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Genetic Structure of Switzerland

N. E. MORTON,1 D. KLEIN,2 I. E. HusSELS,3 P. DODINVAL,4 A. TODOROV,5
R. LEW,l AND S. YEE'

Four years have passed since the first study of isolation by distance in human
populations, using ABO blood groups in Switzerland [1]. Since then phenotype
bioassay has been improved [2], new data have been collected [3, 4], and new
methods have been developed to study population structure [5]. The time seems
ripe for a synthesis.
Our data consist of four sources: (1) Rosin's report on the ABO blood groups

of 275,664 Swiss army personnel and air raid wardens from 1940 through 1945,
grouped according to 3,101 communes of origin [6]; (2) genealogies of Saas, an
Alpine isolate [7]; (3) federal census data on each commune [8]; and (4) pedi-
grees of retinal degeneration, hemophilia, and myotonic dystrophy ascertained
through the Institut de Genetique Medicale, Geneva [9-11].

Switzerland was selected for this study because of the high quality of its records
and the belief that it is typical of developed populations with residual isolates.
Rosin's study is remarkable for its size and the partition of his sample into com-
munities. Saas seems representative of Alpine isolates, and its parish registers
published by Zurbriggen [12] provide a genealogy since the sixteenth century.
The three diseases were selected because they exemplify different modes of inheri-
tance with a high level of ascertainment for the whole country. Retinal degenera-
tion has an appreciable recessive component, unlike hemophilia and myotonic
dystrophy, which serve as a control. Undoubtedly other regions could provide as
extensive data on genetic structure of the population, but rarely in such accessible
detail.

THE ABO BLOOD GROUPS

Each Swiss has one or more communes of origin, where the vital statistics of
his family are kept. The commune of origin may coincide with his birthplace, but
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often it represents the birthplace of his father or paternal grandfather or more
remote male ancestor in the paternal line. It is possible although not common for
a foreigner, or even a Swiss, to acquire a commune of origin in which his family
has not been resident. Men ordinarily take their father's commune of origin, unless
they elect place of residence as a new commune of origin. In that case the previous
origin may be retained or abandoned. Individuals with two or more communes of
origin were assigned the principal or preferred affiliation in Rosin's study and the
most historic or isolated in ours.

Variation of gene frequencies among the more than 3,000 communes may be
described by a few parameters, which are provided by Malecot's theory of isolation
by distance. The expected value of kinship between two random individuals at
distance d is

+(d) aebn (1)

relative to indefinitely large distances, where kinship is the a priori probability that
two genes are identical by descent [13]. This formula includes linearized selection
as well as migration and mutation.
The Euclidean distance between populations i and j is

dj V(Xi Xj)±+ (Yl_ Yj)2, (2)

which implies di, = 0. Nevertheless, several years ago it seemed desirable to take
du > 0, for two reasons. First, Malecot [13] and Kimura and Weiss [14] had
shown that the decline of kinship in the limit for large distance has a term d-c,
which is singular for c 7L 0, d = 0. Second, many available bodies of data pool the
smallest demographic units into larger ones which have an appreciable radius.
These two considerations suggested that da should be taken as VA/niT, the mean
radius of one of n populations in an array occupying an area of A km2 [15]. How-
ever, subsequent investigation has shown these considerations to be invalid. In the
absence of selective clines, c -= 0 for distances over which kinship is measurable
[16, 17]. Use of the radius does not adequately compensate for pooling local popu-
lations, which in the extreme case for large distances results in measuring dines
rather than local differentiation, and so is to be strictly avoided if interest centers
on drift and migration [18]. Therefore we assume that the local population is small
enough to be considered panmictic, and take di = 0. If we wanted to estimate c,
we could have taken dii = 10-8, say, without affecting the other estimates.
The justification for Euclidean distance is not that migration is as the crow flies

[19], but that non-Euclidean measures of distance are arbitrary, since the shortest
road is not necessarily the one most traveled, and the mean travel time over many
generations is hardly calculable. Euclidean distance has the two advantages of
objectivity and ease of calculation, and an acceptable algorithm for computing non-
Euclidean distance has not been proposed. Even when the number of populations
is so small that the kinship matrix can be readily comprehended, and so no further
condensation may seem necessary, comparison with other population structures is
most easily made through the effect of Euclidean distance in equation (1).
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The original method of bioassay from phenotype pairs has been shown to give a
biased estimate of a [2, 20]. The current method consists in estimating gene fre-
quencies for each commune by maximum likelihood, assuming Hardy-Weinberg
equilibrium in each, and combining these estimates to give Yjj, the estimated kin-
ship between communes i and j, relative to random Swiss [5]. To convert this to
a priori kinship [21], we must fit the equation

+(d) -(1 L)ae-bd+L (3)

estimating a, b, and L simultaneously, where L is the kinship at the limit for large
distances in Switzerland, relative to random Swiss. Thus L is a measure of devia-
tion of contemporary from founder gene frequencies in Switzerland, although of
course not including deviations of the founders from the rest of Europe or any
other region greater than Switzerland.

In retrospect it was fortunate that the large number of communes led us to
appreciate the economy of Malecot's theory for isolation by distance, whereby
three parameters (a, b, L) suffice to describe population structure. However, we
failed to recognize that, in other regions, the number of localities might be so small
that interest would attach to each value of 4ij, the kinship between populations
i and j, an element of the matrix 1D which contains all the information about popu-
lation structure. It was left to Bodmer and Cavalli-Sforza [22] to recall Malecot's
earlier work which predicts fij from migration [23]. We shall return to this in a
later section.

Swiss communes range from Alpine isolates to large cities, and so it is desirable
to divide them into more homogeneous classes. Morton and Hussels [4] regressed
estimates of inbreeding from pedigrees on demographic parameters of the commune
of origin, giving the discriminant D -.00055 + .00135 X1 + .00133 X2 +
.00409 X3, where X1 - altitude in kilometers, X2 = agricultural workers/total
population in 1920, and X3 -population of origin resident in canton/total popula-
tion of origin in 1920. This analysis allows us to divide communes into four classes:

Alpine isolates: d > .0035, N < 1,000;

{ .0025 < d < .0035, N < 5,000
Alpine towns: d > .0035, N > 1,000;
lowland towns: d < .0025, N < 2,500;

{ d < .0025, N > 2,500
cities:

.0025 < d < .0035, N > 5,000,
where N is the resident population in 1920. Characteristics of these classes are
shown in table 1, weighting each commune by N. The four demographic groups are
clearly differentiated.
When the ABO samples are grouped in this way, and pair ij is assigned to class k

if either i or j or both belong to k, we find the expected differences in population
structure (table 2). In this analysis we have pooled groups B and AB because the
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TABLE 1

DEMOGRAPHIC CHARACTERISTICS BY CLASS OF COMMUNE

All Lowland Alpine Alpine
Characteristic Switzerland Cities Towns Towns Isolates Saas

Altitude (km) ................ 0.548 0.491 0.543 0.692 1.005 1.637
Agricultural workers / total

population .0.118 0.039 0.185 0.195 0.382 0.295
Residents / km2 .97.6 404.6 92.4 38.4 13.0 5.9
1900 population / 1920
population .0.855 0.789 0.932 0.883 0.967 0.913

Proportion of population of
origin resident in canton 0.748 0.750 0.704 0.828 0.908 0.933

Mean discriminant ..00218 .00221 .00167 .00307 .00413 .00415

significant deficiency of the latter argues for misclassification of AB as B [1]. The 3 7
distance classes used in the analysis have been grouped for simplicity of presentation.
The estimate of O(0), for random individuals from the same commune, is greater

than had been previously obtained from phenotype pairs (.00653 versus .00125).
This must partly be due to the weights, which are the sample size Nf by the present
method and N (NA - 1)/2 from phenotype pairs; the latter give disproportionate
effect to large samples. However, estimates for Alpine towns and isolates are so

TABLE 2

ESTIMATION OF KINSHIP FROM ABO FREQUENCIES (X 105)

Weight for
Distance Interval Class All Swiss All Lowland Alpine Alpine

(km) Value (X 10-4) Switzerland Cities Towns Towns Isolates

Same place ............. 0 14 653 251 654 1,088 2,861
0-6 .................. 4 67 163 170 145 199 244
7-9 .................. 8 70 142 164 132 185 159

10o15 ................. 13 201 126 134 119 12 7 210
16-27 ................. 22 585 100 109 95 107 189
28-47 ................. 38 1,309 65 61 66 69 44
48-85 ................. 66 2,731 24 24 24 40 -7
86-225 ................ 141 6,597 -36 -49 -37 -28 -27
226-375 ................ 256 264 -28 -14 -23 -29 -56
Total weight X 10-4 .. ... ... 11,836 2,931 10,214 3,674 1,395

L estimated simultaneously with c = 0:

a ................................... .0025 .0027 .0024 .0026 .0069

bra .................................. .0002 .0001 .0001 .0002 .0019
b ........ .. .. ....................... .0185 .0177 .0175 .0106 .0643

.............. . . . ................. .0026 .0019 .0024 .0030 .0186
L ............................... -.00056 -.00070 -.00058 -.00089 -.00027
OIL ............ . . . ................... .00008 .00007 .00008 .00026 .00009
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great, relative to adjacent communes, as to require further explanation. Sibs under
universal military service are sampled contagiously, and to that extent sampling is
not strictly random. Any clerical mistakes in tabulating phenotype frequencies (for
example, double enumeration of the same individual) will tend to inflate O(0),
without systematic bias for d > 0. Finally, maximum-likelihood estimation of the
A and B gene frequencies is biased upward by small samples consisting of only A
and B phenotypes, and the mean sample size for an Alpine isolate as defined is
about 25. Thus it is likely that the estimates of O(0) are spuriously high, without
any important consequence because the proportion of random pairs falling into
this class is so small (.001).

Despite these possible errors, least-squares estimates of the Malecot parameters
[5] are in reasonable agreement with phenotype pairs. As corrected by Morton
[2], the latter estimates for c = 0 were a = .0029 -+ .0001, b = .0231 +- .0010,
and L -.0004. There is little difference among cities and towns, but Alpine
isolates have higher values of both a (.0069 by the present method, .0057 by cor-
rected phenotype pairs) and b (.0643 here, .0967 by phenotype pairs), where Alpine
isolates were somewhat differently defined in the two studies. These estimates are
relative to large distances within Switzerland, and a is no greater if L is taken from
the pooled data. Since the inbreeding coefficient under migration is less than kinship
of random pairs within isolates, the conclusion of Hussels [3] from genealogical
data is strengthened by bioassay: the inbreeding coefficient of Alpine isolates "rela-
tive to the whole of Switzerland could not much exceed .006, either now or in recent
centuries." Values an order of magnitude higher have been found for oceanic islands
and slash-and-burn agriculturists [24, 25].

ISONYMY

The pioneer study of G. Darwin [261 which related marital isonymy, or con-
cordance of surnames, to consanguineous marriage was refined by Crow and Mange
[27], who obtained an expression which may be combined with the Malecot
equation as

1(d) 4(1 - L) ae-bd + L, (4)

where l(d) is the frequency of isonymous pairs at distance d, and L is the limiting
frequency for large distance within the region. The principal error in this method
is due to polyphyletic surnames, acquired contagiously by members of the same
locality, such as Andenmatten in Saas and Jesus in northeastern Brazil [28]. The
predilection of parish priests, in one case for place names and in the other for
religious ones, may be an important factor in establishing a local polyphylon.
Populations so characterized tend to give an unreliable estimate of kinship from
isonymy, whereas in Britain, where names like Brown, Smith, and Johnson are less
contagiously distributed, there is good agreement between estimates of kinship from
isonymy and other evidence [16, 29].
We paired paternal and maternal surnames from the material on retinal degenera-

tion in all possible ways with surnames from hemophilia and myotonic dystrophy,
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TABLE 3

ISONYMY BY CLASS OF COMMUNE (X 105)

Distance Interval All Lowland Alpine Alpine
(km) Switzerland Cities Towns Towns Isolates

Same place ................. 2,890 1,306 4,982 7,500 0
0-6 ....................... 737 599 790 644 1,408
7-9 ....................... 446 383 512 141 0
10-15 ..................... 313 287 303 336 313
16-27 ...................... 167 145 182 121 143
28-47 ...................... 108 113 118 61 69
48-85 . ............ 73 78 79 51 23
86-225 ..................... 26 32 27 21 8
226-375 ..................... 21 13 25 6 0

Total weight X 10-3 ...... 1,681 758 1,289 547 150

Omitting same place:
a ...................... .0020 .0012 .0021 .0017 .0044

ra ....................... 0002 .0003 .0003 .0006 .0020
b ............... .... .0756 .0499 .0750 .0830 .1262
O'b ..................... .0092 .0117 .0091 .0271 .0580
L ........................ 0004 .0004 .0004 .0003 .0001

CL ....................... 0001 .0001 .0001 .0001 .0001

assigning mothers the coordinates of their place of origin, but the discriminant and
census size of their husband's commune of origin, so that each parent is demo-
graphically characterized by the child. As with ABO bioassay, a pair ij is assigned
to the kth class if either i or j or both- belong to k (table 3). In estimating the
Malecot parameters, pairs from the same place were omitted to reduce the bias
due to polyphyletic surnames. The value of a is less, and b greater, than for blood
groups, reflecting the greater mutability of surnames than genes. This mutability
may not be random: for example, a common polyphylon may be more likely to
differentiate (as Andenmatten, Anthamatten, and Indermatten in Saas, or Smith
and Smythe in Britain), and an alien surname may undergo modification to conform
to the local language. It is not surprising to find that genes and surnames have
different systematic pressure, but the Malecot parameters are in rough agreement.

All paternal and maternal surnames for 1,260 marriages in Saas with both pa-
rental names recorded were paired in all possible ways, and the pairs classified by
generation, assuming 25 years per generation (table 4). Thus a difference of 1-25
years in date of birth is defined as t = 0, omitting the class of zero difference which
includes reflexive pairs. Fitting equation (4), we were unable to obtain convergence
for a, b, and L simultaneously, because of the flatness of the likelihood surface for
a range of L values. To obtain reliable estimates of a and b, we must know L.
Hussels [3] regressed marital isonymy in Saas on pedigree inbreeding and obtained
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TABLE 4

ISONYMY IN SAAS BETWEEN GENERATIONS

353

No. Generations Elapsed Difference in Observed No. Pairs
(t) Mean Birth Years X 10-3 Isonymy

0 ........................ 1-25 1,148 .0823
1 ........................ 26-50 1,097 .0813
2 ........................ 5 1-75 896 .0786
3 ........................ 76-100 747 .0771
4 ........................ 101-125 641 .0763
5 ........................ 126-150 536 .0757
6 ........................ 151-175 449 .0754
7 ........................ 176-200 354 .0751
8 ........................ 201-225 235 .0720
9 ........................ 226-250 132 .0667
10 ........................ 251-275 58 .0609
11 ........................ 276-300 20 .0526
12 ........................ 301-325 5 .0598

an intercept of .05775, corresponding to polyphyletic isonymy as kinship approaches
zero. Taking L = .05775, we obtain a .0066 ± .0002 and b .0731 ± .0107.
The predicted evolution of kinship in time is

I (t) -L
E a-

_4(1-L) -

( ~e~e ±1) (1 - e- (2me+1/2-Ve)t ) (5)

where Ne is the evolutionary size of Saas and me is the systematic pressure. Fitting
this equation by least squares to generation 8 and greater [30], we find the esti-
mates of the evolutionary parameters are Ne 753 ± 96 and me .047 ± .017;
and the kinship of random contemporary pairs, relative to indefinitely remote
founders, is 4) 1/(4 Neme + 1) .00707 + .0089. In evolution of isonymy the
bias due to polyphyletic surnames is removed by the way we estimated L, so that
this application of isonymy is not subject to the same limitations as isolation by
distance.

CHAINS OF INBREEDING AND KINSHIP

Morton et al. [31] applied a theory which estimates the parameters of kinship
or inbreeding in an evolving population. Assuming that the evolutionary size Ne
and the systematic pressure me are constant, the cumulative kinship corresponding
to a chain of length C from one member of a pair through a common ancestor of
the other member of the pair to their hypothetical child is

4)=t E nj 2 /N ( 4 Neme + 1 ) ( e )2
i-i

(6)

where n, is the number of chains of length i observed in a sample of N pairs and



MORTON ET AL.

t = (C - 1)/2 is the number of generations between the common ancestor and the
mean of the pair.

Least-squares estimates of systematic pressure [30] have a mean of .2 and show
no trend with increasing isolation, but evolutionary size is distinctly less for Alpine
isolates (table 5). Assuming me .2 for all groups, estimates of evolutionary size

TABLE 5

CHAINS OF INBREEDING BY CLASS OF COMMUNE IN CONTROL SAMPLE

Chain Length All Lowland Alpine Alpine
(C) Switzerland Cities Towns Towns Isolates

3 .................. 2 2 0 0 0
4 .................. 0 0 0 0 0
5 .................. 44 6 18 10 10
6 .................. 8 2 4 2 0
7 .................. 40 6 16 14 4
8 .................. 16 2 8 6 0
9 .................. 16 8 2 2 4
10 .................. 6 2 0 4 0

Total pairs .3179 3,179 825 1,634 571 149

Estimates Using Cumulative Inbreeding for C = 6-8, Assuming me = .2

Ne ............... 1,394 1,428 1,971 1,163 388
4) ............... 00090 .00087 .00063 .00107 .00321

range from about 2,000 for lowland towns to about 400 for Alpine isolates, with
asymptotic inbreeding increasing from .00063 to .00321. The mean inbreeding co-
efficient (.00090) is comparable to .00092 for Belgium [32] and .00076 for Den-
mark [33, p. 384] a generation ago. It agrees with an estimate of .00097 from data
on mongolism in the Catholic cantons of eastern and central Switzerland [34], and
exceeds the value ascertained from the incomplete pedigrees of this study, in which
the mean inbreeding coefficient for degrees of relationship up to and including
second cousins is .00065. Thus close inbreeding appears to account for at least two-
thirds of the total inbreeding in Switzerland. The present estimates are about 10%o
higher than a previous report which included immigrants without a Swiss commune
of origin, who in 1920 comprised 10.4% of the resident population [4].

In Saas the estimates of Ne and me for kinship show no marked change with time
(table 6). Evolutionary size is about 300, and systematic pressure, about .1. In the
nineteenth century the random kinship was about .009. Inbreeding then closely
paralleled random kinship. However, before that time the evolutionary size was
apparently much greater, reflecting avoidance of consanguineous marriage. There
is other evidence that inbreeding increased in Europe during the nineteenth century
[35-37].
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TABLE 6

CHAINS OF INBREEDING AND KINSHIP IN SAAS

INBREEDING KINSHIP

CHAIN LENGTH
(C) Before 1700 1700-18001800-1900 1900+ Before 1700 1700-18001800-1900 1900+

3 ........... 0 0 0 0 33 12 6 6
4 ........... 0 0 0 0 56 30 12 0
5 ........... 0 4 26 10 93 62 35 13
6 ........... 2 5 13 6 95 87 92 35
7 ........... 0 22 119 36 100 154 182 99
8 ........... 2 38 111 33 36 282 297 119
9 ........... 0 66 293 97 23 453 586 420
10 ........... 4 50 327 110 48 757 1,089 608
11 ........... 6 78 781 291 74 1,086 2,113 1,438
12 ........... 0 36 1,051 468 28 993 3,817 2,016
13 ........... 0 16 1,837 859 4 655 6,998 4,639
14 ........... 0 6 2,282 1,432 2 282 12,196 7,310

Total pairs .... 137 353 607 210 2,000 2,000 2,000 1,000

Using Cumulative F for C =

6-7 7-9 9-11 11-13 3-5 7-9 12-14 12-14

Assuming me = .1

Ne ........... 6,060 846 272 254 168 281 300 286
) ........... .00041 .002 94 .00912 .00973 .01466 .00883 .00828 .00868

MIGRATION

Distances between places of origin of mother and child are given in table 7. Only
a minority of pairs come from the same place of origin. This corrects table 6 of
Morton and Hussels [4], in which a peculiarity of exponentiation in our computer
system assigned some pairs with different coordinates of origin to the same co-
ordinate.*
The control sample is defined as the material on hemophilia and myotonic dys-

trophy, excluding pairs in which the child had no Swiss commune of origin. Since
recessive inheritance is not involved, these pairs should be representative of the
country at the time of this sample, in which the child's mean birth year was 1916.
The familial sample consists of index families for retinal degeneration, in which

the child had a Swiss commune of origin, the parents were normal, there was no
conclusive evidence of sex-linked or dominant inheritance, and there were at least
two cases in the pedigree (not necessarily in the same sibship). The isolated sample
agrees in all respects with the familial sample, except that there was only a single
case in the pedigree.

* If X .0, then the multiplication represented in FORTRAN by X * X is correctly evaluated
as X2, but X * X #& X** 2 = 0. Users of the DISTAN program in M mode should compute dis-
tance by multiplication, as the program does internally for I and S mode [15].
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TABLE 7

MOTHER-CHILD DISTANCE BY TYPE OF RETINAL DEGENERATION

MOTHER-CHILD

DISTANCE INTERVAL CLASS VALUE FOR
(km) MOTHER-CHILD CONTROL Control Isolated Familial

Same place ............0 39 56 80
o-6 ..................... 2 123 91 93
7-9 ..................... 8 27 28 23

10-15 .................... 12 35 26 19
16-27 .................... 21 57 66 18
28-47 .................... 36 61 53 29
48-85 .................... 64 65 41 25
86-225 ................... 135 62 44 26

226-375 ................... 290 10 1 2
>375 ..................... 400 16 8 3

Total ................... ... 495 414 318

Mean distance, D ........ ... 52.9 38.6 27.9

The mean mother-child distance increases from the familial to the control group,
with a conspicuous reduction in the proportion of pairs at small distances. This
confirms the suggestion [15] that parent-offspring distance is a sensitive test for
recessive inheritance, which is not vitiated by incomplete ascertainment of inbreed-
ing or affection.

Hussels et al. [9] were able to show that the familial sample is defined by at
least seven recessive genes, without admixture of other mechanisms, and with a
mean gene frequency of less than .00415. This result may be entered into equation
(9) of [15], r(d) = (Q + ae-b4)p(d) /(Q + 4), where p (d) is the distribution
of parental distance, r(d) is the distribution of distance in parents of affected, and

Y. 0)(d)/(d).
This equation is derived as follows. If +(d) is the inbreeding coefficient at dis-

tance d, then the probability of affection is A + BO (d), where A is the random
load and B the inbred load. Then among parents of affected children, the posterior
probability of d is r(d) = [A + Bo4(d) ]ip(d)/(A + B)).

In genetic load theory, A/B estimates the mean gene frequency per contributing
locus. If inbreeding and kinship are approximately the same for a given distance,
we may write +(d) - ae-bd + L. Making these substitutions, we see that the first
formula for r(d) is satisfied by Q A/B + L. Noting that the distance between
places of origin of mother and child is the parental distance, we may evaluate r(d)
under the hypothesis that ,A(d) follows a theoretical distribution with the same
parameters as the control. Assuming an augmented gamma distribution [15], the
control parameters are I = .07879, z - .00526, and g .68969. At Q = .00359,
a =.0025, b - .0185, and c 0, the maximum-likelihood scores for Q give U2/K
= 5.59 for the familial sample and 4.15 for the isolated sample. Thus the value
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of Q for the familial sample is significantly less than Qo, which is based on an upper
limit provided by genetic load theory. Iterating on Q, the maximum-likelihood esti-
mate is .00137 - .00042, which corresponds to a mean gene frequency per con-
tributory locus of .00137 + .00056 .00193. The total recessive gene frequency
is .02908, and so the number of contributory loci is 15, or about twice as great as
the lower limit [9]. Assuming a mean systematic pressure of .00145 per generation
against a recessive gene for retinal degeneration [9], the mean mutation rate per
locus per generation isu = (.00145) (.00193) = 2.8 X 10-6. Isolation by distance
permits unbiased estimation of quantities for which genetic load theory gives only
limits.
The value of Q for the isolated sample is significantly greater than Qo and the

value from the familial sample. Iteration gives .01655 + .01829 as the maximum-
likelihood estimate. Let y be the proportion of nonrecessive cases in the isolated
sample, estimated by y (.01655 + .00056 - .00193)/(.01655 + .00056) .89.
Mean distances (table 7) yield the estimate y = (38.6 - 27.9)/(52.9 - 27.9) -
.43. An alternative analysis uses the control distribution without assuming that it
has any theoretical form [38]. Similar estimates are obtained: familial sample,
Q = .00081 + .00055; isolated sample, Q .00347 ± .00222; mean gene fre-
quency, .00137; number of loci, 21; mutation rate per locus, 2.0 X 10-6; propor-
tion of nonrecessive among isolated cases, .66. As first indicated by segregation and
genetic load analyses, it appears that a large fraction of isolated cases is nonrecessive,
and may well be nongenetic.

In principle, random pairs of parents of probands give information about the
genetic basis of a rare trait [38]. In practice, the nonbinomial variation generated
when n individuals are paired in all n(n - 1)/2 nonreflexive ways, the loss of infor-
mation due to nonallelic pairs if there is more than one locus causing the trait, and
the possible distortion when incidence or ascertainment varies among localities make
the distribution of random pairs less informative than that of parent-child pairs.
As a test of the method, all possible random pairs of father's place of origin

were made within and between the diagnostic groups of familial myotonic dys-
trophy, hemophilia A, and hemophilia B. Since no locus is common to two diagnostic
groups, we may use the pairs between groups as a control. There is a conspicuous
excess of pairs at short distances within diagnostic groups, reflecting local identity
by descent (table 8). Iterating Q, the maximum-likelihood estimate is Q = .01088
±.00673, a small fraction whose confidence interval includes the mean gene fre-
quency per diagnostic class. The same procedure applied to retinal degeneration
within diagnostic groups yields Q = .00817 + .00289, a similar result which is
significantly less than the total gene frequency. Thus there is no doubt that more
than one locus contributes to familial retinal degeneration, and that the genetic
basis of the diagnostic categories is in part different. If we attempt to ask whether
some loci contribute to two or more diagnostic categories (which is known from
pedigree data), an appropriate test a priori is to take the second column in table 8
as control for the fourth column. Then Q = .73241 +- .03381, as if there were no
appreciable identity by descent between diagnostic categories. Other plausible con-
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TABLE 8

RANDOM DISTANCE WITHIN AND BETWEEN DIAGNOSTIC GROUPS, BY FATHER'S PLACE OF ORIGIN

FAMILIAL MYOTONIC DYSTROPHY
AND HEMOPHILIA FAMILIAL RETINAL DEGENERATION

DISTANCE INTERVAL
(kim) Within Between Within Between

Same place ...............121 47 124 97
o-6 ..................... 175 159 228 255
7-9 ..................... 177 202 194 269

10-15 .................... 478 488 474 823
16-27 .................... 1,274 1,552 1,323 2,069
28-47 .................... 2,695 3,482 2,972 5,439
48-85 .................... 4,867 7,401 7,154 14,032
86-225 ................... 11,485 15,397 17,378 34,375

226-375 ................... 512 848 816 1,231
>375 ..................... 0 0 0 0

Total ................... 21,784 29,576 30,663 58,590

Mean distance, D ........ 100.6 101.6 106.1 107.3

trols, such as isolated X familial retinal degeneration, gave similar results, which
indicates that each contributory allele tends to produce a characteristic diagnostic
type.

SIMULATION OF POPULATION STRUCTURE

With more than 3,000 communes, Switzerland cannot be simulated except by
abstraction. We consider a circle on which 30 populations of equal size N are equally
spaced and migration is symmetrically from the two adjacent populations, called
stepping-stones. This model is a realistic representation of a linear continuum. The
long-range migration rate m is separated from the short-range migration rate k by
thepointatwhich (1 -L) ae-b(+L 0ord=ln[-a(l -L)/L]/b=81 km.

Smaller distances are associated with greater kinship, and larger distances with
less kinship, than for random Swiss. From table 7, this partition gives m = 44/495
= .089 and k 61.5/451 - .408. For Alpine isolates there is not a sufficiently
large random sample to estimate these parameters independently. The effective
migration rate for Saas is less than for all Swiss, and so we halve the latter esti-
mates to give m -.045, k .204 for Alpine Swiss. Since Malecot's theory gives
b VV2m/k/D, where D is the distance assigned to stepping-stones, we take D =
x/2m/k/b or 35.7 km for all Switzerland and 10.3 km for Alpine isolates. The
effective size N must be guessed, since migration can make it much less than the
evolutionary size N6. Trial of the migration matrix with 1- k on the diagonal and
k/2 for each stepping-stone gave a ratio Ne/N of nearly three for all Swiss and
nearly two for Alpine isolates, and so we took N = 220 for all Swiss and N = 200
for Alpine isolates.
As shown in table 9, these parameters provide a moderately good representation.

The evolutionary size N. is 594 for all Swiss and 390 for Alpine isolates, and the
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TABLE 9

SIMULATION OF ISOLATION BY DISTANCE WITH A MIGRATION MATRIX

Parameter All Switzerland Alpine Isolates

Malecot intercept, a ........... .................. .0025 .0069
Malecot exponent, b ........... .................. .0185 .0643
Effective size, N ............... ................. 220 200
Long-range migration, m ..089 .045
Stepping-stone migration, k ..408 .204
Stepping-stone distance, D ........ ............... 35.7 10.3

At t = 00:

Kinship within commune, 40 = a ...... ......... .0026 .0071
Kinship with stepping-stone, 4m ...... .......... .0020 .0045
Malecot exponent, b .......... ................. .0143 .0570
Inbreeding coefficient, a ........ ............... .0021 .0060

At t = 1, 5, 10, 20, 99:
Evolutionary size, Ne .......... ................ 594 390
Systematic pressure, me ......... ............... .160 .092

At t=5:
Kinship within commune, (O = a ...... ......... .0020 .0042
Kinship with stepping-stone, m. ............... .0014 .0020
Malecot exponent, b .......... ................. .0182 .1010
Inbreeding coefficient, a ........ ............... .0016 .0033

NOTE.-Thirty-point circle, road distance, equal population size, stepping-stone migration.

systematic pressure me is .160 and .093, respectively. The Malecot intercept a is
.0026 for all Swiss and .0071 for Alpine isolates, and the value of b using perimeter
distance is .0143 and .0570, respectively. In earlier generations a is of course less,
and b is greater.
The estimate of the inbreeding coefficient for virilocal place of origin is a =

[2k4bm + (1 - 2k) Oo]I where Po is the kinship within a commune and 'm is the
kinship with the stepping-stone. This gives .0060 for Alpine isolates, in reasonable
agreement with table 6 for Saas and with the conclusion of Hussels [3]. However,
inbreeding for all Swiss is estimated as .0021 asymptotically and .0016 in the fifth
generation, or about twice as great as in table 5. Either the simulation is too approx-
imate (for example, by assuming constant population size), or there is significant
avoidance of consanguineous marriage in Switzerland. The latter hypothesis is
likely, since the evolutionary size for kinship within a commune is about half as
great as for inbreeding in table 5.

There are obviously other ways to simulate complex population structure by a
reasonably small migration matrix, but our results with a circular model are en-
couraging. They suggest that close inbreeding (t < 5 generations) accounts for
about 75%o of total inbreeding in Switzerland, but only 55%o in Alpine isolates.
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SUMMARY

Phenotype bioassay of ABO blood groups in Switzerland agrees with the pheno-
type pair bioassay reported earlier. A priori kinship for two random Swiss from
the same commune is estimated as a -_.0025 with an exponential decline of b
.0185/km. Random Swiss have kinship OR = .00056, relative to Swiss founders.
Cities, lowland towns, and Alpine towns are consistent for these parameters. Alpine
isolates have larger values of a (.0069) and b (.0643). Isonymy (surname con-
cordance) gives an inflated estimate of local kinship, attributable to polyphyletic
surnames. When pairs from the same place are omitted, estimates of a are less, and
of b are greater than for the ABO blood groups, which we ascribe to the greater
mutability of surnames than genes. Estimates of evolutionary size from inbreeding
are of the order of 1,000 for cities, towns, and all Switzerland, and of hundreds for
Alpine isolates. The mean inbreeding coefficient is .00090 for all Swiss, and several
times this for Alpine isolates. The systematic pressure approaches .2 for all Swiss
and about half of this for Alpine isolates, and is therefore dominated by migration
rather than selection or mutation. Distances between places of origin of mother and
child confirm (independently of segregation) that isolated retinal degeneration
includes a large proportion of sporadic cases and that familial cases are due to
more than one locus. Simulation of isolation by distance with a migration matrix
suggests appreciable avoidance of consanguinity in all Switzerland, but not in
Alpine isolates 50 years ago, and supports other evidence from genealogies, bio-
assay, and isonymy that the total coefficient of inbreeding in Alpine isolates relative
to the founders of Switzerland is less than .006, or an order of magnitude less than
some oceanic islands and slash-and-burn agriculturalists. Different methods of
studying kinship are in good quantitative agreement.
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