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Wild type huntingtin reduces the cellular toxicity
of mutant huntingtin in mammalian cell models of
Huntington’s disease
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Abstract
Objectives—Recent data suggest that wild
type huntingtin can protect against apop-
tosis in the testis of mice expressing full
length huntingtin transgenes with ex-
panded CAG repeats. It is not clear if this
protective eVect was confined to particu-
lar cell types, or if wild type huntingtin
exerted its protective eVect in this model
by simply reducing the formation of toxic
proteolytic fragments from mutant hunt-
ingtin.
Methods—We cotransfected neuronal
(SK-N-SH, human neuroblastoma) and
non-neuronal (COS-7, monkey kidney)
cell lines with HD exon 1 (containing
either 21 or 72 CAG repeats) construct
DNA and either full length wild type hunt-
ingtin or pFLAG (control vector).
Results—Full length wild type huntingtin
significantly reduced cell death resulting
from the mutant HD exon 1 fragments
containing 72 CAG repeats in both cell
lines. Wild type huntingtin did not signifi-
cantly modulate cell death caused by
transfection of HD exon 1 fragments con-
taining 21 CAG repeats in either cell line.
Conclusions—Our results suggest that
wild type huntingtin can significantly
reduce the cellular toxicity of mutant HD
exon 1 fragments in both neuronal and
non-neuronal cell lines. This suggests that
wild type huntingtin can be protective in
diVerent cell types and that it can act
against the toxicity caused by a mutant
huntingtin fragment as well as against a
full length transgene.
(J Med Genet 2001;38:450–452)
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Huntington’s disease (HD) is an autosomal
dominant neurodegenerative condition associ-
ated with abnormal movements, cognitive
deterioration, and psychiatric symptoms. The
causative mutation is a (CAG)n trinucleotide
repeat expansion of more than 35 repeats,

which is translated into an abnormally long
polyglutamine tract in the huntingtin pro-
tein.1 2

HD is a member of a family of neurodegen-
erative diseases caused by CAG/polyglutamine
expansions, which include spinobulbar muscu-
lar atrophy (SBMA), spinocerebellar ataxias
(SCA) types 1, 2, 3, 6, and 7, and
dentatorubral-pallidoluysian atrophy. All dis-
eases are dominantly inherited (except for
SBMA, which is X linked). In all cases, age at
onset correlates inversely with repeat number.2

The polyglutamine expansion mutation causes
disease by conferring a novel deleterious func-
tion on the mutant protein and the severity
correlates with increasing CAG repeat number
and expression levels in transgenic mice and in
cell culture models.3 4

While each of these diseases is associated
with specific regions of neurodegeneration
(which in some cases overlap), they are
probably caused by similar pathological proc-
esses. A hallmark of many of these diseases,
including HD, spinobulbar muscular atrophy
(SBMA), dentatorubral-pallidoluysian atrophy
(DRPLA), and spinocerebellar ataxias (SCA)
types 1, 2, 3, 6, and 7, is the development of
intracellular protein aggregates (inclusions) in
the vulnerable neurones. However, the patho-
genic role of these aggregates is the subject of
vigorous debate.5

The function of wild type huntingtin is
unclear. However, Rigamonti et al6 recently
showed that wild type huntingtin can protect
CNS cells from a variety of apoptotic stimuli,
including serum withdrawal, stimulation of
death receptors, and pro-apoptotic Bcl-2
homologues. We were interested to test if wild
type huntingtin protected against the toxicity of
polyglutamine expansion mutations. While the
experiments in the current paper were in
progress, Leavitt et al7 provided in vivo
evidence suggesting that wild type huntingtin
can protect against the gain of function
mutation caused by the expanded poly-
glutamine tract in mutant huntingtin, using a
YAC transgenic mouse model. This study spe-
cifically studied apoptosis in the testis, an organ
with very high huntingtin expression.8 It is rel-
evant to test if these protective eVects are seen
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in other cell types, as the testis may require high
levels of huntingtin to protect against apoptotic
insults.9 In addition, Leavitt et al7 showed that
wild type huntingtin was protective against full
length mutant huntingtin. Full length mutant
huntingtin is likely to be cleaved to form a toxic
fragment that ultimately mediates the eVects of
this mutation.10 Thus, wild type huntingtin
may be protecting by reducing the cleavage of
mutant full length huntingtin, as opposed to
attenuating the apoptosis caused by the toxic
fragment.

Methods
We have tested the protective eVects of full
length huntingtin against the toxicity of poly-
glutamine expansions in neuronal (SK-N-SH,
human neuroblastoma) and non-neuronal
(COS-7, monkey kidney) cell lines. We studied
the eVects of wild type huntingtin on cells
expressing exon 1 huntingtin fragments with
varying CAG repeat lengths tagged at the
N-terminus with enhanced green fluorescent
protein EGFP.11 These fragments do not
appear to undergo cleavage events, resulting in
the formation of stable products (unpublished
data). We cotransfected cells with a 1:6 mass
ratio of HD exon 1 (containing either 21 or 72
CAG repeats) construct DNA and either full
length wild type huntingtin or pFLAG (control
vector), to ensure that all cells expressing HD
exon 1 constructs also expressed the appropri-
ate pFLAG/full length wild type huntingtin
constructs. We used a total of 2.1 µg (1.8 µg +
0.3 µg per well) of DNA per 3.5 cm dish. Cells
were fixed 48 hours post-transfection as
described previously.11 The full length wild
type huntingtin construct (15 repeats) was
kindly provided by Dr Michael Hayden.10

Immunocytochemical analyses, using a mouse
anti-huntingtin antibody to residues 181-810
(Chemicon), showed that cells transfected with
this construct, under the experimental condi-
tions described above, had significantly higher
expression than untransfected cells (data not
shown). The huntingtin exon 1 fragments
expressed in pEGFP-C1 have been described
previously.11 We analysed between 200 and 300
EGFP expressing cells per slide (blinded) in

multiple, randomly chosen visual fields, to
ascertain the proportions of cells forming one
or more inclusions and cells with nuclear frag-
mentation, as an index of cell death.11 Pooled
estimates for the changes in inclusion forma-
tion and cell death resulting from perturbations
assessed in two independent experiments (each
done in triplicate) were calculated as odds
ratios (OR) with 95% confidence intervals,
determined by unconditional logistic
regression analysis, using the general log linear
analysis option of SPSS10 software (SPSS,
Chicago).

Results
Full length wild type huntingtin significantly
reduced cell death resulting from the mutant
HD exon 1 fragments containing 72 CAG
repeats (GFP72) in SK-N-SH cells
(p<0.0001, OR=0.52, 95% CI 0.44-0.62) and
in COS-7 cells (p<0.0001, OR=0.45, 95% CI
0.48-0.67) (fig 1). Wild type huntingtin did
not significantly modulate cell death caused by
transfection of HD exon 1 fragments contain-
ing 21 CAG repeats in either cell line
(SK-N-SH cells: p>0.05, OR=0.9, 95% CI
0.74-1.10; COS-7 cells: p>0.05, OR=0.86,
95% CI 0.71-1.04). In COS-7 cells, inclusion
formation caused by the mutant HD exon 1
fragments was increased in the presence of
wild type full length huntingtin from a mean of
24% to 34% of GFP expressing cells
(p<0.0001, OR=1.62, 95% CI 1.37-1.93). In
SK-N-SH cells expressing mutant huntingtin
exon 1 fragments, overexpression of wild type
huntingtin had no significant eVect on inclu-
sion formation (10.2% with pFLAG v 9.6%
with full length huntingtin, p>0.05). These
data suggest that wild type huntingtin does not
reduce polyglutamine induced cell death by
reducing inclusion formation.

Discussion
In summary, our results suggest that wild type
huntingtin can significantly reduce the cellular
toxicity of mutant HD exon 1 fragments in
both neuronal and non-neuronal cell lines, and
complement the data presented by Leavitt et al7

in the testis. This suggests that wild type

Figure 1 Percentage of EGFP positive COS-7 cells (A) and SK-N-SH cells (B) with fragmented nuclei in cotransfection
experiments where full length wild type huntingtin (HD15) or empty vector (pFlag) were transfected with
EGFP-huntingtin exon 1 fragments with 21 (GFP21) or 72 CAG (GFP72) repeats. Means (and SEM) from two
experiments in triplicate are shown.
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huntingtin can be protective in diVerent cell
types and that it can act against the toxicity
caused by a mutant huntingtin fragment as well
as against a full length transgene.
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