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The elimination of unwanted cells is now regarded as an
essential component of many normal biological pro-
grammes. These include embryonic remodelling, the
removal of autoreactive thymic T cells, and the disposal of
senescent enterocytes at the villus tip. Hence cell death, in
particular apoptosis or “programmed cell death”, appears
to be a prerequisite for life.1 In the particular example of
inflammation many of the unique features of apoptosis,
such as the retention of plasma membrane integrity, the
loss of the cytotoxic and secretory capacity of the cell, and
the ability of apoptotic cells to be recognised and
phagocytically removed, suggest that this remarkable proc-
ess may play a key role in limiting tissue injury and facili-
tating the successful resolution of inflammation.2–5 Fur-
thermore, the ingestion of apoptotic cells by macrophages,
unlike the uptake of other biological and non-biological
material, fails to induce a secretory or pro-inflammatory
response.6 7 Although a number of diVerent cells within the
lung have the capacity to undergo apoptosis (including the
bronchial epithelial cell and type II pneumocyte8 9), the
central role of the granulocyte as the primary eVector cell
in most forms of lung and airway wall inflammation, cou-
pled with the huge potential for these cells to induce tissue
injury if not cleared, marks the apoptotic capacity of these
cells as being of particular importance in lung inflamma-
tion.
Despite the considerable interest generated by the discov-

ery that neutrophils and eosinophils undergo constitutive
apoptosis when aged in vitro,2 10 a process that results in their
ingestion by either professional2 11 or semi-professional
phagocytes (including fibroblasts12), only a relatively small
number of studies have addressed the importance of this
process in vivo. This in part reflects the observation that
apoptotic cells appear to be cleared extremely rapidly in tis-
sues and hence are not readily apparent at any one time, and
secondly that genetic manipulation of this process has been
hampered by the global importance of apoptosis, especially
in fetal development. Despite this, apoptotic granulocytes
are observed at sites of inflammation4 5 and there is a
substantial increase in the number of ingested and
non-ingested apoptotic neutrophils in bronchoalveolar fluid
in acute lung injury in neonates13 and in the recovery phase
of experimental lipopolysaccharide induced alveolitis.14

More compelling evidence linking this event to the
resolution of inflammation is the finding that the administra-
tion of corticosteroids in patients with acute severe asthma is
associated with the appearance of apoptotic eosinophils in
sputum, and this event parallels clinical improvement.15

An additional problem encountered in trying to track
and quantify apoptosis in vivo is that many of the
pro-inflammatory mediators and cytokines present at an
inflamed site—for example, GM-CSF, C5a, IL-5—and the

physicochemical characteristics of such an environment—
for example, hypoxia—cause profound inhibition of
granulocyte apoptosis.10 16 17 18–21 Hence, eosinophil apopto-
sis is rarely encountered within nasal polyp tissue22 and
neutrophil apoptosis is not readily apparent in fluid recov-
ered from an empyema cavity.23 Moreover, it is now recog-
nised that the inhibition of eosinophil apoptosis by agents
such as IL-5, GM-CSF and other Th-2 derived cytokines
represents a critical factor underlying the initial accumula-
tion of these cells.5 24 25 Such data also suggest that granu-
locyte induced tissue injury and chronic inflammation may
reflect not only excessive granulocyte recruitment but also
inhibition of normal apoptosis based clearance mecha-
nisms. This concept is supported by data indicating that
defective T cell killing, which involves autocrine or
paracrine generation of Fas ligand (Fas-L) leading to acti-
vation of the death domain containing Fas receptor, may
underlie chronic T cell activation and survival following
antigen stimulation,26 and that bronchoalveolar lavage fluid
from patients with ARDS prolongs the survival of normal
human neutrophils in vitro.27

Such a hypothesis suggests that a therapeutic strategy
based on stimulating granulocyte apoptosis may oVer a
novel approach to promoting the resolution of inflamma-
tion. To date, however, it has been diYcult to identify
agents that stimulate granulocyte apoptosis since, despite
the relatively rapid rate of constitutive apoptosis observed
when these cells are cultured in vitro, the majority of prim-
ing and activating agonists inhibit rather than accelerate
this process. This list includes lipopolysaccharide and the
pro-inflammatory mediators IL-5, C5a, GM-CSF, IL-1â,
IFNã, and LTB4.

10 16–20 Moreover, many of the well
recognised routes to induce apoptosis in thymocytes and
lymphocytes, such as the use of corticosteroids and the
elevation of intracellular cAMP, have the opposite eVect in
neutrophils28 29—that is, they delay apoptosis— and it is
possible that such observations explain in part the limited
anti-inflammatory profile of â2 adrenoceptor agonists and
corticosteroids in certain “neutrophil dominant” forms of
inflammation such as ARDS.30 Recent data, however, have
indicated that it is possible to drive apoptosis in these
cells—for example, with TNFá, Fas-L, the ingestion of E
coli or oil red particles19 31–36—and, most intriguingly,
theophylline37 which, unlike other agents that increase
intracellular cAMP, causes a modest stimulation of
neutrophil apoptosis. Hints that nature already utilises
such a strategy to drive the removal of granulocytes from an
inflamed site appear in studies showing that synovial fluid
from patients with active rheumatoid arthritis, and
bronchoalveolar fluid obtained from rabbits with experi-
mental pneumococcal pneumonia, induce neutrophil
apoptosis38 39 (R Lawson and C Haslett, unpublished
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observations). Moreover, the potential to manipulate this
process therapeutically is supported by the ability of
anti-Fas monoclonal antibodies delivered to the lungs of
mice with allergen induced airways eosinophilia to cause an
increase in the numbers of peroxidase positive macro-
phages in lavage fluid and a substantial reduction in the
number of eosinophils in the airways.33

The study of granulocyte apoptosis in vitro has also
revealed some very important diVerences in the regulation
of apoptosis in neutrophils and eosinophils. Most notably,
it is now clear that glucocorticoids accelerate eosinophil
apoptosis yet delay this process in the neutrophil.28 This
observation may explain, at least in part, the ability of cor-
ticosteroids to resolve tissue eosinophilia in conditions
such as asthma and pulmonary eosinophilia.14 Other
diVerences also exist in the regulation of apoptosis between
these two cell types. For example, the anti-apoptotic factor
Bcl2 is readily detectable in eosinophils yet is absent from
neutrophils,21 36 40 and an increase in intracellular calcium
enhances eosinophil apoptosis but delays neutrophil
apoptosis.41 42 Hence, despite the close proximity of these
cells in phylogenetic terms, the prospect of being able to
selectively target apoptosis in a particular inflammatory
cell type appears to be a realistic goal.
Finally, while under in vitro conditions the uptake of

apoptotic granulocytes by macrophages appears to be a
rapid and highly eYcient process, in certain pathological
states this disposal system may become overwhelmed.
Augmentation of the phagocytic capacity of inflammatory
macrophages may therefore represent an additional option
for intervention, and recent data demonstrating a major
enhancement of macrophage ingestion of apoptotic
neutrophils following CD44 ligation oVers some support
for this type of approach.43

Hence, the recognition that apoptotic cell death plays
such a critical role in dictating the function and fate of
inflammatory cells (and is amenable to exogenous regula-
tion) has transformed our understanding of how “benefi-
cial” and “deleterious” forms of inflammation may diVer
and oVers a completely new avenue for therapeutic
intervention in inflammation. Monitoring apoptosis in
biological samples such as sputum should also provide a
novel index of the success or otherwise of such strategies.
The future goal of identifying the basis for the unique
genetic control of granulocyte apoptosis may provide novel
and selective therapeutic targets to drive this process and
oVer an explanation as to why the intensity, duration, and
outcome of an inflammatory response diVers so much
between individuals.
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