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PTEN mutations are uncommon in Proteus
syndrome

K Barker, A Martinez, R Wang, S Bevan, V Murday, J Shipley, R Houlston, J Harper

EDITOR—Proteus syndrome (MIM 176920) is
a rare, congenital, hamartomatous disorder,
which is a member of a group of local
overgrowth diseases. Happle1 proposed that
some of these disorders are the result of the
action of a lethal gene that can only survive in
the mosaic state, which arises from an early
somatic mutation or from a half chromatid
mutation. Such a mechanism has been shown
to be the underlying basis of McCune-Albright
syndrome (MIM 174800).2 One of the manda-
tory diagnostic criteria for Proteus syndrome is
a mosaic distribution of lesions and sporadic
occurrence, entirely consistent with Happle’s
hypothesis.

Currently, little is known about the molecu-
lar causes of Proteus syndrome. It is, however,
likely that the overgrowth of tissue involves all
germ layers. This may be because of hyperpro-
liferation, an absence of appropriate apoptosis,
or alternatively cellular hypertrophy. There
have been few investigations into the molecular
basis of Proteus syndrome. Zhou et al3 recently
identified PTEN mutations in a patient with a
Proteus-like syndrome. Germline PTEN muta-
tions are found in a high proportion of patients
with Cowden (MIM 158350) and Bannayan-
Riley-Ruvalcaba (BRR) syndromes (MIM
153480),4–7 which share many features of
Proteus syndrome. These observations make
PTEN a strong candidate for a gene mutated in
Proteus syndrome. To investigate this possi-
bility, we examined eight patients with Proteus
syndrome for PTEN mutations. All were unre-
lated and had classical Proteus syndrome using
published diagnostic criteria.8 Samples were
obtained with informed consent and local ethi-
cal review board approval. Fibroblasts were
cultured from skin biopsies obtained from nor-
mal tissue and from regions of overgrowth.
Genomic DNA was extracted from cultured
cells using a standard sucrose lysis technique.
PTEN mutational analysis was performed by
PCR based conformational specific gel electro-
phoresis using published oligonucleotides9 and
semi-automated sequencing using an ABI 377
Prism sequencer. A common exon 4 polymor-
phism was observed in three of the patients, but
no missense or truncating mutations in any of
the eight samples were detected, suggesting

that mutation in PTEN is unlikely to be a com-
mon cause of Proteus syndrome.

We evaluated PTEN as a candidate gene
because of its role in the overgrowth syndrome
Cowden disease and the recent report of a
PTEN mutation in a boy with Proteus-like syn-
drome.3 PTEN plays a role in the regulation of
PI3 kinase signalling, which is involved in the
control of apoptosis and cell cycle progres-
sion.10 Hence, by removing the regulatory
eVects of PTEN on PI3 kinase signalling,
deregulated cellular growth could occur.
PTEN also appears to play a role in the regula-
tion of cell size and a role for the PI3 kinase
signalling pathway in the determination of
organ size in mammals has been reported.11

The boy reported by Zhou et al3 with Proteus-
like syndrome had a germline single base
transversion resulting in an Arg 335 to Ter
substitution in PTEN. A second PTEN muta-
tion resulting in Arg 130 to Ter was found in
DNA from a naevus, lipoma, and an arterio-
venous mass. The authors postulated that the
first germline mutation gave rise to many of the
features of BRR and that the second hit
occurred early in embryogenesis causing mo-
saicism. In our study we did not detect PTEN
mutations in any of the Proteus syndrome
patients we examined. Zhou et al3 similarly
failed to detect any PTEN mutations in five
patients with classical Proteus syndrome; their
patient with PTEN mutations did not fulfil the
stringent diagnostic criteria for Proteus syn-
drome.

Mutations in the coding region of PTEN do
not appear to be implicated in classical Proteus
syndrome. PTEN may still be involved, as our
finding does not preclude the possibility that it
may be aberrantly imprinted in Proteus
syndrome, for example by promoter methyla-
tion,12 leading to reduced PTEN expression.
Given the innumerable possibilities for a
molecular basis of Proteus syndrome, the iden-
tification of which genes are disrupted will
prove diYcult. One strategy for dissecting the
molecular pathways of Proteus and other over-
growth syndromes is through examining the
expression patterns of genes in aVected and
unaVected tissues, which is becoming feasible
with the advent of microarray technology.13
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Limited contribution of interchromosomal gene
conversion to NF1 gene mutation

M Luijten, R Fahsold, C Mischung, A Westerveld, P Nürnberg, T J M Hulsebos

EDITOR—Neurofibromatosis type 1 (NF1) is
one of the most common autosomal dominant
disorders with a population frequency of 1 in
3500.1 The disease is clinically characterised by
multiple neurofibromas, café au lait spots and
Lisch nodules of the iris. The NF1 gene, a
tumour suppressor gene, resides on the proxi-
mal long arm of chromosome 17 (17q11.2). It
spans approximately 350 kb of genomic DNA
and, comprising 60 exons, encodes the protein
neurofibromin.2 This protein, consisting of
2818 amino acids, contains a central domain
that has homology with GTPase activating
proteins (GAPs).3

A distinct feature of the NF1 gene is the very
high spontaneous mutation rate (1 × 10-4 per
gamete per generation), which is about 100-
fold higher than the usual mutation rate for a
single locus.1 Up to 50% of all NF1 cases are
thought to result from de novo mutations. The
NF1 gene provides a large target for mutations
because of its relatively large size, but this may
only account for a factor of 10 in terms of
increase in mutation rate.4 The presence of
numerous NF1 pseudogenes has been pro-
posed as an explanation for the high mutation
rate in NF1.5 In the human genome, at least 12
diVerent NF1 related sequences have been
identified on chromosomes 2, 12, 14, 15, 18,
21, and 22.5–13 Most of the NF1 pseudogenes
have been mapped in pericentromeric regions.
The chromosome 2 NF1 pseudogene has been
localised to region 2q21, which is known to
contain the remnant of an ancestral centro-
mere.14 Owing to the absence of selective pres-
sure, mutations may accumulate in the NF1
pseudogenes. Consequently, the pseudogenes

could act as reservoirs of mutations, which
might be crossed into the functional NF1 gene
by interchromosomal gene conversion.5 Gene
conversion, the non-reciprocal transfer of
genetic information between two related se-
quences, has been recognised as a mutational
mechanism for several human genes.15–17 In all
these cases, the conversions occurred between
gene and pseudogene on the same chromo-
some. For NF1, interchromosomal gene con-
version is required as none of the NF1 pseudo-
genes is located on chromosome 17.
Interchromosomal gene conversion has been
reported to occur between the von Willebrand
factor gene on chromosome 12 and the von
Willebrand pseudogene on chromosome 22.18

Gene conversion requires close contact
between the functional gene and the corre-
sponding pseudogene. The pericentromeric
location of the functional NF1 gene and its
pseudogenes may enable this close contact
since centromeres tend to associate with each
other in a non-random fashion.19 20 This is
underlined by our finding that the NF1
pseudogenes on chromosomes 2, 14, and 22
have arisen by repeated transposition events
between (peri)centromeric locations on these
chromosomes (Luijten et al, submitted).13

However, the high mutation rate in NF1
cannot be explained exclusively by interchro-
mosomal gene conversion. Only a small part of
the functional NF1 gene is represented in the
NF1 pseudogenes (see below), while NF1 gene
mutations are scattered over the entire gene. In
this study, we investigated whether interchro-
mosomal gene conversion contributes to the
mutation rate in NF1.
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