WEB-ONLY DATA SUPPLEMENT

Oxygen uptake kinetics during continuous exercise

In addition to the continuous exercise (CE) and intermittent exercise (IE) bouts, seven subjects performed 1 or 2 additional constant-load transitions to 70% of peak power. The protocol for these additional exercise bouts involved 3 min of unloaded cycling followed by an abrupt application of the predetermined workload for 7 min. The breath-by-breath oxygen uptake (\dot{V}_{O_2}) data from each trial (including the first 7 min of the CE bout) were inspected for aberrant breaths. Values exceeding 3 standard deviations from the local mean were removed. The \dot{V}_{O_2} data from the repeated trials were then interpolated to 1 second values, time aligned and averaged, effectively smoothing the data and enhancing the underlying kinetic response. A four-compartment model with three exponential terms was used to describe the time course of the \dot{V}_{O_2} response (Equation 1):

$$\dot{V}_{O_2}(t) = A_B + A_C(1 - e^{-(t-TD_C)/\tau_C}) + A_P(1 - e^{-(t-TD_P)/\tau_P}) + A_S(1 - e^{-(t-TD_S)/\tau_S}),$$

where \dot{V}_{O_2} (t) is the \dot{V}_{O_2} at time t; A_B is the baseline \dot{V}_{O_2} during unloaded cycling, while A_C , A_P and A_S represent the cardio-dynamic (phase I), primary (phase II) and slow component amplitudes, respectively; TD_C , TD_P and TD_S , and τ_C , τ_P and τ_S are the time delays and time constants of phase I and the primary and slow components, respectively.

If the amplitude of the slow component (A_S) was not significantly different from 0, the model was reduced to three compartments with exponential terms describing phase I and phase II (Equation 2):

$$\dot{V}_{O_2}(t) = A_B + A_C (1 - e^{-(t - TD_C)/\tau_C}) + A_S (1 - e^{-(t - TD_S)/\tau_S})$$

Figure 1 shows an example of the \dot{V}_{O_2} response and model fit in a representative subject with chronic obstructive pulmonary disease (COPD) and Table 1 provides the individual and group mean values for selected model parameters.

Figure 1. \dot{V}_{O_2} response to constant-load exercise in a representative subject. Data points represent mean second-by-second values for 2 transitions to 70% of peak power. The solid line indicates the model fit, with the residuals shown at the bottom. The predetermined workload was applied at 60 s. The \dot{V}_{O_2} values from 0 to 60 s are for unloaded cycling.

Table 1: Oxygen uptake kinetics in the transition to constant-load exercise performed at 70% of peak power in patients with moderate COPD.

Subjects	A_{B}	$A_{\rm C}$	A_{P}	A_{S}	$ au_{P}$	TD_P	TD_S
	(ml/min)	(ml/min)	(ml/min)	(ml/min)	(s)	(s)	(s)
1	555	24	310	59	86	9	217
2	580	53	324	55	64	25	224
3	477	19	146		97	32	
4	646	115	361	24	85	27	141
5	551	47	352	26	74	26	229
6	714	127	581		115	22	
7	747	158	663	80	55	8	174
Mean	(10 (27)	79 (21)	201 (66)	40 (11)	92 (9)	21 (2)	107 (17)
(SE)	610 (37)	78 (21)	391 (66)	49 (11)	82 (8)	21 (3)	197 (17)

 A_B : baseline oxygen uptake amplitude; A_C : phase I amplitude; A_P : phase II amplitude; A_S : slow component amplitude; τ_P : phase II time constant; TD_P : phase II onset time; TD_S : slow component onset time.

The effect of \dot{V}_{O_2} kinetics on the intermittent exercise response

To determine if the lower \dot{V}_{O_2} response observed during IE compared to CE was primarily the result of the exponential shape of the on-kinetic response, we used a similar methodology to that recently described by Morris and colleagues.¹ Briefly, we calculated the \dot{V}_{O_2} amplitude at 60 s of CE and compared this value with the measured IE response (Table 2). The \dot{V}_{O_2} amplitude for IE was determined as the average \dot{V}_{O_2} measured during the final 10 s of each 60-s exercise interval over the duration of the entire IE bout. The predicted \dot{V}_{O_2} value was calculated using a single exponential term, omitting the Phase I response (Equation 3):

$$\dot{V}_{O_2}(t) = A_B + A_P (1 - e^{-(t-TD_P)/\tau_P})$$

The \dot{V}_{O_2} amplitude at 60 s was also re-calculated using a time constant (τ_P) value of 42 s. This value is the mean phase II τ for healthy older individuals performing constant-load cycling at ~70% of peak power.²

Table 2. Measured and predicted oxygen uptake values for intermittent exercise.

Subjects	Measured \dot{V}_{O_2} (1/min)	Predicted \dot{V}_{O_2} (l/min) τ_P from Table 1	Predicted \dot{V}_{O_2} (1/min) $\tau_P = 42 \text{ s}$
1	0.76	0.72	0.81
2	0.78	0.79	0.87
3	0.88	0.89	1.01
4	0.77	0.75	0.85
5	1.05	1.29	1.37
6	0.97	1.00	1.25
7	0.50	0.54	0.60
Mean (SE)	0.82 (0.07)	0.85 (0.09)	0.97 (0.10)*

 \dot{V}_{O_2} : oxygen uptake; τ_P : phase II time constant . The measured \dot{V}_{O_2} values represent the mean end-exercise interval values obtained over the entire intermittent exercise test duration. The predicted \dot{V}_{O_2} values were calculated using a single-term (Equation 3) exponential model (see text for details). * P<0.05, significantly different from measured \dot{V}_{O_2} value (repeated measures ANOVA).

REFERENCES

- **Morris N**, Gass G, Thompson M, *et al*. Physiological responses to intermittent and continuous exercise at the same relative intensity in older men. *Eur J Appl Physiol* 2003;**90**:620-625.
- **Sabapathy S**, Schneider DA, Comadira G, *et al.* Oxygen uptake kinetics during severe exercise: a comparison between young and older men. *Respir Physiol Neurobiol* 2004;**139**:203-213.