CMT4D (MIM 601455) or HMSN-Lom, at chromosome
8q24.3,22 caused by mutations in N-myc downstream
regulated gene 1 (NDRG1 MIM 605262)23

N CMT4F at chromosome 19q13.3,24 caused by mutations in
the periaxin gene (PRX, MIM 605725)25

N HMSN-Russe, at chromosome 10q22–q23,26 for which the
corresponding gene has not been cloned yet.

Finally, autosomal recessive mutations causing severe
CMT1 or Dejerine-Sottas syndrome (MIM 145900) have been
identified in genes most often causing autosomal dominant
diseases—for example, EGR2 (MIM 129010),27 P0 (MIM
159440),28 29 and PMP22 (MIM 601097).30 These are some-
times reported as CMT4E.
We report here the localisation of a new form of autosomal

recessive demyelinating Charcot-Marie-Tooth neuropathy,
which we named CMT4H, by using homozygosity mapping
in two consanguineous families of Mediterranean origin.

METHODS
Two families, one Lebanese (family 500) and one Algerian
(family 295), including 10 individuals presenting with a
severe form of autosomal recessive demyelinating Charcot-
Marie-Tooth disease, were included in this study (figs 1 and 3).

Key points

N One Lebanese and one Algerian consanguineous
family, comprising a total of 10 patients affected with
autosomal recessive demyelinating Charcot-Marie-
Tooth disease over three generations, were submitted
to a genome-wide scan.

N The use of a homozygosity mapping approach showed
linkage to a new locus (CMT4H) on chromosome
12p11.21–q13.11. Refinement of the linkage interval
placed the CMT4H locus to a 11.5 cM region between
markers D12S1648 and D12S1661, with a maximum
LOD score of 6.97 (h=0.001) at marker D12S345.
This interval spans about 15.8 Mb on the physical map
and includes more than 90 genes.

N Mutation analysis of PRPH (a gene encoding a type III
intermediate filament protein called peripherin) and
CNTN1 (encoding contactin 1, a neuronal cell adhe-
sion molecule) did not show any pathogenic mutation.

N The autosomal recessive demyelinating peripheral
neuropathy segregating in the two families described
here represents a novel entity which we designated
CMT4H.

Abbreviations: CMT, Charcot-Marie-Tooth disease; LOD, log of odds
ratio; STR, short tandem repeat

260

www.jmedgenet.com

http://jmg.bmj.com


In the Lebanese family, patients 500.13, 500.14, 500.15,
500.17, and 500.21 had a clinical examination. The age at
onset varied between 10 and 24 months. In all cases walking
was delayed, to between 15 months to three years of age, gait
was unsteady, deep tendon reflexes were absent, and mild
symmetrical stocking-type hypoaesthesia was observed. All
the patients examined except 500.21 presented with severe
scoliosis and pes equinus with toe retraction. Patients 500.14
and 500.21 also had upper limb involvement consisting of
thenar and hypothenar hypoplasia. Pupillary abnormalities,
ataxia, nerve enlargement, tremor, deafness, and diaphrag-
matic or vocal cord paresis were absent in all patients.
Progression of the disease was invariably slow.
Electrophysiological studies at the median nerve were

carried out on Lebanese patients 500.14, 500.15, 500.17, and
500.21. Sensory action potentials could not be obtained,
either in the median or in the sural or peroneal nerves.
Severely reduced motor nerve conduction velocities at the
median and cubital nerves, as well as low amplitude action
potentials with prolonged distal latencies, indicated a
peripheral nerve demyelinating process. A histological study
of a sural nerve biopsy specimen was done in Lebanese
patient 500.14 and showed a severe loss of myelinated fibres,

probably secondary to a demyelination–remyelination pro-
cess (fig 2). The remaining fibres had features of congenital
hypomyelination as well as a small proportion of typical
onion bulbs. Other signs of altered myelination were
observed, such as circumscribed myelin swellings and
proliferation, with or without myelin outfoldings (fig 2).
In the Algerian family, clinical and electrophysiological

investigations were carried out in patient 295.6, but all
patients had the same characteristics. The age of onset was
two years. Neurological examination showed muscle weak-
ness and amyotrophy in the distal extremities, marked feet
abnormalities (pes cavus), absent tendon reflexes in the four
limbs, ataxia, and a waddling gait. No cranial nerve
abnormalities were noted. Dysmorphic features such as
scoliosis and a short neck were present. Progression was
slow until the age of 15. Electrophysiological results showed a
severe demyelinating motor and sensory neuropathy, with
similar results to family 500. Histological studies of a sural
nerve biopsy were undertaken in Algerian patient 295.6, and
the results were very similar to those obtained in the
Lebanese patients (data not shown).
We investigated 29 individuals at the genetic level. After

informed consent had been obtained from all affected
individuals and parents of the children, EDTA blood samples
were collected and genomic DNA was extracted from
lymphocytes using standard methods. Exploration protocols
were in accordance with the ethics guidelines of the
institutions involved. After exclusion of linkage to loci
CMT4A9 10 and CMT4F,24 a genome-wide screen was subse-
quently undertaken at the Centre National de Génotypage
(CNG, Evry, France), using 400 polymorphic microsatellite
markers with an average intermarker distance of 10 cM, as
previously described.24

In order to refine the size of the shared homozygous region,
the following additional fluorescently labelled STR markers—
chosen from the Généthon linkage map31—were tested on all
individuals collected in the two families: D12S1643
(AFMb013yb1), D12S1631 (AFMa288wd5), D12S1698
(AFM337tf5), D12S1648 (AFMb041xb9), D12S1653
(AFMb283xh5), D12S1661 (AFMb314yh5), D12S339
(AFM294wc5), D12S1635 (AFM196xa3), and D12S1677
(AFMb347vb9). Markers were amplified by polymerase chain
reaction (PCR) under standard conditions and amplified
fragments were separated by capillary electrophoresis on a
Beckman CEQ 8800 genetic analyser (Beckman Coulter).
Parametric linkage analyses were carried out with an

optimised version of the LINKAGE package, version 5.2,32

available free at Infobiogen (http://www.infobiogen.fr).
Pairwise LOD scores were calculated using the MLINK
program, assuming equal male–female recombination rates,
autosomal recessive inheritance with complete penetrance,
and a gene frequency of 0.002. Allele frequencies were chosen
from the Genome Database (http://www.qdb,org), assuming
that they were the same as those defined by Généthon in the
white population.33

The coding sequence and exon–intron junctions of two
candidate genes (PRPH and CNTN1) were explored. Intronic
primers were designed using the Primer3 software, available
at the Massachusetts Institute of Technology (MIT, http://
frodo.wi.mit.edu/) and DNA sequences obtained at the
University of California Santa Cruz Human Genome
Browser (UCSC, July 2003 freeze, http://genome.ucsc.edu/),
by comparing genomic DNA with cDNA sequence (GenBank
Accession Numbers: NM_001843 and NM_006262 for CNTN1
and PRPH respectively). Genomic DNA was amplified for one
patient in each family under standard PCR conditions
(primer sequences and amplification conditions are available
on request). Amplified PCR fragments were fluorescently
sequenced in both directions using sequencing facilities

Figure 1 Severe Charcot-Marie-Tooth disease in patient 500.15 at
the age of 21. (A) Deforming scoliosis is present despite spinal surgery.
(B) Distal amyotrophy in the lower limbs. Reproduced with permission.
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(MWG Biotech, Ebersberg, Germany). Chromatograms were
compared with reference sequences using Sequencher v4.2
(Gene Codes Corporation, Michigan, USA).

RESULTS
We used a homozygosity mapping strategy, based on the
assumption that in consanguineous families affected subjects
of the same kindred are homozygous by descent for the
disease causing mutation.34 Haplotypes were constructed
manually from genotyping data and phases were assigned
on the basis of the smallest number of recombinants.
Analysis of the initial genome-wide screen data showed
homozygosity in all affected individuals at markers D12S345
(AFM296yg5) and D12S85 (AFM122xf6) on chromosome
12q13.11. Significant linkage was obtained with a cumulative
LOD score value of 6.97 and 5.09 at h=0.001 respectively
(table 1), although D12S85 was not fully informative in the
Lebanese family (fig 3).
The minimum candidate interval at this point was

restricted by D12S1617 (AFMa223yg1) on 12p12.1 and
D12S368 (AFM128yd5) on 12q13.13, covering a 25.8 cM
genetic region.
Additional genotyping of the nine STR markers allowed

refinement of the candidate homozygous region in Lebanese
patient 500.21 to a critical interval of approximately 11.5 cM
between markers D12S1648 (AFMb041xb9) on the short arm
of chromosome 12 (12p11.21) and D12S1661 (AFMb314yh5)

on the long arm of chromosome 12 (12q13.11) (figs 3 and 4).
The size of the interval is approximate because it overlaps the
centromeric region of chromosome 12. In the candidate
region defined above, all affected individuals were homo-
zygous for the disease allele, and markers were informative in
all matings, with the exception of marker D12S85, which was
not fully informative in the Lebanese family (fig 3). All
markers in the homozygous region show positive LOD score
values with a maximum pairwise LOD score of 6.97 at
h=0.001 for marker D12S345 (table 1). More than 90 genes
are described in the databases (GENATLAS, http://www.
genatlas.org; UCSC, July 2003 freeze, http://genome.ucsc.
edu/) within the candidate homozygous region.
No sequence variation was found in the coding sequence or

in the exon–intron junctions of two genes, CNTN1 and PRPH.
This probably excludes them as the genes responsible for
CMT4H. However, further genotyping mapped PRPH outside
the candidate interval (fig 4).

DISCUSSION
We describe the assignment of a new locus for autosomal
recessive demyelinating Charcot-Marie-Tooth disease
(CMT4H) to a genetic interval of approximately 11.5 cM at
chromosome 12p11.1–q13.11 in an Algerian family and a
large consanguineous Lebanese family. Disease haplotypes
were not shared by the two families, excluding a founder
origin of the disease. As this locus is the eighth one that has

Figure 2 Histopathology of sural nerve from Lebanese patient 500.14. Semithin transverse section included in epon epoxy and coloured with blue
toluidine. Original magnification6540. (A) Myelinated fibres are rare and generally surrounded by small onion bulbs (OB). The remaining fibres have
small diameter hypomyelinated axons (thick arrows), or abnormal proliferation of myelin sheath with outfoldings (thin arrows). (B) Details of myelin
outfoldings, typical of an initial demyelination–remyelination process.

Table 1 Two point LOD scores between the CMT4H locus and informative STR markers
on chromosome 12p11.1–q13.11

Marker

LOD score at recombination fraction h=

0.001 0.01 0.05 0.1 0.2 0.3 0.4

D12S1643 0.71 2.01 2.80 2.77 2.11 1.24 0.45
D12S1631 20.54 0.93 1.86 1.99 1.60 0.94 0.30
D12S1698 20.51 0.89 1.76 1.79 1.24 0.56 0.09
D12S1648 5.64 6.28 6.27 5.71 4.20 2.52 0.96
D12S345 6.97 6.82 6.20 5.39 3.72 2.07 0.70
D12S1653 5.81 5.68 5.12 4.42 2.99 1.63 0.56
D12S85 5.09 4.97 4.51 3.92 2.70 1.50 0.54
D12S1661 3.35 3.92 4.02 3.63 2.51 1.31 0.36
D12S339 2‘ 1.93 2.85 2.88 2.26 1.37 0.52
D12S1635 2‘ 1.12 2.49 2.85 2.55 1.75 0.80
D12S1677 2‘ 1.01 1.98 2.14 1.79 1.15 0.46
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been mapped for autosomal recessive demyelinating CMT
(CMT4), we named it CMT4H, considering that HMSN-Russe
should be named CMT4G.
Recently, a locus for an autosomal dominant form of

axonal CMT (CMT2G) has been mapped to the same
chromosomal region,35 in an interval which partially
overlaps the candidate region for CMT4H (fig 4). The
overlapping region is 7.6 cM long (4.33 Mb) and contains
about 35 genes.

Although the modes of transmission and the phenotypes
are different between CMT2G and CMT4H, the two diseases
could still be allelic. Indeed, mutations in several genes
responsible for demyelinating CMT also result in axonal
CMT—that is, GDAP1 mutations can result either in a
demyelinating form of CMT (CMT4A)10 or in an axonal form
(AR-CMT2C),11 but both of these have an autosomal recessive
mode of inheritance. However, mutations in the same gene
can be found in a heterozygous or a homozygous state; this is
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Figure 3 (A) Haplotype reconstruction in a Lebanese family (family 500) presenting with an autosomal recessive demyelinating form of Charcot-
Marie-Tooth disease (CMT4H). (B) Haplotype reconstruction in an Algerian family (family 295) presenting with CMT4H. Short tandem repeat (STR)
markers are reported from the telomere of the short arm (12p) to the telomere of the long arm (12q) of chromosome 12. Black symbols indicate affected
individuals. The disease bearing chromosome is represented in grey. The homozygous candidate interval is boxed in each affected individual.
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the case for mutations in PMP22, which usually cause
autosomal dominant CMT1A,30 36 but are sometimes asso-
ciated with a recessive pattern of inheritance.37 Nonetheless,
fewer than half the CMT2G interval at the distal extremity
overlap with the CMT4H critical region, suggesting that
mutations in two distinct genes are likely to cause CMT2G
and CMT4H. Further screening of candidate genes in families
affected by CMT2G and in those presenting with CMT4H
should definitely exclude the possibility that both diseases
are allelic.
Of the 90 genes described in the databases (GENATLAS,

http://www.genatlas.org) in the homozygous candidate, two
candidate genes were tested for the presence of mutations in
the coding sequence. The first, PRPH, encodes a type III
intermediate filament protein called peripherin, important
for neurite elongation both during development and during
axonal regeneration in the peripheral nervous system.38 Our
choice is supported by the fact that mutations in genes
encoding proteins from the intermediate filament family,
NEFL and LMNA, have previously been identified in other
forms of peripheral neuropathy: mutations in NEFL cause
CMT2E39 and CMT1F,40 while mutations in LMNA are
responsible for AR-CMT2A.41 Another gene, Contactin 1
(CNTN1), was then considered as a strong candidate gene.
It encodes a neuronal cell adhesion molecule of the
immunoglobulin superfamily, which mediates cell surface

interactions during nervous system development. More
precisely, in association with other proteins it plays a role
in the formation of paranodal axoglial junctions in myeli-
nated peripheral nerve.42 Although these functions are
suggestive of implication in CMT, no disease causing
mutations were identified in either gene, and PRPH has
definitely been excluded as the causative gene for CMT4H, as
it has been mapped outside the candidate interval by further
genotyping (fig 4).
Further investigations are being undertaken to reduce the

linkage interval and identify the molecular defect responsible
for CMT4H. As the two families described here are from
different ethnic backgrounds, it will be of value to test
linkage to the CMT4H locus in more families presenting with
severe demyelinating autosomal recessive CMT. A candidate
gene screening strategy is also in process.
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