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Utilisation of a cryptic non-canonical donor splice site of the
gene encoding PARAFIBROMIN is associated with familial
isolated primary hyperparathyroidism
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More than 99% of all splice sites conform to consensus
sequences that usually include the invariant dinucleotides gt
and ag at the 59 and 39 ends of the introns, respectively. We
report on the utilisation of a non-consensus (non-canonical)
donor splice site within exon 1 of the HRPT2 gene in familial
isolated primary hyperparathyroidism (FIHP). HRPT2 muta-
tions are more frequently associated with the hyperparathyr-
oidism-jaw tumour syndrome (HPT-JT). Patients with FIHP
were identified to have a donor splice site mutation, IVS1+1
gRa, and the consequences of this for RNA processing were
investigated. The mutant mRNA lacked 30 bp and DNA
sequence analysis revealed this to result from utilisation of an
alternative cryptic non-canonical donor splice site (gaatgt) in
exon 1 together with the normally occurring acceptor splice
site in intron 1. Translation of this mutant mRNA predicted
the in-frame loss of 10 amino acids in the encoded protein,
termed PARAFIBROMIN. Thus, these FIHP patients are
utilising a ga-ag splice site pair, which until recently was
considered to be incompatible with splicing but is now known
to occur as a rare (,0.02%) normal splicing variant.

I
t is well established that nearly all splice sites conform to
consensus sequences,1 2 which usually include invariant
dinucleotides at each end of the intron. Thus, the

dinucleotides gt and ag are invariably found at the 59 and
39 ends of introns, respectively,1 2 and most gene finding
software will find only introns that begin with a gt and end
with an ag. However, non-consensus splice sites have been
described,1 2 and we report on the utilisation of such a non-
canonical donor splice site in patients with familial isolated
primary hyperparathyroidism (FIHP; OMIM 145000).
Primary hyperparathyroidism (HPT), which may result

from parathyroid adenomas, hyperplasia, or carcinoma, has
an estimated prevalence of 3 per 1000 in the general
population and is most frequently encountered as a non-
familial disorder.3 4 However, approximately 10% of patients
with primary HPT will have a hereditary form, which may
occur as an isolated endocrinopathy or as part of a complex
tumour syndrome such as multiple endocrine neoplasia
(MEN) or the hereditary hyperparathyroidism-jaw tumour
syndrome (HPT-JT; OMIM 145001).4 The MEN syndromes
are autosomal dominant disorders characterised by the
combined occurrence of tumours in two or more endocrine
tissues.5 Thus, in MEN type 1 (MEN1; OMIM 131100), the
occurrence of tumours of the parathyroids, pancreas, and
pituitary are associated with inactivating germline mutations
of the MEN1 gene on chromosome 11q13,5 while in MEN
type 2 (MEN2; OMIM 171400), activating mutations of the
RET proto-oncogene located on chromosome 10q11 cause

medullary thyroid carcinoma, phaeochromocytomas, and
parathyroid tumours.6 HPT is usually the first manifestation
of MEN1 and occurs in .95% of patients,7 while it is less
common in MEN2.5 6 HPT-JT is an autosomal dominant
disorder characterised by parathyroid tumours, which may be
adenomas or carcinomas, fibro-osseous tumours of the jaw
bones, uterine tumours, Wilms’ tumours, renal cysts, or
hamartomas.8–12 The gene responsible for HPT-JT, a putative
tumour suppressor gene termed HRPT2, is located on
chromosome 1q31.2 and encodes a 531 amino acid protein,
referred to as PARAFIBROMIN.13 In addition, hereditary HPT
occurring without the association of other tumours has also
been described as a distinct clinical entity in more than 100
families, and this is referred to as FIHP.4 14 The distinction
between FIHP and the other hereditary hyperparathyroid
disorders may at times be difficult, particularly as FIHP in
some families is associated with MEN1 mutations.14–17

Furthermore, FIHP has also been demonstrated to be due
to HRPT2 mutations, thereby indicating that FIHP in some
families may be an allelic variant of HPT-JT.11 18 19 We
ascertained a previously unreported FIHP family and under-
took studies to identify the underlying genetic abnormality.
These studies revealed a germline donor splice site mutation
of the HRPT2 gene that resulted in the utilisation of an
alternate, cryptic, non-canonical donor splice site.

METHODS
Patients
The proband (patient 1) who was a previously healthy
female, developed HPT at the age of 21 years. She presented
with a 5 month history of a tender swelling that was 3 cm in
size on the left side of her neck. The swelling was associated
with discomfort and dysphagia, and moved with swallowing.
She was also noted to suffer from tiredness, polydipsia,
polyuria, aches in her limbs, and dyspepsia. Investigations
revealed her to have hypercalcaemia (corrected calcium:
3.38 mmol/l, normal: 2.20–2.65 mmol/l), hypophosphatae-
mia (phosphate: 0.77 mmol/l; normal 0.80–1.50 mmol/l),
and an elevated serum parathyroid hormone (PTH) concen-
tration of 136 ng/l (normal: 10–64 ng/l). All other serum
biochemical investigations were normal. She underwent a
neck exploration which revealed an egg sized cystic lesion
situated at the left upper pole of the thyroid, and another
cystic lesion representing the left lower parathyroid located in
the cervical thymus. The right lower parathyroid, which was
a firm nodule, was also located in the cervical thymus and the
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right upper parathyroid was found to be slightly enlarged. A
3.5 gland parathyroidectomy together with a left thyroid
lobectomy was performed. Histology revealed multi-gland
disease with features of atypical parathyroid adenomas
containing cysts and frequent mitoses. These findings were
consistent with parathyroid carcinoma although the findings
of local invasion or distant metastases that are required for
an unequivocal diagnosis of parathyroid carcinoma20 were
absent. Post-operatively, the patient required treatment with
oral vitamin D supplements to maintain normocalcaemia.
During a 9 year follow up period, there has not been a
recurrence of the HPT. In addition, there have been no
clinical or biochemical abnormalities to indicate the occur-
rence of anterior pituitary or pancreatic islet cell tumours that
would be consistent with MEN1.7 Radiology of the maxilla
and mandible did not reveal any lesions that would indicate
the occurrence of ossifying fibromas.12 A family history
revealed that her mother, maternal grandmother, a maternal
uncle, and his daughter had suffered from HPT. However,
only the proband’s mother (patient 2) who had mild
hypercalcaemia (corrected calcium: 2.79 mmol/l) and an
elevated serum PTH but had not undergone parathyroidect-
omy, was available for study. Informed oral consent was
obtained from the individuals, using guidelines approved by
the local ethics committee at the Hammersmith and Oxford
Radcliffe Hospitals.

DNA sequence analysis of the MEN1 and HRPT2 genes
Leukocyte DNA was extracted using previously reported
methods.21 Fifteen pairs of primers were used for PCR
amplifications of the nine coding exons of the MEN1 gene
and their corresponding 16 exon-intron boundaries, utilising
conditions described previously.22 Seventeen pairs of primers
were used for PCR amplification of the 17 coding exons of the
HRPT2 gene and their corresponding 32 exon-intron bound-
aries utilising conditions previously described.8 13 The DNA
sequences of gel purified PCR products were determined by
the use of Taq polymerase cycle sequencing22 23 and a semi-
automated detection system (ABI 377 sequencer; PE Applied
Biosystems, Foster City, CA).

Amplification refractory mutation system PCR (ARMS
PCR)
The DNA sequence abnormality was confirmed by the use of
a modified ARMS PCR,24 which utilised reverse (R2WT and
R2m) primers specific for the 39 nucleotide sequence for
either the wild type (WT) or mutant (m) allele in combina-
tion with a forward (F) primer. A control reverse (R1) primer
was also incorporated into the reaction. The primer details
are as follows: F, 59 TGCTGCTGTCGTAGGCGAGG 39 (140 bp
to 159 bp upstream of initiation codon); R1, 59
CGAACACCCGTTTTATCC 39 (+100 bp to +117 bp in intron
1); R2WT, 59 CAGCCATGCCGGACTTAC 39 (+1 bp to +18 bp
in intron 1); and R2m, 59 CAGCCATGCCGGACTTAT 39 (+1 bp
to +18 bp in intron 1). The DNA sequence abnormality was
demonstrated to cosegregate with the disorder and to be
absent as a common polymorphism in DNA obtained from 55
unrelated normal individuals.

Reverse transcriptase PCR (RT-PCR) studies
RT-PCR was utilised to investigate mRNA splicing abnorm-
alities, using total RNA extracted from Epstein-Barr virus
(EBV) transformed lymphoblastoid cell lines from the two
patients and an unrelated normal individual, as previously
described.25 The PCR primer pair consisted of a forward
primer, 59 GGAGACGAAGTGATCTTCGG 39 (nucleotides +64
to +83 in exon 1) and a reverse primer, 59
GCACGTCGGACATAAACAGG 39 (nucleotides +214 to +233
in exon 2). The DNA sequences of the purified RT-PCR

products were then determined using methods previously
reported.26

Database analysis
A web based splice site prediction programme was utilised to
predict alternative donor splice sites (http://www.fruitfly.
org).

RESULTS
We initially analysed the MEN1 gene for mutations as more
FIHP families have been reported to harbour MEN1 muta-
tions than HRPT2 mutations.17 DNA sequence analysis of the
entire 2.79 kb coding region and exon-intron boundaries of
the MEN1 gene did not reveal any abnormalities. However,
DNA sequence analysis of the entire 1593 bp coding region
and 32 exon-intron boundaries of the HRPT2 gene revealed
the presence of a germline mutation in patient 1 (fig 1).
This consisted of a gRa transition at position 1 of the donor
splice site of intron 1. This DNA sequence change, which
altered the nearly invariant gt dinucleotide of the donor
splice consensus site, was confirmed by the use of ARMS
PCR (fig 1) and was also confirmed to be present in the
affected mother (patient 2; fig 1). In addition, an analysis of
the DNA from 55 unrelated individuals, confirmed the
absence of this gRa transition at position +1 of intron 1 in
110 alleles, thereby indicating that it was not a common
polymorphism that would be expected to occur in over 1% of
the population.

The g nucleotide at position +1 of the donor splice
consensus sequence is nearly invariant in eukaryotic
sequences1 27 and mutations of this nucleotide have been
previously reported in patients with many disorders1 2

including MEN128 and autosomal recessive hypoparathyroid-
ism.25 These and other studies1 2 25 29 have revealed that
mutations in the donor splice site region may be associated
with an accumulation of unspliced precursor mRNA, reten-
tion of incompletely spliced precursors, complete absence of
transcripts, or the appearance of aberrantly processed mRNA
from the use of alternative normally occurring splice sites or
cryptic splice sites. We initially used a splice site prediction
programme (http://www.fruitfly.org) to search for alternate
donor splice sites within the wild type HRPT2 sequence. This
revealed that a very strong candidate alternate donor splice
site consensus sequence (gtaagg), with a predictive score of 1,
was located at +162 bp to +167 bp in intron 1. Utilisation of
this alternate donor splice site would result in a mutant
mRNA that was 161 bp larger than the wild type and, if
translated, this would lead to a truncated PARAFIBROMIN
protein of 44 amino acids. To investigate this and other
possibilities, we investigated HRPT2 mRNA processing by
detection of its transcription in EBV transformed lympho-
blastoid cell lines (fig 2). This revealed the presence of an
aberrantly processed mRNA that was smaller than normal.
DNA sequence analysis of the mutant HRPT2 product
revealed that it lacked nucleotides +102 to +131 of the wild
type exon 1 sequence. The loss of this 30 bp of exon 1
sequence is predicted to result in an in-frame deletion of
10 amino acids (codons 35–44). These results demonstrate
that as a result of the gRa mutation of the donor splice site at
+1 to +6 bp of intron 1, an alternate cryptic donor splice site
at nucleotides +102 to +107 of exon 1 is being utilised. This
naturally occurring, but not normally utilised, donor splice
site consists of a non-canonical donor splice site sequence
(gaatgt). Use of this non-canonical donor splice site with the
normally occurring acceptor splice site in intron 1 results in
the mutant HRPT2 mRNA that lacks 30 bp and is predicted to
result in an in-frame loss of 10 amino acids from
PARAFIBROMIN.
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DISCUSSION
Our study demonstrates that utilisation of a cryptic non-
canonical donor splice site within exon 1 of the HRPT2 gene is
associated with FIHP (fig 2). This non-canonical donor splice
site is not normally used, but is utilised as a result of a
germline mutation that disrupts the nearly invariant gt
dinucleotide of the normally occurring donor splice site in
FIHP patients (fig 1). Thus, these results represent an
example of splicing affecting genomic variants (SpaGVs),
which are increasingly being recognised as a cause of human
disease phenotypes.2 The non-canonical donor splice site
consensus sequence (gaatgt) within exon 1 of the HRPT2
gene is a very unusual splice site variant, and likely
represents ,0.02% of all splice sites.1 2 30 It is well established
that nearly all splice sites conform to consensus sequences
and that these sequences possess nearly invariant dinucleo-
tides, which are gt at the donor splice site and ag at the
acceptor splice site.1 An extensive review of all known
mammalian splice site sequences has revealed that 99.24%
contain so called canonical gt-ag splice site pairs, whereas
0.69% have non-canonical gc-ag splice site pairs.1 31 The
remaining non-canonical alternative splice site consensus
sequences are extremely rare with at-ac introns found at a
frequency of 0.05% and with no other single pairing
occurring at a frequency of .0.02%.1 30 31 The ga-ag splice

site pair utilised as a consequence of the donor splice site
mutation in the family with FIHP (fig 2) is very unusual and,
indeed, until recently was thought to be incompatible with
splicing.32 However, it has been shown to exist very rarely
(,0.02%) as a normal splicing variant and examples are in
the mouse fibroblast growth factor receptor 2,33 human
heparanase,34 and human fibroblast growth factor receptor
genes.32 35 Activation of cryptic splice sites represents a
common disease causing mechanism that occurs in approxi-
mately one third of splicing mutations,36 and hence the
recognition of such SpaGVs is important. However, many
studies do not pursue investigation of SpaGVs, such that one
recent review stated ‘‘that many researchers still focus only
on GVs [genomic variants] that change the protein sequence
and do not consider follow up studies on SpaGVs that are
shown to vary between cases and controls and that might be
of equal or greater importance because of their effect on
splicing’’.2 This statement is well supported by our study as
the gRa donor splice site mutation at position +1 of intron 1
of the HRPT2 gene was also recently reported in an unrelated
FIHP family, but its consequences were not explored.37 Further-
more, most gene finding software programmes do not iden-
tify non-canonical splice sites, as illustrated by our study.
The manner whereby this HRPT2 mutation, which predicts

a mutant PARAFIBROMIN protein of 521 amino acids that

400 bp

Amino acid (WT) Val Trp Gly

Mutant (m) a

Wild type (WT) g
GTT TGG GG taagt

Codon number 42 43 44

N2 BL 

R2mR2mR2mR2mR2WT R2WT R2WT R2WT

B

A

R2 (WT/m)

Exon 1

C

300 bp

N1P2P1S

Exon 2

R1

Intron 1
F

IVS1 + 1 (g→a)

408 bp

R1

F

309 bp

R2 (WT/m)

F

Figure 1 Detection of donor splice site mutation in intron 1 by ARMS PCR. DNA sequence analysis of patient 1 (P1) revealed a gRa transition of the
nearly invariant gt dinucleotide of the donor splice site consensus sequence of intron 1 (panel A). The mutation was confirmed in the proband (P1) and
in her affected mother (P2) by the use of ARMS PCR (panels B and C). Control primers, forward (F) and reverse (R1), were used to amplify a 408 bp
segment, which was detected in all individuals. Primer F was used in combination with one of two reverse (R2) primers designed to differ only at the
extreme 39 nucleotide and thus be specific for either the wild type (R2WT) or mutant (R2m) sequence. Following PCR using these primers, wild type (WT)
products of 408 and 309 bp were obtained from 55 normal individuals (N1 and N2, shown) and the two affected individuals (P1 and P2). However,
mutant products (R2m) were obtained only from the affected individuals (P1 and P2). Thus, the affected individuals are heterozygous (WT/m) and the
unaffected (that is, normal) individuals are homozygous (WT/WT). The positions of the size markers (S, 100 bp ladder) at 300 and 400 bp are shown.
BL indicates the control water blank. Exon and intron sequences are shown by upper and lower case letters, respectively.
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lacks residues 35–44, leads to FIHP remains to be elucidated.
To date, four different germline HRPT2 mutations have been
identified in seven FIHP families. These comprise: one donor
splice site mutation at +1gRa of intron 1 in two unrelated
families, one of which is reported in this study and the other
of which has been previously reported;37 one donor splice site
mutation at +1gRc of intron 2 in one family;19 one missense
mutation (L64P) in two unrelated families;19 38 and one
frameshift mutation (679insAG) in two unrelated kin-
dreds.8 39 Thus, it appears that more than 50% of FIHP
families have HRPT2 mutations that do not lead to a
truncated and hence inactivated PARAFIBROMIN protein.
This contrasts with the situation in HPT-JT families, in whom
.95% of HRPT2 mutations are predicted to result in
truncated and inactivated forms of PARAFIBROMIN.8 One
possibility is that the missense and intron 1 donor splice site
HRPT2 mutations result in the production of either reduced
levels or dysfunctional forms of PARAFIBROMIN and that
this may be associated with a less severe form, that is, forme
fruste, of the disorder. This may then be analogous to the
situation that occurs in non-classical cystic fibrosis, whereby
some SpaGVs result in a reduced level of normal transcript
and a less severe form of the disease.2 Indeed, it is interesting
to note that the presentation of HPT in the proband (patient
1) could represent a forme fruste of HPT-JT. Thus, patient 1

had the unusual co-occurrence of two cystic parathyroid
tumours, consistent with HPT-JT, yet had an absence of
maxillary or mandibular tumours, which does not support a
diagnosis of HPT-JT. These features also illustrate the
variable penetrance of the mutant HRPT2 alleles. Additional
studies in FIHP and HPT-JT families that aim to fully
characterise the consequences of the HRPT2 SpaGVs and
mutations, as illustrated by our study, are required to explore
these possibilities.
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