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Abstract
Objectives—To take the common “Baye-
sian” interpretation of conventional confi-
dence intervals to its logical conclusion,
and hence to derive a simple, intuitive way
to interpret the results of public health
and clinical studies.
Design and setting—The theoretical basis
and practicalities of the approach advo-
cated is at first explained and then its use
is illustrated by referring to the interpre-
tation of a real historical cohort study.
The study considered compared survival
on haemodialysis (HD) with that on
continuous ambulatory peritoneal dialysis
(CAPD) in 389 patients dialysed for end
stage renal disease in Leicestershire be-
tween 1974 and 1985. Careful interpreta-
tion of the study was essential. This was
because although it had relatively low sta-
tistical power, it represented all of the data
that were available at the time and it had
to inform a critical clinical policy deci-
sion: whether or not to continue putting
the majority of new patients onto CAPD.
Measurements and analysis—Con-
ventional confidence intervals are often
interpreted using subjective probability.
For example, 95% confidence intervals are
commonly understood to represent a
range of values within which one may be
95% certain that the true value of what-
ever one is estimating really lies. Such an
interpretation is fundamentally incorrect
within the framework of conventional,
frequency-based, statistics. However, it is
valid as a statement of Bayesian posterior
probability, provided that the prior distri-
bution that represents pre-existing beliefs
is uniform, which means flat, on the scale
of the main outcome variable. This means
that there is a limited equivalence between
conventional and Bayesian statistics,
which can be used to draw simple Baye-
sian style statistical inferences from a
standard analysis. The advantage of such
an approach is that it permits intuitive
inferential statements to be made that
cannot be made within a conventional
framework and this can help to ensure
that logical decisions are taken on the
basis of study results. In the particular
practical example described, this ap-
proach is applied in the context of an
analysis based upon proportional hazards
(Cox) regression.
Main results and conclusions—The ap-
proach proposed expresses conclusions in
a manner that is believed to be a helpful

adjunct to more conventional inferential
statements. It is of greatest value in those
situations in which statistical significance
may bear little relation to clinical signifi-
cance and a conventional analysis using p
values is liable to be misleading. Perhaps
most importantly, this includes circum-
stances in which an important public
health or clinical decision must be based
upon a study that has unavoidably low sta-
tistical power. However, it is also useful in
situations in which a decision must be
based upon a large study that indicates
that an eVect that is highly statistically
significant seems too small to be of practi-
cal relevance. In the illustrative example
described, the approach helped in making
a decision regarding the use of CAPD in
Leicestershire during the latter half of the
1980s.
(J Epidemiol Community Health 1998;52:318–323)

Doctors are used to thinking in terms of prob-
abilities based upon diagnostic tests; for exam-
ple, the probability that someone has diabetes
given that they have impaired glucose toler-
ance. It therefore seems quite natural to regard
the statistical significance test as a form of
diagnostic test and to try to use it to resolve
research questions such as: “in workers ex-
posed to asbestos, what is the probability that a
diet rich in vitamin A reduces the risk of devel-
oping mesothelioma?” Unfortunately, ques-
tions such as this cannot properly be answered
using significance tests within the framework of
conventional statistics. As an alternative we
advocate a simple Bayesian approach,1 which
can be implemented without specialist software
and provides direct and understandable an-
swers to questions of this type. A Bayesian
approach to analysis can be invaluable when
interpreting studies that must drive important
decisions in clinical or public health
medicine.1 2

Medical statistics is founded upon the
“frequency based” view of probability,3 that is,
the long run frequency of an event in a series of
identical experiments. Statistical inferences are
based upon p values and confidence intervals.3

Unfortunately, p values are non-intuitive.1 At
first sight they appear to measure the probabil-
ity that the null hypothesis is true (that is, the
hypothesis that outcome is unaVected by an
exposure variable of interest) and p values are
commonly misinterpreted in this manner.
However, the probability that an hypothesis is
true or false is not the long run probability of
an event and cannot even be expressed in the
framework of frequency-based probability. In
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any particular case, the hypothesis is either true
or false and no frequency-based probability
can, or should, be attached to it.3

Conventional statistical theory circumvents
this diYculty by inverting the problem. Having
considered every possible result that a study
could potentially generate, a p value measures
“the probability of observing data as extreme
as, or more extreme than, the data actually
observed assuming that the null hypothesis is
true’.3 This is a statement of frequency-based
probability, but the cost of remaining faithful to
frequency-based probability is that the p value
is often misunderstood. Significance at the 5%
level is commonly interpreted to mean that
“there is an eVect (the null hypothesis is false)”
while p>0.05 is taken to mean that “there is no
eVect (the null hypothesis is true)”. These
interpretations suggest that p values provide
some direct quantification of the plausibility of
the null hypothesis. However, a proper assess-
ment of the plausibility of the null hypothesis
requires the simultaneous consideration of the
relative plausibility of other competing hypoth-
eses. It cannot reasonably be based upon a sin-
gle p value calculated assuming that the null
hypothesis is true.

Degrees of belief and Bayesian statistics
The notion of probability can usefully be
extended beyond its simple frequency-based
interpretation. This leads to the concept of
subjective probability, wherein probability is
interpreted as representing a “degree of belief”
about an unknown quantity or specified
hypothesis.4 Sometimes such a statement will
have no long run frequency interpretation. For
example, you might hear that a political party
has a “70% chance of winning the next
election”. Clearly the election will not be
repeatedly contested under identical condi-
tions and a relative frequency interpretation of
the probability does not exist. Nevertheless, it
is still possible to place a sensible and objective
interpretation on such probabilities, for exam-
ple, by thinking of them in terms of betting
odds.5 6

Suppose you wish to conduct an observa-
tional or experimental study to learn about an
unknown quantity or to gain evidence to
support or refute a hypothesis. The Bayesian
theory of statistical inference asks the re-
searcher to incorporate pre-existing evidence
and beliefs into what is called a prior distribu-
tion, which is simply a quantification of the
current state of understanding about the
unknown quantity. Values of the quantity that
are viewed as having a high probability of being
true are given a high prior probability while
those that are viewed as being less likely are
given a correspondingly lower prior probability.
The choice of an appropriate prior distribution
may entail the inspection of historical data,
consultation with experts in the field or the
development of theoretical models. Some stat-
isticians have given considerable thought to
formalising this process.7–9

Once the data collection for the study has
been completed, the prior distribution is com-
bined with the new information to produce a

posterior distribution using a mathematical
routine derived from Bayes’ Theorem.2 4 10

Conclusions are then based upon the posterior
distribution. For example, the posterior prob-
ability that the true value of the quantity of
interest lies between two values X and Y is
equal to that proportion of the total area under
the posterior distribution curve that falls
between these two values. If the total area
under the curve is normalised (scaled to equal
one) the distribution is referred to as a density.
The required posterior probability is then
equal to the area under the density curve
between X and Y. As an illustration, figure 1
details the posterior density for the odds ratio
derived from a hypothetical case control study
examining the association between childhood
asthma and maternal smoking. The horizontal
axis is on a logarithmic scale reflecting the fact
that the fundamental scale of analysis is the
scale of log (odds). The area under the density
curve that falls between 1.25 and 1.5 (light
shading) is 0.104, which means that, given
whatever assumptions were made in choosing
the prior distribution and given the observed
data, there is a posterior probability of 10.4%
that the true odds ratio lies somewhere
between 1.25 and 1.5. Alternatively, the poste-
rior probability that the true odds ratio is
greater than or equal to 2.5 (dark shading) is
21.0%.
Bayesian inference supports direct state-

ments about the probability of an hypothesis of
interest or the magnitude of an unknown
quantity and thus provides explicit answers to
the types of question that are often asked in
medical research. For example, the posterior
probability that the hypothesis that “maternal
smoking is associated with an increased risk of
childhood asthma” is true would be equal to
the area under the curve that falls above an
odds ratio of 1.0. In the hypothetical example
this would be 99.4%.

Objective Bayesian analysis and the
uniform prior
The commentary above may reasonably be
criticised for having glossed over the difficulties
of choosing an appropriate prior distribution.
Indeed, a common criticism of the Bayesian
approach is that there are many realistic situa-
tions in which little or no pre-existing informa-
tion is available and in choosing a prior distri-
bution you are apparently trying to quantify

Figure 1 A Bayesian posterior distribution.

0.4

0.3

0.2

0.1

0.0
5.0

Odds ratio

P
o

st
er

io
r 

d
en

si
ty

0.5 4.00.75 1.0 1.251.5 2.0 2.5 3.0

Clinical significance not statistical significance 319

http://jech.bmj.com


something that does not really exist. Alterna-
tively, you may in some sense wish to let the
data “speak for themselves”. In such a
situation, some statisticians have proposed an
objective Bayesian theory of statistical infer-
ence that uses “vague”, “flat” or “non-
informative” prior distributions, which allows
you to examine what the current data have to
say about the hypothesis or quantity of interest
without specific reference to prior beliefs.10 11

Such “non-informative” prior distributions
often assign equal weight to all competing
hypotheses and consider all possible values of
unknown quantities to be “equally likely”
before the new research is conducted. Such a
prior may be referred to as being “uniform”10

on the scale of the main outcome variable. It is
sometimes claimed that the uniform prior dis-
tribution provides a formal mathematical
representation of a lack of prior information
but this is untrue.5 6 In part this reflects the fact
that uniformity is sensitive to transformation.
For example, a prior distribution that is
uniform on the scale of loge (odds) cannot
simultaneously be uniform on the scale of pro-
portions; an issue we will return to in the Dis-
cussion section. Nevertheless, it is true to say
that the uniform prior focuses attention on
current rather than pre-existing data9 and that
it is a good “bench-mark”, which allows
comparisons, from a “neutral” starting point,
between data generated from diVerent experi-
ments or observational studies.

Estimating posterior probability using
conventional confidence intervals
To remain faithful to the frequency based defi-
nition of probability, conventional 95% confi-
dence intervals are properly defined in terms of
hypothetical repetitions of a study and analysis:
“if new studies were repeatedly carried out with
the same analysis and a series of 95%
confidence intervals calculated, 19 out of 20
such intervals would (in the long run) include
the true value of the quantity being estimated’.3

However, most researchers interpret 95% con-
fidence intervals rather diVerently. For exam-
ple, if the 95% confidence intervals for an odds
ratio extend from 1.6 to 6.4, many researchers
would interpret this as indicating that there is a
probability of 95% that the true odds ratio lies
somewhere between 1.6 and 6.4.1 11 Formally,
this interpretation is incorrect,3 because under
the frequency-based view of probability the
true odds ratio either does lie in this range or
alternatively it does not; it has no long run
interpretation. However, if an objective Baye-
sian analysis is carried out using a uniform
prior distribution for the main outcome meas-
ure, conventional C% confidence intervals
enclose a range of values that also encompass
C% of the area under the posterior
distribution.10 The 95% confidence intervals
for an odds ratio that runs from 1.6 to 6.4 are
therefore equivalent to a posterior probability
of 95% that the true odds ratio lies between 1.6
and 6.4, which is analogous to the common
interpretation of the confidence intervals stated
above. Although this should formally be
referred to as a Bayesian 95% credible

interval12 (a range of values encompassing 95%
of the posterior probability) this interpretation
of 95% confidence intervals is acceptable pro-
vided that you recognise that it is based upon
subjective probability, not frequency probabil-
ity, and that any prior information is viewed as
being “vague”.
It is the congruence between conventional

confidence intervals and Bayesian posterior
probability—when the prior distribution is
uniform—which forms the basis of a simple
approach to statistical inference that we have
recently advocated.1 This article illustrates the
proposed approach with an example, which we
hope makes it easy to understand and straight-
forward for public health and clinical research-
ers to implement.

A practical example: comparing
mortality on continuous ambulatory
peritoneal dialysis and haemodialysis
In 1976, continuous ambulatory peritoneal
dialysis (CAPD) was introduced as a new
treatment for end stage renal failure.13 It revo-
lutionised the provision of renal replacement
therapy, particularly in the United Kingdom
where haemodialysis (HD) facilities had his-
torically been very limited. In Leicestershire
the acceptance rate for new patients more than
doubled between 1976 and 1985.14 However,
by the mid 1980s evidence had accumulated
that suggested that the risk of death on CAPD
might be greater than that on HD.14–16 In
consequence, the Director of Renal Services in
Leicestershire became concerned that the
policy of putting most new patients onto
CAPD might be unwise. A multi-centre
prospective cohort study had been set up in the
United Kingdom,17 but it was not due to
produce definitive results for several years. It
was therefore decided that a historical cohort
study should be undertaken in Leicestershire
itself, to determine whether a rational short-
term policy decision could be taken regarding
the use of CAPD while waiting for the larger
study to report.
A retrospective case notes review was

undertaken of patients who received renal

KEY POINTS

+ Decision making in public health and
clinical medicine is sometimes seriously
impaired by the misinterpretation of p
values and confidence intervals.

+ Bayesian-based inferences are more in-
tuitive and can lead to more appropriate
decisions.

+ Given a uniform prior distribution con-
ventional C% confidence intervals cover
C% of the Bayesian posterior distribu-
tion.

+ This equivalence leads to a simple way to
generate useful Bayesian inferences from
a conventional analysis using standard
software.

+ This approach to inference can be very
helpful for decision makers in public
health and clinical medicine.
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replacement therapy in Leicester between June
1974 and July 1985. Information was collected
pertaining to the date of commencement of
treatment, the dates of any transfers between
therapies, and, where relevant, the date of
death. A detailed record was also made of
potential confounding factors present at the
start of treatment. Twenty two deaths were
observed in 177.8 patient years on CAPD and
60 deaths in 822.7 patient years on HD. Given
the need to model irregular treatment changes
and to adjust for confounding variables,
survival analysis was undertaken using Cox’s
proportional hazards regression.18 19

Having adjusted for relevant confounders,
the estimated relative risk of death (CAP-
D:HD) was 0.77 (95% confidence intervals
0.44 to 1.35); that is, the adjusted risk of death
on CAPD was lower than that on HD.14 20 In a
standard test against the null hypothesis (H0:
relative risk = 1.0) the two tailed p value was
0.36. It was initially concluded that because the
relevant p value was non-significant, the null
hypothesis should be accepted and the infer-
ence drawn that the risk of death on CAPDwas
the same as that on HD. However, this conclu-
sion was not justified; the significance level of a
test against the null hypothesis should never be
used to conclude that the null hypothesis is
true.3 The null hypothesis was merely one of a
range of diVerent hypotheses that were all con-
sistent with the data; 95% confidence intervals
indicate that the risk of death on CAPD may
have been higher, lower or the same as that on
HD. This problem arose because, although the
study used all of the available data, there were
only 82 deaths in total and the analysis lacked
power. It might therefore have been tempting
to infer that the study was too small to draw a
meaningful conclusion. However, this would
have failed to use the available data to their
maximum potential and future patients may
then have received less than ideal treatment. As
an alternative, a simple Bayesian analysis
invoking a uniform prior distribution was
performed.14 20

The main outcome of the Cox model is the
loge (relative risk (RR)). Conventional confi-
dence intervals on this scale are symmetrical
about the estimated loge (RR) and we will use a
prior distribution that is uniform on this scale.
The estimated loge (RR) is −0.261 and its
standard error is 0.286. Consider the confi-
dence intervals with an upper limit at loge
(RR)=0.0. By symmetry around the estimate
(−0.261), the corresponding lower limit is
−0.522. The relevant confidence intervals
therefore extend 0.261/0.286 = 0.913 standard
errors on either side of the estimate. Reference
to a table of normal values shows that Z=0.913
equates to about a 64% confidence interval.
Given the congruence between Bayesian and
conventional analyses when the prior distribu-
tion is uniform, the posterior probability that
the true loge (RR) is less then zero (RR<1.0) is
therefore equal to the probability that it falls
within the confidence intervals (64%) plus the
probability that it falls below the confidence
interval (18% = (100%−64%)/2). The poste-
rior probability that the true mortality on

CAPD is lower than that on HD is therefore
82%. Equivalently there is an 18% posterior
probability that the risk of death on CAPD is
higher than that on HD. This is equal to the
one tailed p value,11 21 which is half the two
tailed p value of 0.36.
In addition, the Bayesian approach allows

you to go beyond what is feasible in a conven-
tional analysis. As an example, you may choose
to estimate the probability that the mortality on
CAPD is higher than that on HD to an extent
that might seriously impair its clinical value; for
example, the probability that the relative risk
(CAPD:HD) is greater than 1.25. On the scale
of loge (RR) the upper limit of the relevant
confidence intervals is now loge (1.25) = 0.223.
By symmetry the corresponding lower limit is
−0.745 (RR=0.48). This equates to 1.69
standard errors on either side of the estimate
and a 91% confidence interval. Assuming a
uniform prior, the posterior probability that the
relative risk is less than 1.25 is therefore 91% +
4.5% = 95.5% and there is only a 4.5% poste-
rior probability that it is greater than 1.25.
These results were interpreted as indicating

that the probability that the risk of CAPD was
greater than that on HD to an extent that
would seriously impair its clinical usefulness
was small. It was therefore concluded that it
was both safe and appropriate to continue
treating most new patients in Leicestershire
with CAPD. This conclusion was later sup-
ported by the results of the multi-centre
prospective cohort study.17 Thus, despite the
limited size and low power of the study, a sim-
ple Bayesian analysis invoking a uniform prior
permitted a rational evidence-based treatment
policy to be determined for renal replacement
therapy in Leicestershire for the mid 1980s.

Discussion
The theoretical basis of the approach we
propose is not new.10 The Bayesian interpreta-
tion of conventional confidence intervals is
explicitly22–28 or implicitly29–32 outlined in a
number of well known medical statistics texts.
As far back as 1961, Birnbaum,33 writing in a
statistics journal, considered the use of curves
through a range of paired confidence limits (at
diVerent levels of confidence) as an “omnibus
technique for estimation and testing statistical
hypotheses”. More recently, Pocock and
Hughes have argued34 that, in certain circum-
stance, 70% confidence intervals that stretch
just over one standard error from the sample
mean may usefully be used to complement
conventional 95% confidence intervals because
it may provide “valuable supplementary infor-
mation on the uncertainty about the point esti-
mate”. Furthermore, in recommending a
related approach for interpreting clinical trials,
Hughes11 notes that “(its) use is unlikely to be
controversial amongst statisticians whilst being
intuitively appealing to clinicians”. Neverthe-
less, despite its extensive theoretical underpin-
ning, the approach we describe seems un-
known to most researchers in public health and
clinical science and it is not properly described
in any publication that is easily accessible to
scientists without statistical training.
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In a thought provoking article in the British
Medical Journal, Lilford et al advocated the
increased use of Bayesian methods emphasis-
ing that they may be used “to calculate
probabilities that may be extrapolated directly
to clinical practice”.35 In a later article, Lilford
and Braunholtz highlighted the potential value
of Bayesian inference in the decision making
process in public policy.2 Likewise, in an earlier
paper in Statistical Science,36 Breslow stated that
Bayesian methods “oVer a natural setting for
synthesis of expert opinion in deciding policy
matters” and “it seems clear that Bayesian and
frequentist approaches each will have a role to
play in biostatistical applications in years to
come”. We fully endorse all of these views.
However, we believe that the introduction of
Bayesian methods continues to be hindered by
the historical diYculties of conducting such
analyses. Despite the interest generated by Lil-
ford and Braunholtz’s article,2 it was never
intended as a “how to do it” guide and,
although appetites may have been whetted,
very few readers would know where to start
should they wish to conduct an analysis of their
own. However, all this may soon change. With
the arrival of general purpose Bayesian soft-
ware such as BUGS37 (Bayesian inference
Using Gibbs Sampling) and First Bayes,38 it is
probable that Bayesian analyses will soon
become common place. The time is therefore
ripe to start exploring Bayesian methods. The
approach we advocate represents one of the
simplest types of Bayesian analysis and enjoys
the particular advantage that it can be based
upon the results of a conventional analysis and
can therefore be undertaken using standard
software. We believe that the approach is not
only of value in its own right, but that many will
find it to be a useful stepping stone to the use of
more sophisticated Bayesian methods in the
future.
Our approach is most useful in situations in

which a conventional analysis may be diYcult
or misleading. These include circumstances in
which: (a) a statistically non-significant result is
large enough to be clinically relevant (small
sample size); (b) a statistically significant result
is too small to be of clinical relevance (very
large sample size); or (c) it is desired that con-
clusions are drawn about the probable similar-
ity of two outcomes without concluding that
non-significant means that there is no diVer-
ence. Although the approach should not be
used as an excuse for designing studies that are
too small we believe that it is a useful adjunct to
conventional methods in medical statistics.
The approach is explicitly dependent upon

the use of a uniform prior distribution (techni-
cally a prior that is jointly uniform for all quan-
tities being estimated). Some Bayesians argue
that it is invalidated by the fact that no attempt
is made to formally quantify pre-existing infor-
mation in a subjective prior distribution. We
acknowledge that neither the proposed ap-
proach nor a traditional analysis takes proper
account of prior information; indeed this is
sometimes claimed to be a strength of conven-
tional statistics. If there is important pre-
existing information that needs to be taken into

account, it must be incorporated formally in
the analysis (some form of meta-analysis) or
informally in the qualitative process of drawing
conclusions. In this sense our approach is no
diVerent to a conventional analysis. Further-
more, Lindley10 argues that it may be appropri-
ate to use the uniform prior distribution even
when there is pre-existing information because:
“even when one has some appreciable prior
knowledge of theta (a quantity to be estimated)
one may like to express the posterior beliefs
about theta without reference to them (the
prior knowledge)”. Spiegelhalter37 comments:
“The appropriate specification of ‘non-
informative’ priors is an old problem in
Bayesian statistics, and is particularly impor-
tant when techniques are to be used in a scien-
tific context in which an ‘objective’ inference is
required”.
An important diYculty is that a prior distri-

bution that is uniform on one scale cannot be
uniform on an alternative scale. If two scales of
analysis are equally appropriate, and the use of
a prior that is uniform on one scale leads to a
qualitatively diVerent conclusion to an analysis
based upon a prior that is uniform on another,
these conclusions must be viewed as uncertain.
Fortunately, like others,11 we have found that
unless the sample size is very small, alterations
of scale generally make small quantitative
changes to the estimates of interest rather than
large qualitative diVerences to the principal
conclusions. If a researcher feels strongly that
all reasonable values of a quantity of interest
are not equally likely a priori, for example if he
or she has reason to believe that the null
hypothesis is particularly likely to be true, then
it would be misleading to use the approach we
describe. However, it would then be equally
misleading to interpret confidence intervals in
the Bayesian manner, which is so commonly
advocated and used (see above). Logically, in
any setting in which it is reasonable to interpret
95% confidence intervals as the range of values
within which you are 95% certain that the true
value of whatever you are estimating really lies,
then it is equally reasonable to use the methods
we advocate. The sensitivity of conclusions to a
particular choice of prior distribution will, in
general, diminish as the sample size of the cur-
rent data set increases. Nevertheless, inferences
may be sensitive to the choice of prior in very
small data sets and under such circumstances a
sensitivity analysis using a range of priors
would be desirable.
Many medical researchers already interpret

conventional confidence intervals as if they
were Bayesian credible intervals.1 11 What we
are proposing does not therefore entail a
radical change in the way researchers naturally
think about their data. Nevertheless, it might
help to encourage a wider recognition that
this common interpretation of confidence
intervals is only valid if you work within a
Bayesian framework using a uniform prior dis-
tribution. Given that it is valid in this
framework and given that such an approach is
potentially so informative, we would argue that
it may sometimes be useful to take it to its
logical conclusion by constructing and then
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interpreting the full posterior distribution gen-
erated from a Bayesian analysis using a uniform
prior. The inferences generated in this way are
more informative and more easily understood
than conventional p values and confidence
intervals and they provide direct answers to
many of the important types of question that
are commonly asked by researchers in clinical
and public health medicine.
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