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Exposure assessment of monoterpenes and styrene:
a comparison of air sampling and biomonitoring
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Background: Within- and between-worker variance components have seldom been reported for both
environmental and biological data collected from the same persons.
Aims: To estimate these variance components and their ratio for air contaminants and urinary metabo-
lites in two different work environments and to predict the attenuation of exposure-response
relationships based on these measures.
Methods: Parallel measurements of air and urine were performed among workers exposed to mono-
terpenes in sawmills (urinary metabolite: verbenol) and styrene in reinforced plastics factories (urinary
metabolite: mandelic acid).
Results: Among the sawmill workers, variance components of the air and urinary verbenol results were
similar; for the reinforced plastics workers the estimated between-worker variance component was
greater for styrene in air than mandelic acid in urine. This suggests that attenuation bias would be
about equal if air or biological monitoring were employed for monoterpene exposures, but would be
greater if urinary mandelic acid were used instead of airborne styrene in an investigation of styrene
exposure.
Conclusions: Personal air samplers provide data with similar or superior quality to urinary metabolites
as measures of exposure to these monoterpenes in sawmills and styrene in reinforced plastics
factories.

Because biomarkers indicate levels of toxicants or their

products in the body, they account for all routes of expo-

sure and for the use of personal protection in a manner

that is not possible with conventional environmental

monitoring.1–4 Thus, biomarkers are often regarded as superior

substitutes for environmental measurements in epidemiologi-

cal investigations.1 5–8 Also, in situations where the biomarker

accumulates over long periods of time (for example, heavy

metals), the biological burden damps exposure variability

from day to day and offers more precise estimates of individual

exposure than air monitoring.9 10 However, biomarkers with

short half lives (for example, urinary metabolites of organic

solvents) are greatly influenced by the timing of specimen

collection within a single day and can be less precise than

shift-long air monitoring.11 Thus, it is important to consider

the variation in levels of both environmental and biological

measurements prior to choosing a monitoring strategy for a

particular application.

Since both environmental and biological levels are
measured with error, any exposure-response relationship
derived from individual subjects will be attenuated, the
amount of attenuation being proportional to the ratio of the
within- to between-person variance components (hereafter
the variance ratio) of the exposure measure.12 In previous
studies, it has been shown that the variance ratio of personal
measurements of styrene and benzene were similar to those of
breath measurements, indicating that either measure would
be equally useful in assessing exposure-response relationships
in particular populations.13 14 However, airborne styrene had a

much smaller variance ratio than that of sister chromatid

exchanges (SCEs) among reinforced plastics workers,13

indicating that environmental measurements would be

preferred to SCEs. In another study, mercury in urine or blood

had a much smaller variance ratio than airborne mercury

among chloralkali workers,15 indicating that these biomarkers

would be preferred. It should be noted that this reasoning is

based on the assumption that the primary source of exposure

is via inhalation; if both inhalation and another route were

prominent, biological monitoring would be preferred.

By increasing the number of repeated individual measure-

ments one can reduce attenuation bias. This was recently

illustrated by Heederik and Attfield16 in a study of lung func-

tion among workers exposed to coal dust. They concluded that

31 repeated measurements would be needed to obtain an

attenuation bias of less than 10%.

Because within- and between-person variance components

and the corresponding variance ratios have seldom been

reported for both environmental and biological data collected

from the same persons, we performed parallel measurements
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of air and urinary metabolites among workers exposed to

monoterpenes in sawmills and styrene in reinforced plastics

factories. These compounds were chosen because they have

known metabolites and the toxicokinetics are well character-

ised. Biomarkers for styrene are commonly used for assessing

occupational exposures, while the biomarker of monoterpenes

has received relatively little attention. We used the estimated

variance ratios to evaluate the relative usefulness of environ-

mental and biological monitoring to these agents and to pre-

dict the attenuation of exposure-response relationships based

on these measures.

MATERIAL AND METHODS
Subjects and sampling
Personal full-shift air samples and end-of-shift urine samples

were collected repeatedly from nine sawmill and 12 reinforced

plastics workers in northern Sweden. Descriptions of the fac-

tories and details of the personal air sampling have been pub-

lished previously.17 Briefly, the reinforced plastics workers

were employed at three different factories, producing boats

and tanks (two factories) and bathroom fixtures (one

factory). Most of these workers rotated through different

tasks (lamination, gel coating, use of chopper guns, mixing of

resins, and tool cleaning) according to daily and weekly

schedules that depended in part on the production schedule.

Air and biological samples were collected from these workers

at intervals of 2–6 months. Workers in two sawmills also

rotated through various tasks (sawing, edging, sorting,

sweeping the floor, and sharpening saw blades) according to a

regular daily schedule. They were sampled at intervals of 1–4

months, except for three workers who were sampled at inter-

vals of 2–5 days (sawmill workers 1–3).

Urine specimens were obtained in plastic bottles and trans-

ferred to three or four (depending on the voided volume) 15

ml plastic tubes sealed with screw caps. The tubes were

immediately frozen and maintained at −20°C prior to analysis

(within 1.5 years for sawmill workers and 2 years for

reinforced plastics workers). The urinary analyte for the saw-

mill workers verbenol, a metabolite of α-pinene and a reliable

biomarker for monoterpenes arising from the particular tree

species processed in these sawmills (Pinus sylvestris).18 For sty-

rene the two most common metabolites are mandelic acid

(MA) and phenylglyoxylic acid (PGA). In our study only MA

levels will be reported, as we observed instability of PGA

standards in urine under the condition of storage.

Three or four pairs of personal and urinary measurements

were obtained from each worker in the study. Some reinforced

plastics workers occasionally wore half-mask respirators

(equipped with charcoal adsorbents, nominal protection

factor = 5) or supplied-air respirators (nominal protection

factor >100). Respirator use was erratic and generally lasted

less than two hours per day. During respirator use, workers

were instructed to close the passive air monitors.17

The ethics committee at Umeå University (dnr 97-23)

approved the study.

Chemical analysis
Air samples
Monoterpenes and styrene were collected with diffusive sam-

plers (stainless steel tubes, 90 mm × 6.3 mm OD × 5.0 mm ID,

Perkin Elmer) containing approximately 300 mg of Tenax TA,

60–80 mesh (Chrompack). The tubes were analysed within a

week of arrival at the laboratory by coupled thermal

desorption gas chromatography as described elsewhere.17 19

The monoterpene concentration represents the sum of

α-pinene, β-pinene, and ∆3-carene.

Urine samples
Urine samples from monoterpene exposed workers were

thawed and centrifuged at 500 rpm (24 g) for five minutes.

The samples were then hydrolysed with β-glucoronidase

(420 800 units/g solid, SIGMA) at 37°C for 24 hours, concen-

trated by solid phase extraction (SEP-PAK C18 cartridge,

Waters Assoc., Milford, USA), and analysed by gas

chromatography.20

Urine samples from styrene exposed workers were thawed
and 1 ml was combined with 200 mg sodium chloride and 40
µl of 3M hydrochloric acid. Urinary MA was extracted with 5
ml of ethyl ether, of which 4 ml of extract was transferred to
another vial. The ethyl ether was evaporated under a stream of
N2 at room temperature. The residue was reconstituted in 0.5
ml of water and vigorously mixed for another 60 seconds.
Samples were then transferred to autosampler vials for injec-
tion into a HPLC consisting of a Gyncotec Model 480 Control-
ler gradient pump (Gynotek, Germany), a Gina 160 Autosam-
pler (Gynotek, Germany), and a Model UVD 340s Diode Array
detector (Gynotek, Germany). The mobile phase was 0.02M
phosphate buffer adjusted to pH 2.5 with phosphoric acid plus
7.5% acetonitrile. The flow rate was 1.0 ml/min. A 20 µl aliquot
of sample was injected onto a 250 × 4.6 mm YMC AQ reversed
phase C18 column (5 µm particle diameter) (Thermo Hypersil,
UK) with a C18 2 × 20 mm guard cartridge (Thermo Hypersil,
UK). MA was monitored at 225 nm. Standard solutions were
prepared by dissolving MA in urine from healthy unexposed
men. The signal was linked to a Chromeleon Data system
(Gynotek, Germany) and the data were stored and processed
by a personal computer.

Stability tests employing frozen control urine in our labora-
tory showed no degradation of urinary verbenol within two
years of collection and of urinary MA for at least four years.

Creatinine was analysed in all urine samples by Jaffe’s
method,21 and the metabolite levels were expressed per unit
concentration of creatinine.

Statistical analysis
All statistical procedures were performed with SAS software

PC 6.12 (SAS Institute, Cary, NC, USA). Nested one way ran-

dom effect models (Proc NESTED) were used to obtain

ANOVA estimates of the within- and between-worker variance

components (designated ó̂ 2

W and ó̂ 2

B, respectively) of the log

transformed data. Confidence intervals for ó̂ 2

W, ó̂ 2

B and their

ratio were estimated according to Searle and colleagues.22

These variance components were used to assess the potential

effect of attenuation of the exposure-response relationship

according to the following equations12 13 16:

ât = â|0 (1 + ë|/n) (1)

where ât is the true regression coefficient between the logged

outcome (dependent variable) and the logged exposure (inde-

pendent variable), â|0 is the observed regression coefficient, ë| =

ó̂ 2

W /ó̂ 2

B is the estimated variance ratio, and n is the number of

repeated measurements obtained from each person. Accord-

ing to equation (1), the observed regression coefficient â|0 is

smaller than ât (attenuated), and the amount of attenuation

increases with the estimated variance ratio ë| = ó̂ 2

W /ó̂ 2

B at a

given value of n.
From equation (1), the estimated bias in the coefficient can

be expressed as a proportion of the true coefficient; i.e. bias =
(1−b) and b is estimated by b|, where:

b| = â|0/ât = (1 + ë|/n)−1. (2)

For a predetermined bias, the sample size n can be estimated

as:

n = [b| /(1−b|)]ë| (3)

RESULTS
Data are summarised in fig 1 and table 1. At the sawmills, the

nine individuals’ estimated geometric mean monoterpene
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exposures ranged from 20.7 to 147 mg/m3 and the correspond-

ing levels of urinary verbenol ranged from 4.2 to 37.6

µmol/mmol creatinine (fig 1A and table 1). (The Swedish

occupational exposure limit (OEL) for monoterpenes is 150

mg/m3.) At the reinforced plastics factories, the estimated

geometric mean styrene exposures among the 12 workers

ranged from 4.6 to 66.4 mg/m3, while that for MA was

24.5–227 mg/g creatinine (fig 1B and table 1). (The Swedish

OEL for styrene is 90 mg/m3.)

The estimated within- and between-person variance com-

ponents and the corresponding variance ratios are shown in

table 2 for the sawmills and reinforced plastics factories.

Among the sawmill workers, variance ratios of the air

measurements and urinary verbenol were very similar (1.82

Table 1 Estimated geometric mean for each worker included in the study based on
three measurements for plastic workers and four measurements for sawmill workers

Plastics
worker

Styrene
(mg/m3)

Mandelic acid
(mg/g creatinine)

Sawmill
worker

Monoterpenes
(mg/m3)

Verbenol
(µmol/mmol
creatinine)

1 66.4 83.5 1 38.5 12.3
2 4.6 27.7 2 34.3 8.5
3 58.4 210 3 24.1 4.2
4 62.1 108 4 122 37.6
5 11.9 24.6 5 102 18.6
6 11.1 126 6 86.2 17.8
7 26.2 84.9 7 91.7 18.9
8 12.0 107 8 147 21.4
9 32.8 131 9 20.7 5.8
10 15.4 78.8
11 29.9 95.4
12 46.0 227

Figure 1 Data available for statistical analysis. Air monitoring and biomarker in urine for each worker (based on raw data). (A) Sawmill
workers. (B) Reinforced plastics industry workers. MA, mandelic acid.

Table 2 Estimated variance components and variance ratios (ë|) for air and urine measurements and predicted sample
sizes (n) required to reduce the bias in the observed slope in the exposure-response relationship to 10% (from equation
(3) with b = 0.9)

Work site Agent and medium
Estimated between-person
var. comp. ó̂ 2

B (95% CI)
Estimated within-person var.
comp. ó̂ 2

W (85% CI) ë|* (95% CI) n

Sawmill Monoterpenes in air 0.377 (0.006 to 2.46) 0.687 (0.429 to 1.18) 1.82 (0.347 to 22.2) 19
Verbenol in urine 0.281 (0 to 2.28) 0.637 (0.398 to 1.180) 1.97 (0.368 to 33.9) 20

Reinforced plastics
factory

Styrene in air 0.621 (0.056 to 0.647) 0.269 (0.164 to 0.521) 0.434 (0.124 to 1.46) 4
Mandelic acid in
urine

0.349 (0.033 to 0.740) 0.317 (0.193 to 0.614) 0.908 (0.237 to 4.52) 8

ó̂ 2
B and ó̂ 2

W were estimated from log transformed data.
*The variance ratio ë| = ó̂ 2

W /ó̂ 2
B.
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and 1.97, respectively). On the other hand, among the

reinforced plastics workers the estimated variance ratio for air

monitors (ë| = 0.434) was about half of that for urinary MA (ë|
= 0.908). However, the confidence intervals were overlapping

in both cases, indicating that the variance ratios were not sig-

nificantly different for either set of air and biological

measurements (table 2).

Spearman correlation coefficients (rs) were estimated for

geometric mean levels of air and biological measures of expo-

sure in sawmills and reinforced plastics factories. For

monoterpenes/verbenol, rs = 0.950 for the nine data pairs and

for styrene/MA, rs = 0.455 for the 12 data pairs.

DISCUSSION
This paper focuses on the selection of air or biological

sampling to characterise personal exposures and health

outcomes in a population exposed to a toxic chemical. Using

criteria previously recommended by Rappaport and

colleagues,13 we compared within- and between-worker

sources of variability for personal air measurements and

urinary metabolites among workers exposed to monoterpenes

in sawmills and to styrene in reinforced plastics factories

(table 1). In each case, the measure of exposure with the

smallest estimated variance ratio (ë|) would logically be

preferred, because of reduction in measurement error (and

the resulting attenuation bias) in an exposure-response

relationship. Since 95% confidence intervals for all pairs of

variance components and the corresponding ë| s were overlap-

ping, one could well conclude that we have no evidence

favouring air or biological measurements in either work

setting. Yet, the point estimates of the variance components

for the particular pairs of air and urinary measurements were

sufficiently dissimilar to warrant some discussion about likely

differences between the sawmills and reinforced plastics fac-

tories.

Looking first at the sawmill exposures, estimated variance

components and ratios of monoterpenes in air and verbenol in

urine were essentially the same (ó̂ 2

W ≅ 0.65, ó̂ 2

B ≅ 0.35, ë| ≅ 2),

suggesting that air measurements or urinary metabolites

would be equally useful measures of exposure. This conclusion

is bolstered by the high correlation of individual geometric

mean levels of monoterpenes and urinary verbenol (rs =

0.950). In this case, selection of air or biological monitoring

could be based on ease of sample collection and analysis.

However, the relatively large variance ratios indicate that

many repeated measurements of either air or urine would be

required from each subject to obtain relatively unbiased coef-

ficients for the exposure variable. Indeed, from equation (3)

we estimate that at least 20 measurements would be needed

per person to limit attenuation bias to 10% among these saw-

mill workers. If only four measurements were obtained from

each sawmill worker, as in the current study, the observed

regression coefficient would be about two thirds of the true

coefficient (equation (2)).

The large variance ratios of the sawmill data can probably be

explained by the work task organisation. The sawmill workers

rotated through the tasks on a regular schedule, thereby mini-

mising differences in exposure between workers, while

increasing the within-worker variation. The factors affecting

the within-worker variability are mainly factors that are out of

the workers’ control, such as seasonal changes, timber age,

and quality and different production levels.

We are not aware of any other estimates of variance compo-

nents of monoterpene exposure and urinary verbenol.

Vinzents and colleagues23 estimated within- and between-

worker variance components of wood dust exposure in furni-

ture factories. They reported ó̂ 2

W = 0.27 and ó̂ 2

B = 0.25, leading

to an estimated variance ratio for wood dust exposure 1.07,

which is about half that observed for monoterpenes in our

study.

Regarding exposures to styrene in the reinforced plastics
factories, the variance ratio for air measurements (ë| = 0.43)
was about half of that of MA (ë| = 0.91) (table 1), indicating
that environmental monitoring would be preferred to urinary
metabolites in this population. Again, this conclusion is
supported by the relatively weak correlation of individual geo-
metric mean levels of styrene and urinary MA (rs = 0.455).
Applying equation (2) to data from the reinforced plastics
workers; three repeated measurement per person would result
in a bias of 13% for styrene and 23% for mandelic acid.

Since the within-person variance component for styrene
(ó̂ 2

W = 0.269) was similar to that for MA (ó̂ 2

W = 0.317), most of
the difference in the variance ratios between air and urinary
monitoring can be attributed to the increased value of ó̂ 2

B =
0.621 for styrene versus 0.349 for MA. Between-person
variability in air levels tends to be related to interindividual
differences in tasks,24 and potentially to those involving work
behaviour. These interindividual differences should also be
observed in the levels of urinary metabolites unless the half
life of the metabolite is very short, in which case only tasks
occurring just prior to urine collection would be important.
Since the half life of MA is only 2–4 hours,25 and urine was
collected at the end of the work shift in our study, we specu-
late that the smaller value of ó̂ 2

B for MA was caused by the
presence of large transient exposures to styrene associated
with morning tasks of some workers. If correct, this explana-
tion would call into question the traditional practice of
collecting urine at the end of the work shift, since random
collection of spot urine samples would allow short lived
metabolites to better capture the full range of transient expo-
sures.

Another possible explanation for the difference in ó̂ 2

B

between styrene and MA in our study relates to the use of res-
piratory protection among some of these workers. Although
these workers had been instructed to close the air samplers
during the periods that they wore personal protection devices,
we cannot be sure that they performed this duty effectively. If
some workers did not seal their monitors during periods of
high transient exposure, then we would expect the value of ó̂ 2

B

to be greater for styrene than for urinary MA, as observed.
We are aware of no other studies that reported within- and

between-person variance components for both airborne
styrene and urinary MA, although these variance components
have been reported separately for either styrene or MA among
reinforced plastics workers.26 27 In a study of MA in five
reinforced plastics factories, Symanski and colleagues26

reported variance components in the following ranges: 0 < ó̂ 2

B

< 0.66 and 0.26 < ó̂ 2

W < 1.15. For airborne styrene, Kromhout
and colleagues27 reported variance components from 12 facto-
ries in the following ranges: 0 < ó̂ 2

B < 1.49 and 0.204 < ó̂ 2

W <
1.56. The variance components in our study are consistent
with these reported ranges.

One interesting negative finding of our study is the lack of
evidence that interindividual differences in metabolism
increased the between-worker variance components of the
urinary metabolites relative to the air exposures. This could be
because exposures to both monoterpenes and styrene were
insufficiently great to saturate metabolising enzymes. For
example, exposures to styrene are not expected to saturate
metabolism until levels in the range of 425–850 mg/m3 (100–
200 ppm) are observed,28 and our exposures were much lower
than this (fig 1). Other recent studies have claimed that
styrene metabolism was impeded by co-exposures to
acetone.29 30 Although we did not measure acetone exposures,
acetone was used in these reinforced plastics factories and
could potentially have affected our results. However, one
would expect the interaction of styrene exposure and acetone
exposure to increase ó̂ 2

B of urinary MA relative to that of styrene
exposure, the opposite of what was observed.

Regarding practical aspects, two additional points are worth
mentioning. First, sample sizes (repeated measurements per
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person) estimated under equation (3) were rather large,

particularly for sawmill workers where 20 measurement per

person would be needed to restrict attenuation bias to 10%. If

the exposure assessment were conducted as part of an epide-

miology study, it would be reasonable to measure background

levels of air and urinary analytes in a control population as

part of the study design. This would greatly increase ó̂ 2

B, while

having a minimal impact upon ó̂ 2

W, and thereby reducing ë| and

the associated attenuation bias. Second, it has long been rec-

ognised that collection of spot urine samples is convenient,

particularly at the end of the work shift. However, recent

development of user friendly diffusive samplers and tech-

niques for self assessment of exposure makes air monitoring

an appealing alternative.17 31–33 Finally, some investigators have

used estimated within- and between-worker variance compo-

nents to evaluate alternative grouping strategies, which max-

imise contrast in a particular population.34–36 Although these

grouping strategies have been based on air measurements, the

same methods could easily be applied to repeated biological

samples.

In conclusion, this study indicates that personal air

samplers provide data with similar or superior quality to uri-

nary metabolites as measures of exposure to two airborne

toxicants, namely, monoterpenes and styrene. If these results

are consistent with those involving other urinary metabolites

of rapidly eliminated organic compounds, biomonitoring

should not be assumed a priori to be a superior measure of

exposure for epidemiological studies.
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