# Biotherapeutic Effects of Probiotic Bacteria on Candidiasis in Immunodeficient Mice R. DOUG WAGNER,<sup>1,2</sup> CAREY PIERSON,<sup>1</sup> THOMAS WARNER,<sup>3</sup> MARGARET DOHNALEK,<sup>4</sup> JEFFREY FARMER,<sup>5</sup> LISA ROBERTS,<sup>5</sup> MILO HILTY,<sup>4</sup> AND EDWARD BALISH<sup>1,2</sup>\* Departments of Medical Microbiology and Immunology, Surgery, and Surgical Pathology, University of Wisconsin Medical School, Madison, Wisconsin; Ross Products Division, Abbott Laboratories, Columbus, Ohio<sup>4</sup>; and Abbott Laboratories, Abbott Park, Illinois<sup>5</sup> Received 24 April 1997/Returned for modification 26 May 1997/Accepted 16 July 1997 Four species of probiotic bacteria were assessed for their capacities to protect athymic bg/bg-nu/nu and euthymic bg/bg-nu/+ mice from mucosal and systemic candidiasis. Each bacterial species and Candida albicans colonized the gastrointestinal tracts of both strains of mice. The presence of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei GG, or Bifidobacterium animalis) in the gastrointestinal tracts prolonged the survival of adult and neonatal bg/bg-nu/nu mice compared to that of isogenic mice colonized with C. albicans alone. The incidence of systemic candidiasis in bg/bg-nu/nu mice was significantly reduced by each of the four probiotic bacterial species. The numbers of C. albicans present in the alimentary tracts of euthymic bg/bg-nu/+ mice were significantly reduced by L. casei GG and B. animalis. None of the probiotic bacteria species completely prevented mucosal candidiasis, but B. animalis reduced its incidence and severity. Probiotic bacteria also modulated antibody- and cell-mediated immune responses to C. albicans. The prolonged survival of mice, decreased severity of mucosal and systemic candidiasis, modulation of immune responses, decreased number of C. albicans in the alimentary tract, and reduced numbers of orogastric infections demonstrated not only that probiotic bacteria have biotherapeutic potential for prophylaxis against and therapy of this fungal disease but also that probiotic bacteria protect mice from candidiasis by a variety of immunologic (thymic and extrathymic) and nonimmunologic mechanisms in this model. Certain species of lactic acid-producing bacteria are being promoted as probiotics, i.e., live organisms that are ingested to produce beneficial effects on health. Several biotherapeutic effects have been attributed to lactic acid-producing bacteria, including ameliorating lactose intolerance (17, 21), enhancing recovery of a commensal flora after oral antibiotic therapy (28), prophylaxis against and treatment of infant diarrhea (7, 30), and reduction of recurrent urinary tract infections (29). Candidiasis of oral and vaginal mucosal tissues is very common. For example, nearly 90% of AIDS patients are infected with Candida albicans (22). Several studies have assessed the efficacy of probiotics for prophylaxis against and therapy of C. albicans infections (2, 6, 12, 32). Vaginitis in apparently healthy women can be caused by C. albicans, and the ingestion of yogurt containing Lactobacillus acidophilus has been reported to reduce the occurrence of recurrent vaginal candidiasis (12). Laboratory animal studies also suggest that probiotics may be useful for the prevention of candidiasis. Mice immunosuppressed with corticoid drugs recovered more quickly from orogastric candidiasis when they were fed cultures of L. acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii prior to oral C. albicans challenge (6). Oral administration of heat-killed Enterococcus faecalis prior to oral and systemic infection of cyclophosphamide-treated mice with C. albicans prolonged their survival (32). In this study, we assessed the ability of four probiotic bacterial species, *L. acidophilus*, *Lactobacillus reuteri*, *L. casei* GG, and *Bifidobacterium animalis*, to protect immunodeficient *bg/* bg-nu/nu and bg/bg-nu/+ mice from mucosal candidiasis and systemic candidiasis of endogenous (alimentary tract) origin. #### MATERIALS AND METHODS Microorganisms. Commercial starter cultures of probiotic bacteria *L. acidophilus*, *L. reuteri*, and *Bifidobacterium infantis* were obtained from BioGaia Biologics, Inc., Raleigh, N.C. *B. infantis* has subsequently been determined by ribosomal DNA typing to closely resemble *B. animalis* (20). *L. casei* GG was obtained from Valio, Ltd., Helsinki, Finland. All bacteria were grown overnight in deMan-Rogosa-Sharpe (MRS) medium (Difco, Detroit, Mich.) or on plates of MRS medium with 1.5% agar in anaerobe jars (GasPak; BBL, Cockeysville, Md.) containing anaerobic generators (AnaeroPack System; Carr-Scarborough Microbiologics, Decatur, Ga.) at 37°C. *C. albicans* was cultured on Sabouraud's dextrose agar (SDA; BBL). Microbiological identification and characterization was conducted with the API 50CH biochemical identification system (BioMérieux Vitek, St. Louis, Mo.) and fatty acid analysis by gas-liquid chromatography (Microbial ID, Inc., Newark, Del.). Mice. C57BL/6 bg/bg-nu/nu mice, which are susceptible to lethal candidiasis (4), and bg/bg-nu/+ mice, which are resistant to lethal candidiasis (after oral challenge with the pathogenic yeast), were obtained from breeding stocks maintained at the University of Wisconsin Gnotobiote Laboratory, Madison (http:// www.biostat.wisc.edu/gnotolab/gnotolab.html). Germfree (GF) male bg/bg-nu/nu and female bg/bg-nu/+ mice were mated to obtain litters of approximately equal numbers of nude and heterozygous mice. Groups of breeder mice, their progeny, and all adult mice were housed in sterile flexible film isolators and colonized with pure cultures of C. albicans or with one of the probiotic species by inoculating their oral and anal orifices with 1 ml (10<sup>7</sup> CFU/ml) of inoculum. Mice colonized with a probiotic species were also inoculated with C. albicans (107 CFU/ml) for assessment of the effects of probiotics on colonization and infection by C. albicans. The microbial colonizations were monitored by quantitative cultures of serially diluted feces collected from mice in the gnotobiotic isolators. Plate dilution cultures of feces were made on anaerobic MRS agar plates that were incubated at 37°C. All mice were given autoclave-sterilized food, water, and bedding ad libitum. Culturing was done weekly to verify the microbial integrity of the experiment. Survival and growth of immunodeficient mice colonized with probiotics. Survival of mice born to gnotobiotic mothers was assessed at 4 and at 8 to 12 weeks of age. Survival of adult mice was assessed at 4 and at 8 to 12 weeks after colonization with a probiotic bacterium species and *C. albicans*. Body weights were measured on a Sartorius balance (Brinkman Instruments, <sup>\*</sup> Corresponding author. Mailing address: Departments of Surgery and Medical Microbiology & Immunology, University of Wisconsin Medical School, 4638 Medical Sciences Ctr., 1300 University Ave., Madison, WI 53706-1532. Phone: (608) 263-1670. Fax: (608) 265-3461. E-mail: balish@surgery.wisc.edu. | TABLE 1. Probiotic bacteria inhibit <i>C. albicans</i> in the gastrointestinal tracts of gnotobiotic mice | TABLE 1. | Probiotic | bacteria | inhibit | C. | albicans | in | the | gastrointestinal | tracts | of | gnotobiotic mice | |-----------------------------------------------------------------------------------------------------------|----------|-----------|----------|---------|----|----------|----|-----|------------------|--------|----|------------------| |-----------------------------------------------------------------------------------------------------------|----------|-----------|----------|---------|----|----------|----|-----|------------------|--------|----|------------------| | | | CFU of C. albicans/g (dry wt) ( $\log_{10}$ mean $\pm$ SEM) | | | | | | | | | |----------------------------------|----------------------------|-------------------------------------------------------------|----------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------|----------------------------------|----------------------------------|--------------------------------| | Microbial<br>status <sup>e</sup> | bg/bg-nu/nu mice | | | | | bg/bg-nu/+ mice | | | | | | | Stomach | Small intestine | Cecum | Colon | Feces | Stomach | Small intestine | Cecum | Colon | Feces | | C. albicans alone | $8.0 \pm 0.3$ | 8.1 ± 0.4 | $9.3 \pm 0.1$ | $8.6 \pm 0.3$ | $9.8 \pm 0.1$ | 8.3 ± 0.2 | $8.0 \pm 0.3$ | $9.0 \pm 0.2$ | $8.3 \pm 0.2$ | $8.6 \pm 0.2$ | | C. albicans plus: | | | | | | | | | | | | L. acidophilus<br>L. reuteri | $7.5 \pm 0.3^a$<br>$9.2^c$ | $7.3 \pm 0.4^a$<br>$7.9^c$ | $9.0 \pm 0.2$<br>$8.9^{c}$ | $7.5 \pm 0.3^{b}$<br>$7.5^{c}$ | $9.8 \pm 0.1$<br>$9.5 \pm 0.3$ | $7.9 \pm 0.4$<br>$7.8 \pm 0.2$ | $7.5 \pm 0.4$<br>$7.0 \pm 0.2^{b}$ | $8.8 \pm 0.3$<br>$8.4 \pm 0.2^a$ | $7.8 \pm 0.4$<br>$7.4 \pm 0.2^a$ | $8.5 \pm 0.1$<br>$8.5 \pm 0.3$ | | L. casei GG | $7.6 \pm 0.4$ | $7.9 \pm 0.3$ | $8.5 \pm 0.3^a$ | $7.3 \pm 0.3^a$ | $8.4 \pm 0.1^a$ | $6.7 \pm 0.1^d$ | $6.6 \pm 0.1^d$ | $7.0 \pm 0.1^d$ | $6.8 \pm 0.2^d$ | $7.9 \pm 0.1^a$ | | B. animalis | $6.4 \pm 0.7^{b}$ | $7.8 \pm 0.3$ | $8.4 \pm 0.2^{b}$ | $7.3\pm0.2^d$ | $8.3\pm0.1^a$ | $6.7\pm0.1^d$ | $6.6\pm0.1^d$ | $7.2\pm0.3^d$ | $6.4\pm0.2^d$ | $8.3\pm0.1^a$ | - <sup>a</sup> Significantly fewer CFU than in C. albicans-monoassociated mice (P was <0.05). - <sup>b</sup> Significantly fewer CFU than in *C. albicans*-monoassociated mice (*P* was <0.01). - <sup>c</sup> Only one mouse was analyzed due to rapid mortality in this group. - <sup>d</sup> Significantly fewer CFU than in C. albicans-monoassociated mice (P was <0.001). Westbury, N.Y.). Body weights of adult mice and growth rates of newborn mice between 4 and 8 weeks of age were compared with weights of GF control mice. Alimentary tract colonization. Probiotic and *C. albicans* colonization of the alimentary tracts of mice was assayed by counting colonies of viable probiotic bacteria (CFU) recovered from feces and from the contents of the stomach, small intestines, cecum, and colon. The contents of the intestines were washed out with sterile distilled water and serially diluted, and 50- $\mu$ l aliquots were inoculated onto SDA and MRS agar plates. The MRS plates were incubated anaerobically overnight at $37^{\circ}$ C. A 1-ml aliquot of undiluted suspension of intestinal contents was dried overnight ( $80^{\circ}$ C) in a tared aluminum weighing dish. The dried dishes were cooled to room temperature and weighed. The numbers of *C. albicans* and probiotic bacteria are reported as $\log_{10}$ CFU/gram (dry weight) of contents. The pH values of alimentary tract washings were measured with a pH meter and a glass combination electrode (Fisher Scientific Co., Chicago, Ill.). The spleen, liver, and kidneys were aseptically excised, homogenized in glass tissue grinders with 5 ml of sterile distilled water, serially diluted, and cultured on SDA or anaerobic MRS agar plates overnight at 37°C to assess systemic dissemination of *C. albicans* and the probiotics. One milliliter of the tissue homogenate was dried (80°C) overnight to attain the dry weight of the inoculum. The number (CFU) of *C. albicans* in the internal organs is reported as $\log_{10}$ CFU/gram (dry weight) tissue. Histology. The alimentary tracts and major internal organs of the mice were fixed in 10% formaldehyde in pH 7.4 phosphate-buffered saline (PBS). The fixed tissues were dissected and embedded in paraffin. Five-micrometer sections were placed onto slides and stained with hematoxylin and eosin or a Gram stain. Tissue sections that were taken from representative areas of the alimentary tracts (tongue, palate, esophagus, stomach, small intestine, large intestine, cecum, and colon) and the major internal organs were evaluated by a pathologist for evidence of infection by using the following criteria. Histopathology in infected tissues was scored as follows: 1, 1 to 10 microorganisms (yeast cells and hyphae of C. albicans)/high power field at a magnification of ×400 (HPF); 2, 10 to 50 microorganisms/HPF; 3, 50 to 100 microorganisms/HPF; 4, confluent microorganisms/HPF; and 5, confluent microorganisms/HPF with hyphal penetration of viable tissues (yeast cells and hyphae of C. albicans). Inflammation, the accumulation of polymorphonuclear and mononuclear cells at mucosal sites of C. albicans invasion, was assessed by microscopic examination of hematoxylin-andeosin-stained sections of infected gastric tissues from four to six bg/bg-nu/nu mice that were either monoassociated with C. albicans or diassociated with C. albicans and a probiotic bacterium species. Photomicrographs were produced with an Optiphot microscope (Nikon Inc., Melville, N.Y.) equipped with a Nikon DX-100M automatic camera and a Sony CCD camera attached to a Targa frame grabber (Truevision, Inc., Indianapolis, Ind.) with Image Pro Plus imaging software (Media Cybernetics, Silver Spring, Md.). **Immune response to** *C. albicans* and probiotics. Immunoglobulin G (IgG), IgA, and IgM concentrations in serum were determined by commercial radial immunodiffusion assays as specified by the manufacturer (The Binding Site, San Diego, Calif.). Western immunblotting was used to evaluate the serum antibody responses to antigens from *C. albicans* (35). Antigens were prepared from 48-h aerobic cultures of *C. albicans* for Western blot and lymphocyte proliferation assays (5, 35). Antigens were also prepared from 48-h anaerobic cultures of *L. casei* and *B. animalis* for lymphocyte proliferation assays. Briefly, the entire volume of a 500-ml culture was centrifuged at 2,000 $\times$ g for 15 min. The fungal or bacterial pellets were washed three times with an equal volume of PBS and centrifuged again. The final fungal or bacterial pellet was resuspended in 10 ml of PBS and passed through a French pressure cell (SLM/AMINCO, Urbana, Ill.) at 15,000 lb/in² to disrupt the fungi or bac- teria. The disrupted fungi or bacteria were centrifuged at $2,000 \times g$ , and the protein content of the supernatant was determined by the bicinchoninic acid protein assay (Pierce Chemical Co., Rockford, Ill.) and used as antigen for Western blot analyses and lymphocyte proliferation assays. Antigen preparations (200 µg) from *C. albicans* were applied to a single gel-wide lane of a denaturing 4 to 20% polyacrylamide minigel and electrophoresed at 35 mA until the bromphenol blue tracking dye reached the end of the gel. The separated antigens were electroblotted from the gel onto a nitrocellulose membrane, which was incubated in Tris-buffered saline (TBS)-Tween buffer (0.01 M Tris, 0.15 M NaCl, 0.2% Tween [polyoxyethylene sorbitan monolaurate; Sigma Chemical, St. Louis, Mo.]) and 5% powdered milk for 30 min to block nonspecific antibody binding sites. Pooled serum samples from mice colonized with *C. albicans* and probiotic bacteria were diluted 1:20 in TBS-Tween buffer and 1% powdered milk and incubated in lanes on blots with a miniblotter-16 manfold (Immunetics, Cambridge, Mass.) for 2 h. The blots were washed with TBS-Tween buffer and incubated for 1 h with alkaline phosphatose-conjugated goat antiserum to mouse IgG, IgA, and IgM (Zymed) diluted 1:1,000. The nitrocellulose membranes were incubated with nitroblue tetrazolium–5-bromo-4-chloro-3-indolylphosphate substrate solutions (Sigma) until bands appeared. Lymphocyte proliferation assays were performed with the CellTiter Aqueous 96 proliferation assay (Promega, Madison, Wis.). Lymphocytes from the spleens of GF, C. albicans-monoassociated, or C. albicans and probiotic-colonized mice were prepared and incubated at a density of $5 \times 10^5$ cells/well in a 96-well culture plate containing mitogens and antigens for 56 h at 37°C in 5% CO<sub>2</sub>. Each mitogen or antigen was added to three wells with spleen cells at the following optimal concentrations: 10 $\mu g$ of lipopolysaccharide (LPS) (Sigma)/well, 0.5 $\mu g$ of concanavalin A (Sigma)/well, 10 µg of antigen preparation from C. albicans, or 2 µg of antigen preparation from L. casei or B. animalis. The proliferation of lymphocytes in response to mitogens or antigens was proportional to the reduction of MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfonyl)-2H-tetrazolium] after a 2-h incubation at 37°C and 5% CO2. The reduced MTS was quantified as the spectrophotometic absorbance at a wavelength of 490 nm with a plate reader (Dynatech Laboratories, Inc., Chantilly, Va.). The $A_{490}$ values of three wells per lymphocyte sample from each of three mice were used to calculate the mean $\pm$ standard error of the mean (SEM). Statistical analyses. Statistical analyses of these data were performed by Dennis Heisey, Department of Surgery, University of Wisconsin Medical School, with SAS software (31). Kaplan-Meier survival curves were generated to assess the significance of observed differences between the survival of bg/bg-nu/nu mice colonized with C. albicans and that of bg/bg-nu/nu mice colonized with C. albicans and a probiotic bacterium species. Differences between the curves were tested with the log rank test (33). Repeated measures analysis of variance (ANOVA) was used to test for differences in numbers of viable C. albicans in the alimentary tracts or internal organs of mice from the various treatment groups. The data were log transformed to better meet the assumptions of ANOVA. Two-way ANOVA, with factors of treatment group and sex, was employed to detect significant differences in the body weights of probiotic-colonized adult and neonatal mice and to assess significant differences between histopathology severity scores for tissue sections from mice with mucosal candidiasis. #### RESULTS **Probiotic suppression of** *C. albicans* **colonization.** Weekly cultures of feces from *bg/bg-nu/nu* and *bg/bg-nu/+* mice housed in gnotobiotic isolators were used to verify that each group of <sup>&</sup>lt;sup>e</sup> For groups of 4 to 21 mice 4 to 8 weeks after colonization. TABLE 2. Inhibition of systemic candidiasis of endogenous (gastrointestinal tract) origin by probiotic bacteria | Microbial | bg/bg-nu/n | u mice | bg/bg-nu/+ mice | | | |---------------------------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------|-------------------------------------------------------|--| | status | Dissemination <sup>a</sup> (%) | No. of <i>C. albicans</i> <sup>b</sup> | Dissemination (%) | No. of C. albicans | | | C. albicans alone | 75 | $7.0 \pm 0.1$ | 36 | 6.8 ± 1.2 | | | C. albicans plus: L. acidophilus L. reuteri L. casei GG B. animalis | $0^{c}$ $-^{e}$ $0^{c}$ $14^{c}$ | $ NG^d $ $ NG^d $ $ 4.6 \pm 0.6^c $ | $0^{c}$ $0^{c}$ $26^{c}$ $12^{c}$ | $NG^{d}$ $NG^{d}$ $4.9 \pm 0.8^{c}$ $3.6 \pm 0.2^{c}$ | | <sup>&</sup>lt;sup>a</sup> Percentage of mice with disseminated candidiasis (4 to 27 mice/group), euthanized at 4 to 12 weeks after colonization. mice was continuously colonized with either C. albicans alone or with C. albicans and one of the probiotic bacteria species. In euthymic bg/bg-nu/+ mice, L. casei GG and B. animalis significantly inhibited C. albicans throughout the alimentary tract. We recovered as much as 100-fold-fewer CFU of C. albicans in diassociated mice than in C. albicans-monoassociated mice (Table 1). As shown in Table 1, the number of CFU of C. albicans in the stomachs, small intestines, and colons of bg/bgnu/nu mice diassociated with L. acidophilus and C. albicans was significantly decreased compared with the number in C. albicans-monoassociated bg/bg-nu/nu mice. The number of viable C. albicans was reduced by L. casei GG in the ceca, colons, and feces and by B. animalis in the stomachs, ceca, colons, and feces of bg/bg-nu/nu mice. Neither C. albicans nor any of the probiotic bacteria species was eliminated from the alimentary tracts of the mice over the 12-week study. C. albicans did not appear to affect the capacity of probiotic bacteria to colonize bg/bg-nu/nu or bg/bg-nu/+ mice, because the numbers of the probiotic bacteria cultured from C. albicans- and probiotic bacteria-diassociated mice were very similar to the number cultured from mice monoassociated with a pure culture of the probiotic bacteria (35). **Probiotic inhibition of systemic candidiasis.** Compared to *C. albicans* dissemination in mice colonized with only *C. albicans* (75% dissemination in *bg/bg-nu/nu* mice and 36% dissemination in *bg/bg-nu/+* mice), the presence of probiotic bacteria in the alimentary tract reduced the incidence of disseminated candidiasis in both mouse strains (Table 2). Generally, dissemination of *C. albicans* was greater in *bg/bg-nu/nu* mice than in *bg/bg-nu/+* mice; however, with *L. casei* GG the dissemination in euthymic mice was greater than that in athymic mice (Table 2). Overall, these results suggest that thymic and extrathymic immune mechanisms play a role in controlling *C. albicans* dissemination from the alimentary tract (Table 2). In this study, we also observed that *L. acidophilus*, *L. casei* GG, and *B. animalis* disseminated to internal organs in 4 to 12% of the probiotic- and *C. albicans*-colonized mice. The presence of *C. albicans* in the intestinal tract reduced the incidence of dissemination from 30 to 55% (previously reported for mice monoassociated with a probiotic bacterium species [35]) to 4 to 12%. Orogastric candidiasis in mice colonized with *C. albicans* and probiotic bacteria. A significant reduction in the incidence and severity of orogastric candidiasis was observed in *bg/bg*- nu/+ mice, but not in bg/bg-nu/nu mice, colonized with C. albicans and B. animalis (Table 3). The severity of candidiasis in orogastric tissues (measured as numbers of C. albicans observed in keratinized epithelia of the upper alimentary tract) in bg/bg-nu/nu mice diassociated with C. albicans and L. acidophilus, L. reuteri, or L. casei GG was not significantly less than that in mice monoassociated with C. albicans (Table 3). Inflammation (increased polymorphonuclear leukocyte, monocyte, and lymphocyte infiltration) was evident in *C. albicans*-infected tissues. The presence of *L. acidophilus* or *B. animalis* appeared to increase the incidence of inflammation at sites of *C. albicans* infection. For example, 75% of *bg/bg-nu/nu* mice diassociated with *C. albicans* and *L. acidophilus* and 100% of the mice colonized with *C. albicans* and *B. animalis* had inflammation of their infected gastric tissues, whereas only 30% of *C. albicans*-monoassociated *bg/bg-nu/nu* mice had an obvious inflammatory response in their infected gastric tissues (Fig. 1). **Probiotic bacteria protect immunodeficient mice from lethal candidiasis.** All adult bg/bg-nu/nu mice died within 2 to 8 weeks after colonization with a pure culture of *C. albicans* (Table 4). In contrast, all adult bg/bg-nu/+ mice survived monoassociation with *C. albicans*. The survival of adult bg/bg-nu/nu mice was significantly prolonged in mice diassociated with *C. albicans* and *L. acidophilus* or *B. animalis* compared to the survival of *C. albicans*-monoassociated bg/bg-nu/nu mice (Table 4). All *bg/bg-nu/nu* mice born to dams that were monoassociated with *C. albicans* died at less than 4 weeks of age. Survival of *bg/bg-nu/nu* pups born to dams colonized with *C. albicans* and a probiotic bacterium species was significantly prolonged compared to that of *C. albicans*-monoassociated mice (Table 4). More protection from lethality was afforded to pups by *L. acidophilus* or *B. animalis* than by *L. reuteri* or *L. casei* GG (Table 4). Effects of probiotic bacteria on growth of *C. albicans*-colonized mice. Adult GF *bg/bg-nu/nu* mice colonized 4 to 12 weeks with *C. albicans* had lower body weights than GF control mice (Table 5). Generally, adult *bg/bg-nu/+* mice maintained their body weights (compared to GF mice) when colonized with *C. albicans* alone or with a probiotic bacterium species and TABLE 3. Incidence and severity of orogastric candidiasis in mice diassociated with *C. albicans* and protiotic bacteria | | bg/bg-nu/s | nu mice | bg/bg-nu/+ mice | | | |---------------------|------------------------------------|-----------------------------|-----------------------------|-------------------|--| | Microbial<br>status | Mucosal infection <sup>a</sup> (%) | Severity score <sup>b</sup> | Mucosal<br>infection<br>(%) | Severity<br>score | | | C. albicans alone | 100 | 3 | 83 | 3 | | | C. albicans plus: | | | | | | | L. acidophilus | $87^c$ | 3 | 79 | 2 | | | L. reuteri | 100 | 5 | 94 | 2 | | | L. casei GG | 93 | 3 | 81 | 3 | | | B. animalis | 100 | 3 | $37^c$ | $1^c$ | | <sup>&</sup>lt;sup>a</sup> Percentage of mice with histopathologically confirmed candidiasis of tongue, esophagus, stomach, or hard palate 4 to 12 weeks after colonization (4 to 26 mice/group). $<sup>^</sup>b$ Values are expressed as mean $\pm$ SEM $\log_{10}$ CFU *C. albicans*/gram of homogenized tissues (spleen, liver, and kidney). <sup>&</sup>lt;sup>c</sup> Significantly less than the result for the *C. albicans*-monoassociated control (P < 0.05). <sup>&</sup>lt;sup>d</sup> NG, no growth. <sup>&</sup>lt;sup>e</sup> -, data not available due to early mortality. b Mean severity score for mucosal candidiasis. Histopathology score in infected tissues was scored as follows: 1, 1 to 10 microorganisms/HPF (magnification, ×400); 2, 10 to 50 microorganisms/HPF; 3, 50 to 100 microorganisms/HPF (yeast cells and hyphae of *C. albicans*); 4, confluent microorganisms/HPF (yeast cells and hyphae of *C. albicans*); 5, confluent microorganisms/HPF with hyphal penetration of viable tissues (yeast cells and hyphae of *C. albicans*). $<sup>^{\</sup>circ}$ Significantly decreased from result for C. albicans-monoassociated mice, P was <0.05 by repeated measures ANOVA. FIG. 1. Induction of inflammation in keratinized stomach tissue by *B. animalis* in *bg/bg-nu/nu* mice with candidiasis. (A) *B. animalis* and *C. albicans* in the outer keratinized layers (K) of the stomach with inflammatory cell infiltrate (I). (B) Lack of an inflammatory infiltrate in *C. albicans*-infected keratinized tissue from *bg/bg-nu/nu* mice colonized with a pure culture of *C. albicans*. Magnification, ×240. C. albicans; only bg/bg-nu/+ males diassociated with C. albicans and L. acidophilus had significantly smaller body weights. Due to their early deaths, the body weights of bg/bg-nu/nu mice born to dams colonized with a pure culture of *C. albicans*, were not compared with the weights of pups born to dams colonized with *C. albicans* and a probiotic. Euthymic bg/bg-nu/+ mice born to dams monoassociated with *C. albicans* weighed significantly less at 4 and 8 weeks of age than comparable GF mice (Table 6). The euthymic bg/bg-nu/+ pups born to dams diassociated with *C. albicans* and a probiotic bacterium species weighed significantly less than GF pups at 4 weeks of age, but by 8 weeks their body weights were comparable to those of GF controls. Modulation of host immune responses to *C. albicans* by probiotic bacteria. Ig isotypes (IgG, IgA, and IgM) were quantified in sera from mice colonized for 4 weeks with *C. albicans* or with *C. albicans* and a probiotic bacterium species (Table 7). Athymic *bg/bg-nu/nu* mice did not produce significant levels of serum IgA except when colonized with *C. albicans* and *B. animalis*; however, serum IgG and IgM were also significantly increased in *bg/bg-nu/nu* mice colonized with *C. albicans* and *B. animalis*. Only IgM was increased in *L. casei* GG- and *C. albicans*-colonized *bg/bg-nu/nu* mice. Interestingly, we observed that the presence of *L. acidophilus* or *L. casei* GG prevented the *C. albicans*-induced increase of serum IgG in *bg/bg-nu/nu* mice. Alimentary tract colonization by *C. albicans* or by probiotic bacteria and *C. albicans* significantly increased IgG, IgA, and IgM in sera from *bg/bg-nu/+* mice over levels in sera from GF mice. (Table 7). The induction of specific serum Ig (IgG, IgA, or IgM) to *C. albicans* antigens was further investigated by Western blotting analyses. As shown in Fig. 2, sera from *C. albicans*-colo- TABLE 4. Probiotic bacteria protect immunodeficient mice from lethal candidiasis | Description of | % Lethality (no. of mice/group) at indicated time of infection | | | | | | | | |---------------------------|----------------------------------------------------------------|-------------|------------|---------|--|--|--|--| | mice and microbial status | bg/bg- | nu/nu | bg/bg-nu/+ | | | | | | | | 4 wk | 8–12 wk | 4 wk | 8–12 wk | | | | | | Adult | | | | | | | | | | C. albicans alone | 50 (14) | 100 (7) | 0 (24) | 0 (24) | | | | | | C. albicans plus: | | | | | | | | | | L. acidophilus | $0 (8)^a$ | $0 (8)^a$ | 0(6) | 0(6) | | | | | | L. reuteri | 30 (11) | 86 (7) | 0 (8) | 0 (5) | | | | | | L. casei | 37 (24) | 73 (11) | 6 (23) | 0 (12) | | | | | | B. animalis | $5(19)^a$ | $39 (18)^a$ | 0 (18) | 7 (15) | | | | | | Newborn | | | | | | | | | | C. albicans alone | 100 (15) | _c | 18 (13) | 0 (11) | | | | | | C. albicans plus: | | | | | | | | | | L. acidophilus | $30(25)^a$ | 50 (16) | 10 (28) | 0(18) | | | | | | L. reuteri | $70(35)^{b}$ | 100 (10) | 8 (26) | 0 (6) | | | | | | L. casei | $66(42)^{b}$ | 93 (14) | 0 (67) | 0 (39) | | | | | | B. animalis | $50(18)^a$ | 0 (6) | 0 (21) | 0 (15) | | | | | <sup>&</sup>lt;sup>a</sup> Significantly decreased lethality compared to that of *C. albicans*-monoassociated control; *P* was <0.05. nized bg/bg-nu/+ mice (lane 2) and mice colonized with *C. albicans* and a probiotic bacterium species contained antibodies (IgG, IgA, and IgM) that bound to a variety of *C. albicans* antigens. Also, euthymic bg/bg-nu/+ mice diassociated with *C. albicans* and *L. casei* GG (Fig. 2, lane 3) had a more diverse serum antibody response to *C. albicans* antigens than did bg/bg-nu/+ mice diassociated with *C. albicans* and either *B. animalis* (Fig. 2, lane 4), *L. reuteri* (Fig. 2, lane 5), or *L. acidophilus* (Fig. 2, lane 6). A diverse antibody response to *C. albicans* antigens was detected in sera from bg/bg-nu/nu mice diassociated with *C. albicans* and either *L. acidophilus* (Fig. 2, lane 9) or *B. animalis* (Fig. 2, lane 10) that was not evident in sera from *C. albicans*-monoassociated bg/bg-nu/nu mice (Fig. 2, lane 8) or bg/bg-nu/nu mice diassociated with *C. albicans* and *L. casei* GG (Fig. 2, lane 11). In vitro lymphocyte proliferation assays showed that splenocytes from mice diassociated with *C. albicans* and either *L. casei* GG or *B. animalis* had less of a lymphocyte proliferative (mitogenic) response to LPS than *C. albicans*-monoassociated mice (Table 8). Conversely, lymphocyte prolferation to *C. albicans* antigens was greater with splenocytes from *bg/bg-nu/+* mice diassociated with *C. albicans* and either *L. casei* GG or *B. animalis* than with lymphocytes from *C. albicans*-monoassociated mice (Table 8). ### DISCUSSION All four of the probiotic bacteria species we tested not only prolonged the survival of *bg/bg-nu/nu* mice after oral colonization with *C. albicans* compared with that of *C. albicans* (pure culture)-colonized mice but also decreased the incidence of disseminated candidiasis in both strains (*bg/bg-nu/nu* and *bg/bg-nu/+*) of mice. The presence of a functional thymus was not necessary for the probiotic bacteria to enhance survival and decrease the dissemination of candidiasis in these mice, since TABLE 5. Body weights of adult mice colonized for 8 to 12 weeks with *C. albicans* and probiotic bacteria<sup>c</sup> | | Mean body weight (g) ± SEM | | | | | | | | |---------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--| | Microbial status | bg/bg | -nu/nu | bg/bg-nu/+ | | | | | | | | Male | Female | Male | Female | | | | | | GF | $32.6 \pm 2.3$ | $24.8 \pm 0.5$ | $32.7 \pm 0.1$ | $28.5 \pm 1.0$ | | | | | | C. albicans alone | $18.4 \pm 2.5^a$ | $15.2 \pm 0.3^a$ | $31.1\pm0.6$ | $29.9 \pm 3.0$ | | | | | | C. albicans plus:<br>L. acidophilus<br>L. reuteri<br>L. casei GG<br>B. animalis | $-^{d}$ 14.3 $\pm$ 2.6 <sup>a</sup> | $18.1 \pm 1.0^{a,b}$ $-^{d}$ $21.7 \pm 4.5$ $18.6 \pm 1.1^{a,b}$ | $24.1 \pm 0.7^{a}$ $33.2 \pm 1.1$ $36.4 \pm 1.1^{b}$ $33.9 \pm 1.1^{b}$ | $29.7 \pm 1.1$<br>$31.6 \pm 2.5$<br>$29.9 \pm 3.0$<br>$35.6 \pm 0.6^{b}$ | | | | | $<sup>^</sup>a$ Significantly less than the GF control (P was <0.05 by repeated measures ANOVA). the latter protective effect was evident in athymic (bg/bg-nu/nu) and euthymic (bg/bg-nu/+) mice. Consistent with the latter protective effect, inhibition of systemic dissemination of gastrointestinal pathogens has been described as an attribute of probiotic microorganisms (2, 16). Few studies have addressed the ability of probiotics to protect immunodeficient hosts from candidiasis. In a previous study, researchers reported that feeding heat-killed *E. faecalis* to mice with cyclophosphamide-induced leukopenia enhanced the recovery of their humoral immune responses to *C. albicans* antigens (32). In another study, *L. acidophilus* and *Streptococcus thermophilus* protected corticosteroid-immunosuppressed mice from systemic (intraperitoneal challenge) candidiasis (6). The latter study involved the use of immunocompetent mice that were treated with immunosuppresive agents to enhance their susceptibility to candidiasis and did not address the efficacy of probiotic protection from candidiasis of endogenous (alimentary tract) origin in congenitally immunodeficient mice. TABLE 6. Body weights of 4- and 8-week-old *bg/bg-nu/+* mice born to dams colonized with *C. albicans* alone or with probiotic bacteria and *C. albicans* | | Body weight (mean ± SEM) <sup>a</sup> | | | | | | | | |--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--| | Microbial status of dam | Ma | ile | Female | | | | | | | | 4 wk | 8 wk | 4 wk | 8 wk | | | | | | GF | $23.8 \pm 2.0^{\circ}$ | $30.3 \pm 0.9^{c}$ | $20.7 \pm 1.3^{c}$ | $25.8 \pm 1.0^{\circ}$ | | | | | | C. albicans | $7.1\pm0.6^b$ | $21.7 \pm 2.9^{b}$ | $11.7 \pm 1.1^{b}$ | $19.4 \pm 0.5^{b}$ | | | | | | C. albicans and:<br>L. acidophilus<br>L. reuteri<br>L. casei GG<br>B. animalis | $13.0 \pm 0.4^{b,c}$ $18.0 \pm 1.6^{b,c}$ $22.7 \pm 1.2^{c}$ $9.6 \pm 0.3^{b}$ | $27.3 \pm 0.6$ $27.7 \pm 0.9^{c}$ $27.6 \pm 1.2^{c}$ $24.6 \pm 1.5^{b}$ | $15.1 \pm 0.9^{b}$ $15.4 \pm 1.9^{b}$ $16.5 \pm 1.9^{b}$ $16.9 \pm 2.2$ | $22.6 \pm 1.2$ $^{-d}$ $25.3 \pm 1.0^{\circ}$ $23.8 \pm 1.0$ | | | | | <sup>&</sup>quot;Mean body weight (in grams) of bg/bg-nu/+ mice (3 to 10 mice/group) compared with that of GF mice (24 to 36 mice/group). <sup>&</sup>lt;sup>b</sup> Significantly decreased lethality compared to that of *C. albicans*-monoassociated control; *P* was < 0.01. c –, no data because of early deaths. b Significantly greater than the result for C. albicans-monoassociated mice by repeated measures ANOVA. Experimental groups contained 3 to 11 mice. <sup>&</sup>lt;sup>d</sup> -, data not available due to early mortality and cannibalism. <sup>&</sup>lt;sup>b</sup> Significantly decreased body weights compared to those of GF mice (*P* was <0.05 by repeated measures ANOVA). <sup>&</sup>lt;sup>c</sup> Significantly increased body weights compared to those of *C. albicans*-mono-associated mice (*P* was <0.05 by repeated measures ANOVA). <sup>&</sup>lt;sup>d</sup> -, data not available due to mortality and cannibalism. | | Mean ± SEM (μg/ml) for: | | | | | | | | | | |-------------------|-------------------------|------------------|------------------|---------------------|------------------|------------------|--|--|--|--| | Microbial status | | bg/bg-nu/nu mice | | bg/bg-nu/+ mice | | | | | | | | | IgG | IgA | IgM | IgG | IgA | IgM | | | | | | GF | 293 ± 51 | <200 | 28 ± 2 | 301 ± 123 | <200 | 26 ± 9 | | | | | | C. albicans alone | $1,936 \pm 1,049$ | $229 \pm 29$ | $32 \pm 7$ | $2,257 \pm 121^a$ | $894 \pm 21^{a}$ | 54 ± 12 | | | | | | C. albicans plus: | | | | | | | | | | | | L. acidophilus | $244 \pm 25$ | < 200 | $48 \pm 24$ | $1,285 \pm 292^a$ | $761 \pm 75^{a}$ | $74 \pm 5^{a}$ | | | | | | L. reuteri | <u>_</u> b | <u>_</u> b | <u>_</u> b | $1.368 \pm 161^a$ | $437 \pm 111$ | $93 \pm 59^{a}$ | | | | | | L. casei GG | $233 \pm 64$ | < 200 | $66 \pm 8^{a}$ | $4,751 \pm 1,474^a$ | $1.526 \pm 79^a$ | $104 \pm 36^{a}$ | | | | | | B. animalis | $2.179 \pm 367^a$ | $1.106 \pm 39^a$ | $108 \pm 26^{a}$ | $3.269 \pm 418^a$ | $1.212 \pm 52^a$ | $155 \pm 27^a$ | | | | | TABLE 7. Serum IG (IgG, IgA, and IgM) responses in gnotobiotic mice colonized with probiotic bacteria and/or C. albicans Our results show that probiototic bacteria can partially protect congenitally immunodeficient mice from lethal candidiasis. The four probiotic bacterial species that we studied differed in their biotherapeutic effects on candidiasis. The best overall biotherapeutic effects were observed with B. animalis. B. animalis prolonged survival compared with that of C. albicansmonoassociated controls, decreased systemic dissemination, inhibited C. albicans in the alimentary tract, stimulated antibody- and cell-mediated immunity and, in bg/bg-nu/+ mice, significantly decreased the incidence and severity of orogastric candidiasis. B. animalis was more effective as a biotherapeutic agent in mice with a functional thymus than in bg/bg-nu/nu (athymic) mice. Our data not only support the importance of a functional thymus in protecting mice against orogastric candidiasis but also demonstrate that B. animalis enhanced the resistance of bg/bg-nu/+ mice to candidiasis to a greater extent than the other three probiotic bacterial species we studied. The role of thymus-matured T cells in resistance to orogastric candidiasis has been well documented (8, 25, 34). Further research is needed to delineate the immune and inhibitory mechanism(s) that enable B. animalis to enhance resistance of mice to mucosal and systemic candidiasis. None of the probiotic strains we tested provided complete protection against candidiasis. It was evident from our studies that suppression of *C. albicans* growth in the intestinal tract by probiotic bacteria was not always associated with enhanced resistance to orogastric candidiasis. We observed that some of the probiotic bacteria inhibited the growth of C. albicans in the intestinal tract to some degree; however, the inhibition of C. albicans did not always correlate with a reduction in the overall severity of orogastric candidiasis. Two of the probiotics (L. reuteri and L. casei) are known to produce broad-spectrum antimicrobial compounds, reuterin and caseicin, respectively (1, 24). Volatile fatty acids, such as lactic and propionic acids, and reactive oxygen species, such as H<sub>2</sub>O<sub>2</sub>, are also produced by probiotics (11, 15), and these molecules may be inhibitory to C. albicans (14, 23). Conjugation of bile salts by Bifidobacterium spp. is also known to produce antimicrobial substances (9). Thus, production of molecules inhibitory to C. albicans may have played a role in decreasing the number of viable C. albicans CFU in the alimentary tracts of mice with L. acidophilus or B. animalis. The fact that L. acidophilus and B. animalis suppressed the growth of C. albicans in vivo better than L. reuteri and L. casei did suggests that they can produce Candida-inhibitory compounds in vivo. Our observation that probiotic inhibition of C. albicans growth in the alimentary tract did not always correlate with protection from orogastric candidiasis suggests that probiotic stimulation of host defense (innate and acquired) mechanisms may be more important than bacterial inhibition of *C. albicans* in the intestinal tract in the protection of mice from orogastric or systemic candidiasis. Our results showed that two strains of probiotic bacteria (L. acidophilus and B. animalis) enhanced the inflammatory response (consisting of polymorphonuclear leukocytes, macrophages, and lymphocytes) in infected mucosal tissues of bg/bgnu/nu mice. Very little inflammatory cell infiltration was observed in the stomachs of bg/bg-nu/nu mice colonized with C. albicans (pure culture) or diassociated with L. casei GG or L. reuteri and C. albicans. Thus, L. acidophilus and B. animalis enhanced the recruitment of inflammatory cells to a C. albicans-infected mucosal tissue without the involvement of thymus-matured T cells. The capacity of probiotic bacteria to enhance inflammatory responses likely contributed to the prolonged survival and decreased dissemination of candidiasis we observed in these mice. We are unaware of any other reports on the enhancement of inflammatory cell infiltration by probiotic bacteria in response to an infectious agent. We observed that either B. animalis or $\tilde{C}$ . albicans could induce IgA production in bg/bg-nu/+ mice; however, only FIG. 2. Antibodies (IgG, IgM, and IgA) to *C. albicans* antigens in mouse sera. Each panel contains a 4 to 20% gradient polyacrylamide denaturing gel electrophoresis of *C. albicans*' antigens. Lanes across *C. albicans*' antigen separations were immunoblotted with pooled antisera (three mice per pool) from GF bg/bg-nu/+ mice (lane 1); bg/bg-nu/+ mice colonized with *C. albicans* (lane 2) or diassociated with *C. albicans* and *L. casei* GG (lane 3), *B. animalis* (lane 4), *L. reuteri* (lane 5), or *L. acidophilus* (lane 6); GF bg/bg-nu/nu mice (lane 7); *C. albicans*-monoassociated bg/bg-nu/nu mice (lane 8); and bg/bg-nu/nu mice diassociated with *C. albicans* and *L. acidophilus* (lane 9), *B. animalis* (lane 10), or *L. casei* GG (lane 11). This blot is representative of two experiments with different serum pools. MW, molecular weight (in thousands). <sup>&</sup>lt;sup>a</sup> Significantly greater than result for GF control (P was <0.05 by ANOVA). Each group contained five mice. b -, data not available due to early deaths and cannibalism. | TABLE 8. Proliferation of splenic lymphocytes from bg/bg-nu/+ mice diassociated with C. albicans and probiotic bacteria by antigens from | |------------------------------------------------------------------------------------------------------------------------------------------| | C. albicans or probiotic bacteria | | Microbial status | | Proliferative response (mean $A_{490} \pm \text{SEM}$ ) <sup>a</sup> | | | | | | | | |-------------------------------------------------|------------------------------------|----------------------------------------------------------------------|--------------------------------------|--------------------------------|-------------------------------------------------------------|--|--|--|--| | Microbiai status | LPS | Concanavalin A | C. albicans antigen | L. casei GG antigen | B. animalis antigen | | | | | | GF | $0.96 \pm 0.01$ | $0.46 \pm 0.06$ | $0.02 \pm 0.005$ | $0.14 \pm 0.04$ | $0.27 \pm 0.07$ | | | | | | C. albicans alone | $0.90\pm0.03$ | $0.23 \pm 0.11$ | $0.27\pm0.05$ | $0.04\pm0.02$ | $0.25\pm0.03$ | | | | | | C. albicans plus:<br>L. casei GG<br>B. animalis | $0.50 \pm 0.02$<br>$0.45 \pm 0.12$ | $0.57 \pm 0.04$ $0.46 \pm 0.09$ | $0.48 \pm 0.03^b \\ 0.57 \pm 0.21^b$ | $0.08 \pm 0.005$ $\text{ND}^c$ | $\begin{array}{c} \text{ND}^c \\ 0.07 \pm 0.05 \end{array}$ | | | | | <sup>&</sup>lt;sup>a</sup> Three to six mice/group. C. albicans in combination with B. animalis (diassociated) induced IgA production in bg/bg-nu/nu mice. IgA production is generally considered to be thymus dependent (26); however, athymic mice are capable of T cell-dependent processes via mucosal T cells of extrathymic origin and maturation (10, 13). Probiotic bacteria are known to enhance antibody responses to pathogens in mice (3). For example, in one previous study, increased antibody production in mice that were fed Bifidobacterium breve and infected with rotavirus was reported (36). In other studies, increased resistance and elevated serum antibodies to Salmonella typhi were induced by feeding humans L. acidophilus (19) and increased resistance and elevated serum antibodies to Salmonella typhimurium and Escherichia coli were induced by feeding mice L. casei (27). Transient increases in IgA (26) and IgG and IgM (18) have also been reported after mice were colonized with L. acidophilus or L. casei. Our study strongly suggests that B. animalis, but not the other three probiotic bacterial species we tested, has the unique capacity to stimulate T cell-dependent IgA and IgG antibody responses in athymic mice, possibly via extrathymic-matured T cells that are present in mucosal tissues. Our study also showed that in pure culture, *C. albicans* inhibited the growth of *bg/bg-nu/nu* mice. The weight loss appears to be related to the severity of the orogastric infection. *B. animalis* was the most effective probiotic in mice of the four we studied and provided the best overall protection against orogastric and systemic candidiasis; however, we observed that *L. casei* GG and *L. reuteri* were better able than *B. animalis* to counteract the growth-inhibitory effects of *C. albicans* on mice. Thus, *L. casei* GG and *L. reuteri* appeared to produce biotherapeutic effects via nutrient utilization, supplementation, and/or availability. Further study is needed to determine how probiotic bacteria prevent *C. albicans*-induced weight loss. Overall, this study demonstrated that probiotic bacteria can protect immunodeficient mice from candidiasis; however, none of the probiotic bacteria we studied eliminated C. albicans from the alimentary tract or provided complete protection against orogastric and systemic candidiasis. The probiotic bacteria we studied differed in their capacities to prolong survival, inhibit C. albicans in the intestinal tract, stimulate antibodyand cell-mediated immunity, and affect the growth rate of gnotobiotic mice. Our data indicate that the probiotic bacteria produced biotherapeutic effects by inhibition of C. albicans growth, stimulation of the mucosal and systemic immune systems and possibly by nutritional and competitive means. Of the four probiotic bacterial species that we studied, B. animalis was the most biotherapeutic and provided the best overall protection against mucosal and systemic candidiasis. B. animalis apparently stimulated host resistance to candidiasis via thymusand mucosal tissue-associated lymphoid tissues. Overall, thymus and mucosal tissue stimulation by probiotic bacteria strains such as *B. animalis* likely plays a very important role in the enhancement of resistance to infectious agents. More research is needed to elucidate the basic mechanisms utilized by probiotic bacteria so that their beneficial biotherapeutic effects can be optimized. #### ACKNOWLEDGMENTS This study was supported by Ross Products Division of Abbott Laboratories, Inc. Radial immunodiffusion assays of serum Ig isotypes were run by Lisa Roberts and Jeff Farmer at Abbott Laboratories, Abbott Park, Ill. We thank JoAnne Croft and Barb Reese for maintenance of the gnotobiotic mice at the University of Wisconsin Medical School Gnotobiotic Laboratory. We also appreciate the statistical analyses conducted by Dennis Heisey of the University of Wisconsin Medical School, Department of Surgery, and thank Donna Brackett for her assistance in the preparation of the manuscript. ## REFERENCES - Axelsson, L. T., T. C. Chung, W. J. Dobrogosz, and E. Lindgren. 1989. Production of a broad spectrum antimicrobial substance by *Lactobacillus reuteri*. Microb. Ecol. Health Dis. 2:131–136. - Berg, R., P. Bernasconi, D. Fowler, and M. Gautreaux. 1993. Inhibition of Candida albicans translocation from the gastrointestinal tract of mice by oral administration of Saccharomyces boulardii. J. Infect. Dis. 168:1314–1318. - Berg, R. D. 1983. Host immune response to antigens of the indigenous intestinal flora, p. 101–126. *In D. J. Hentges (ed.)*, Human intestinal microflora in health and disease. Academic Press, New York, N.Y. - Cantorna, M. T., and E. Balish. 1990. Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect. Immun. 58:1093–1100. - Cantorna, M. T., and E. Balish. 1991. Role of CD4<sup>+</sup> lymphocytes in resistance to mucosal candidiasis. Infect. Immun. 59:2447–2455. - De Petrino, S. F., M. E. B. B. De Jorrat, O. Meson, and G. Perdigon. 1995. Protective ability of certain lactic acid bacteria against an infection with *Candida albicans* in a mouse immunosuppression model by corticoid. Food Agric. Immunol. 7:365–373. - Gorbach, S. 1990. Lactic acid bacteria and human health. Ann. Med. 22:37–41. - Greenfield, R. A. 1992. Host defense system interactions with Candida. J. Med. Vet. Mycol. 30:89–104. - Grill, J. P., C. Manginot-Durr, F. Schneider, and J. Ballongue. 1995. Bifidobacteria and probiotic effects: action of *Bifidobacterium* species on conjugated bile salts. Curr. Microbiol. 31:23–27. - Hamad, M., M. Whetsell, and J. R. Klein. 1995. T cell precursors in the spleen give rise to complex T cell repertoires in the thymus and the intestines. J. Immunol. 155:2866–2876. - Hentges, D. J. 1983. Role of the intestinal microflora in host defense against infection, p. 311–331. *In* D. J. Hentges (ed.), Human intestinal microflora in health and disease. Academic Press, New York, N.Y. - Hilton, E., H. D. Isenberg, P. Alperstein, K. France, and M. T. Borenstein. 1992. Ingestion of yogurt containing *Lactobacillus acidophilus* as prophylaxis for candidal vaginitis. Ann. Intern. Med. 116:353–357. - Kennedy, M. J., C. W. Pierce, and J. P. Lake. 1992. Extrathymic T cell maturation. Phenotypic analysis of T cell subsets in nude mice as a function of age. J. Immunol. 148:1620–1629. <sup>&</sup>lt;sup>b</sup> Significantly greater than result for *C. albicans*-monoassociated mice (*P* was <0.05). <sup>&</sup>lt;sup>c</sup> ND, not done. Kennedy, M. J., and P. A. Volz. 1985. Ecology of *Candida albicans* gut colonization: inhibition of *Candida* adhesion, colonization, and dissemination from the gastrointestinal tract by bacterial antagonism. Infect. Immun. 49:654–663. - Klebanoff, S. J., S. L. Hillier, D. A. Eschenbach, and A. M. Waltersdorph. 1991. Control of the microbial flora of the vagina by H<sub>2</sub>O<sub>2</sub>-generating lactobacilli. J. Infect. Dis. 164:94–100. - Kmet, V., M. Kmetova, M. Contrepois, and Y. Ribot. 1995. Bifidobacteria and Escherichia coli translocation in gnotobiotic mice, p. 479–482. In J. Mestecky, M. W. Russell, S. Jackson, S. M. Michalek, H. T. Hogenová, and J. Sterzl (ed.), Advances in mucosal immunology. Plenum Press, New York, N.Y. - 17. Kolars, J. C., M. D. Levitt, M. Aouji, and D. A. Savaino. 1984. Yogurt—an autodigesting source of lactose. N. Engl. J. Med. 310:1–3. - Link, H., F. Rochat, K. Y. Saudan, and E. Schiffrin. 1995. Immunomodulation of the gnotobiotic mouse through colonization with lactic acid bacteria, p. 465–467. In J. Mestecky, M. W. Russell, S. Jackson, S. M. Michalek, H. T. Hogenová, and J. Sterzl (ed.), Advances in mucosal immunology. Plenum Press, New York, N.Y. - Link-Amster, H., F. Rochat, K. Y. Saudan, O. Mingot, and J. M. Aeschlimann. 1994. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10:55–64. - Marcon, M. (Children's Hospital, Columbus, Ohio). Personal communication. - Martaeu, P., B. Flourie, P. Pochart, C. Chastang, J.-F. Desjeux, and J.-C. Rambaud. 1990. Effect of the microbial lactase (EC3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br. J. Nutr. 64:71–79. - McCarthy, G. M. 1992. Host factors associated with HIV-related oral candidiasis. A review. Oral Surg. Oral Med. Oral Pathol. 73:181–186. - Mital, B. K., and S. K. Garg. 1995. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of *Lactobacillus acidophilus*. Crit. Rev. Microbiol. 21:175–214. - Müller, E., and F. Radler. 1993. Caseicin, a bacteriocin from *Lactobacillus casei*. Folia Microbiol. 38:441–446. Odds, F. C. 1988. Candida and candidosis: a review and bibliography, 2nd ed., p. 205–207. Bailliere-Tindall, London, England. - Perdigon, G., S. Alvarez, M. Rachid, G. Aguero, and N. Gobbato. 1995. Symposium. Probiotic bacteria for humans: clinical systems for evaluation of effectiveness. J. Dairy Sci. 78:1597–1606. - Perdigon, G., S. Alvarez, and A. P. de Ruiz Holgado. 1991. Immunoadjuvant activity of oral *Lactobacillus casei*: influence of dose on the secretory immune response and protective capacity in intestinal infections. J. Dairy Res. 58: 485–496. - Reid, G., A. W. Bruce, J. A. McGroarty, K.-J. Cheng, and W. Costerton. 1990. Is there a role for lactobacilli in prevention of urogenital and intestinal infections? Clin. Microbiol. Rev. 3:335–344. - Reid, G., A. W. Bruce, and M. Taylor. 1992. Influence of three-day antimicrobial therapy and lactobacillus vaginal suppositories on recurrence of urinary tract infections. Clin. Ther. 14:11–15. - Saavedra, J. M., N. A. Bauman, I. Oung, J. A. Perman, and R. H. Yolken. 1994. Feeding of *Bifidobacterium bifidum* and *Streptococcus thermophilus* to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 344:1046–1049. - SAS Institute, Inc. 1989. SAS/STAT user's guide, version 6. SAS Institute, Inc., Cary, N.C. - Satonaka, K., K. Ohashi, T. Nohmi, T. Yamamoto, S. Abe, K. Uchida, and H. Yamaguchi. 1996. Prophylactic effect of *Enterococcus faecalis* FK-23 preparation on experimental candidiasis in mice. Microbiol. Immunol. 40:217–222. - Snedecor, G. W., and W. G. Cochran. 1980. Statistical methods, 7th ed., p. 149–160. Iowa State University Press, Ames. - 34. Wagner, R. D., A. Vazquez-Torres, J. Jones-Carson, T. Warner, and E. Balish. 1996. B cell knockout mice are resistant to mucosal and systemic candidiasis of endogenous origin but susceptible to experimental systemic candidiasis. J. Infect. Dis. 174:589–597. - Wagner, R. D., T. Warner, L. Roberts, J. Farmer, and E. Balish. 1997. Colonization of congenitally immunodeficient mice with probiotic bacteria. Infect. Immun. 65:3345–3351. - Yasui, H., J. Kiyoshima, and H. Ushijima. 1995. Passive protection against rotavirus-induced diarrhea of mouse pups born to and nursed by dams fed *Bifidobacterium breve* YIT4064. J. Infect. Dis. 172:403–409. Editor: T. R. Kozel