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A Genetic Study of Cleft Lip and Palate in Hawaii.
II. Complex Segregation Analysis

and Genetic Risks

C. S. CHUNG,' G. H. S. CHING,2 AND N. E. MORTON3

In a population study of cleft lip with or without cleft palate (CL[P]) and isolated
cleft palate (CP) involving interracial crosses in Hawaii, Ching and Chung [1]
observed that the underlying factor for these conditions are acting additively with-
out a clear-cut maternal effect. They considered the observation prima facie as
consistent with the mode of multifactorial inheritance with threshold effect. How-
ever, a more critical test for discriminating alternative modes of inheritance must
be made on family data, and the conclusion derived from the population incidences
must be supported by such data. The present investigation attempts to discriminate
specifically between the hypothesis of single locus with multiple parameters and
that of quasi-continuity under multifactorial inheritance. Obviously, accurate
estimates of recurrence risks depend on the degree of success of such a discrimina-
tion. The family data were derived largely from the same base population studied
earlier [1]. The analytical method employed is that of Morton et al. [2].

MATERIALS AND METHODS

Of a total of about 1,200 probands ascertained in the previous study [1], we have been
able to obtain adequate family information on 353 families or approximately one-third
of the total number of probands ascertained. These probands represented liveborn CL(P)
and CP cases with exclusion of recognized syndromes or possible chromosomal abnor-
malities. The mode of ascertainment was multiple so that a sibship could have multiple
probands who were clinically verified. The CL(P) and CP cases were found in two
sibships in the sample and were expected by chance based on the incidence in the general
population; therefore, they were classified according to the cleft type of the proband
while the individuals with the other type of cleft were considered "normal" for the pur-
pose of segregation analysis. The family information was usually provided by the mother
through interview. However, when neither mother nor father was available for interview,
the proband himself or other close relatives furnished the necessary information.
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The data obtained from the family included the following: (1) birth dates and places
for father, mother, and all sibs of probands; (2) family pedigree including all parents,
grandparents, uncles, aunts, first cousins, nephews, nieces, half-sibs, and children of
probands with information on oral clefts; (3) name, sex, relation, and type of cleft of
each affected relative; (4) parental consanguinity; and (5) race of each grandparent. As
a partial verification of the data, the birth certificates of sibs of the probands were
checked for sex, age, birth order, ages of parents, and congenital malformations. In
general, the agreement between the two sources of data was good.
The analytical method used was complex segregation analysis [2]. According to the

method, in general the probability of r affected among s sibs with h affected parents
under incomplete selection is

[1 - (1- 7T)r] E j7kmjkr( mjk)s-r

P(r; s, hr)
j

i

1 Ohjki(l - mJklT)8
j,k

where ir is the ascertainment probability, 4hjk is the probability of a mating of genotypes
j and k where h of them is affected (k = 0, 1, 2), and Mik is the risk of affection of the
child from the mating type.
Under the two-allele, single-locus model, parameters t, d, and z are introduced to

specify risks of three genotypes GG, GG', and G'G'. The risks are t + z, td + z, and z,
respectively, where t is the penetrance of GG, d is the dominance of gene G, and z is
the frequency of nonheritable cases so that x = z/A, where x is the proportion of sporadic
cases [3] and A is the incidence in the general population. Using the theory of maximum
likelihood, tests of hypotheses on parameters t, d, and z are made.
Under the model of multifactorial inheritance, the additive liability for a condition is

assumed to be distributed normally with a threshold which determines affection [4]. The
apparently sharp threshold imposed by Falconer [4] in the model was shown to be
equivalent to the model of a cumulative normal risk function acting on genetic liability
assumed to be normally distributed [5]. The distribution of genetic liability is poly-
chotomized into a number of nonoverlapping classes, and the risk of affection for the
mean of each class is calculated. Morton et al. [2] used 52 classes for this purpose.
Having obtained discrete classes, the probability of a specific mating of genotypes
(@hjk) and the corresponding risk of affection for the child (mik) can be calculated and
are used for complex segregation analysis. The parameters in this model are population
incidence (A) and heritability (T).
Under either model the probability of the (s + 1)st child being affected, after having

r affected among s children, is specified [2] by

Z 4hkMjkmr+'(1 - mjk) 8-r
jk

Q(r;s,h) -

Z sbhjkmjkr(1 Z jk) 8-r
j,k

Trhese methods of complex segregation analysis are programmed on a CDC 3100
computer. The program (COMSEG) enables pooling of the results from cases with varying
h (0, 1, 2) in testing hypotheses. Therefore, the results are over the cases with h = 0 and
h = 1; no mating with h = 2 was observed.
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RESULTS

Complex Segregation Analysis

Initially the probability of ascertainment (or) was estimated by the maximum-
likelihood method separately for CL(P) and CP from the family data using the
distributions of the number of probands per sibship and the number of ascertain-
ments per proband [6, models 22 and 27]. The estimates of Xr over all racial groups

were .903 and .819 for CL(P) and CP, respectively, and were homogeneous over

the models. These values are lower than the estimates of ascertainment probability
in the earlier study [1], which was limited to children born during a specified
interval without inclusion of sibs born previously. The incidences used in the
analyses were .00128 and .00078 for CL(P) and CP, respectively, which were

obtained in the earlier study [1]. Table 1 shows the distribution of families by
number of affected parents (h), sibship size (s), and number of affected sibs (r)
for CL(P) and CP. Families with s - 1 are not included since these are uninfor-
mative for the analysis.

Table 2 gives the result of the complex segregation analysis for CL(P). Hypoth-
eses to be tested were classified broadly into two classes, rank 1 and rank 2 [2];

TABLE 1

NUMBERS OF FAMILIES BY NUMBERS OF AFFECTED PARENTS (h), SIBS (s),
AND AFFECTED SIBS (r) FOR CL(P) AND CP

No. CL(P) CP
No. AFFECTED
SIBS SIBS
(s) (r) h = = O hI

2 .............. 1 35 0 12 1
2 .............. 2 2 0 0 0
3 .............. 1 45 1 26 0
3 .............. 2 3 2 0 0
4 .............. 1 40 0 23 1
4 .............. 2 1 0 1 0
5 .............. 1 22 0 13 0
5 .............. 2 3 1 1 0
6 .............. 1 16 0 8 0
7 .............. 1 15 0 4 0
7 .............. 2 3 0 0 1
7 .............. 3 2 0 0 0
8 .1 7 0 7 0
8 .............. 2 1 0 1 0
9.... .......... 9 0 7 0
9 .............. 2 1 0 0 0
10 .............. 1 1 0 0 0
11 .............. 1 2 0 1 0
12 .............. 1 1 0
12 .............. 2 4 0 0 0
13 .............. 1 1 0 2 0
13 .............. 2 0 0 1 0
14 .............. 1 0 0 1 0
15 .............. 1 0 0 1 0

NOTE.-CL(P) = cleft lip with or without cleft palate; CP = isolated cleft palate.
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TABLE 2

TESTS OF TWO-ALLELE, SINGLE-LOCUS MODEL WITH THREE PARAMETERS FOR CL(P)
BY COMPLEX SEGREGATION ANALYSIS

PARAMETERS LIKELIHOOD-
FIXED RATIO

PARAMETERS
HYPOTHESIS d t x ESTIMATED X2 df

Rank 1:
Recessive:
Complete penetrance 0 1 ... x = 0.679 49.44 83
No phenocopies . 0 ... 0 t= 0.195 37.76 83

Additive:
Complete penetrance . 1 ... x = 0.532 49.63 83
No phenocopies. ... 0 t = 0.216 41.13 83

Dominant:
Complete penetrance 1 1 ... x = 0.003 99.98 83
No phenocopies . 1... 0 t = 0.00001 185.17 83

Rank 2:
Recessive . ... ... t = 0.325 36.56 82

x = 0.359

Additive. i ... ... t = 0.378 39.41 82
x = 0.372

Dominant .1 ... ... t = 0.190 39.42 82
x = 0.373

under a rank-1 hypothesis, one parameter (t or x) was left to vary and was esti-
mated, whereas two parameters (t and x) were estimated from the data under the
rank-2 hypothesis. Rank-1 hypotheses-of special interest for the present study
were recessive (d - 0), additive (d _ 1/2), and dominant (d -1) inheritance
with subclassification of complete penetrance or no phenocopies (sporadics) under
each d value. Three special rank-2 hypotheses represent the three modes of inheri-
tance (d 0, 1/2, and 1).
Among the nine specific hypotheses to be tested, the case of dominance with no

phenocopies was found to fit the data least well judged from the unusually large
value of the likelihood-ratio X2(83) of 185.17. This suggests that there is no likeli-
hood peak within the boundary values of t (0 and 1) under this hypothesis. There-
fore, it is reasonable to conclude that this is an unrealistic hypothesis which should
be eliminated from further consideration.

Of the remaining hypotheses, the likelihood-ratio x9's show that the rank-2
hypotheses do not fit the data appreciably better than the best fitting rank-1
hypothesis with the same d value except for the case of dominant inheritance. Under
the mode of recessive inheritance, the rank-1 hypothesis with no phenocopies gave
the likelihood X2(83) of 37.76 with the estimated t value of 0.195, whereas the X2(82)
under the rank-2 hypothesis was 36.56 with the estimated parameters of t 0.325
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and x - 0.359. Under the mode of additive inheritance, the rank-i hypothesis of
no phenocopies gave rise to a X2(83) of 41.13 with the estimate t - 0.216 compared
to a X2(82) of 39.41 under the rank-2 hypothesis with t - 0.378 and x - 0.372.
Again, the hypothesis of dominant inheritance with complete penetrance under
rank 1 fits the data least well.
The generally low X2 values observed are characteristic of distributions with

small expected numbers [7]. However, the relative magnitude of X2 values and
reduction in X2 for higher rank from lower rank hypotheses serve as useful criteria
for comparison. According to the criterion specified [2], the likelihood-ratio x2 for
a rank-2 hypothesis should be smaller than an alternative of lower rank by at least
4 before the hypothesis can be declared better than the alternative hypothesis.
Applying this criterion, it can be concluded that the rank-1 hypotheses are equally
well fitting as are the rank-2 hypotheses under the recessive and additive modes of
inheritance. In view of this, the rank-1 hypotheses are much more appealing than
those of rank-2 since they represent the simplest possible models under considera-
tion. The hypothesis of recessive inheritance with no phenocopies with t 0.195
yielded the smallest x2, whereas the next smallest x2 was obtained from the hypoth-
esis of additive inheritance with no phenocopies with t - 0.216. The difference of
3.37 in the magnitude of the X2 values is not remarkable.

Table 3 shows the result of analysis of the CP family data. The situation here

TABLE 3

TESTS OF TWO-ALLELE, SINGLE-Locus MODEL WITH THREE PARAMETERS FOR CP
BY COMPLEX SEGREGATION ANALYSIS

PARAMETERS LIKELIHOOD-
FIXED RATIO

PARAMETERS
HYPOTHESIS d t X ESTIMATED %2 df

Rank 1:
Recessive:
Complete penetrance 0 1 ... x = 0.891 19.11 105
No phenocopies. 0 ... 0 t = 0.059 11.50 105

Additive:
Complete penetrance 1 ... x = 0.819 15.94 105
No phenocopies ..... 0 t = 0.070 12.43 105

Dominant:
Complete penetrance 1 1 ... x = 0.011 33.89 105
No phenocopies. 1 ... 0 t = 0.00001 108.73 105

Rank 2:
Recessive .0 ... t = 0.097 11.03 104

x = 0.437
Additive .. .. . t =0.245 11.24 104

x = 0.692
Dominant .1 ... t = 0.123 11.24 104

x = 0.697
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appears fairly comparable to the case of CL(P), though in general the data seem
to fit specific hypotheses better than in CL(P) as seen by the magnitude of the
likelihood-ratio X2 values. As in the case of CL(P), the rank-i hypotheses of
dominant inheritance gave the poorest fit to the data.

Rank-2 hypotheses seem to exhibit no added attraction over the corresponding
rank-1 hypotheses. The best fitting are again the hypotheses of recessive inheritance
with no phenocopies giving t 0.059 and a likelihood-ratio X2(1o5) of 11.50, fol-
lowed by the additive mode of inheritance with no phenocopies giving t = 0.070
and a X2(1o5) of 12.43. No clear discrimination seems possible between these two
alternative hypotheses.

TABLE 4

TESTS OF MODEL OF MULTIFACTORIAL INHERITANCE FOR CL (P) AND CP

Likelihood-
Condition Ratio x2 df Heritability

CL(P) . 38.20 83 .99
CP . 11.32 105 .72

Table 4 shows the result of segregation analysis based on the hypothesis of
multifactorial inheritance with threshold effect. The likelihood-ratio x2 for CL(P)
was 38.20 for 83 df, whereas that for CP was 11.32 for 105 df. These are compara-
ble to the X2 values of the best fitting rank-1 hypotheses of the two-alliele, single-
locus model of each condition. The heritabilities estimated from the data were .99
and .72 for CL(P) and CP, respectively. It should be noted that the value of .99
for CL(P) is limited by the boundary condition on heritability of 1.

Recurrence Risks
In light of the demonstration from the complex segregation analysis that no

single genetic hypothesis fits the data unequivocally better than alternative
hypotheses, it may be too arbitrary to select only one model with the least X2
value in calculating recurrence risks. For this reason, we selected two alternative
models with least x2 values and good contrast of mode of inheritance for predicting
recurrence risks of sibs. These are the models of recessive inheritance with no
sporadic cases and multifactorial inheritance for both CL(P) and CP. Thus the
single-locus models were based on d 0, x 0, and t =0.175 for CL(P) and
d = 0 x =0, and t =0.059 for CP.

Table 5 shows CL(P) recurrence risks for sibs for various combinations of sib-
ship size (s) and number of affected sibs (r) on the single-locus model for the
cases of both parents normal and only one parent affected. The number represents
the probability of the next sib being affected with CL(P) after having r affected
sibs in a sibship of size s based on the formula proposed by Morton et al. [2].
The risk for the case of s = 0 and r = 0 with no parent affected corresponds
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TABLE 5

CL(P) RECURRENCE RISKS OF SiBS FOR VARYING SIBSHIP SIZE AND NUMBER OF AFFECTED SIBS
BASED ON SINGLE-LOCUS MODEL WITH d = 0, X = 0, AND t = 0.195 FOR CASES OF BOTH PARENTS

NORMAL AND ONLY ONE PARENT AFFECTED

SIBSHIP SIZE (S)
No.

AFFECTED
SIBS (r) 0 1 2 3 4 5 6 7 8

0 ........ .001
(.016)

1 ........ ...

2 ....... ...

3 .........

4 ....... ...

5 ....... ...

.001 .001 .001 .001 .001 .001
(.014) (.013) (.012) (.011) (.010) (.009)
.055 .055 .055 .054 .054 .054

(.104) (.103) (.103) (.102) (.102) (.101)
... .061 .061 .060 .060 .059

(.109) (.108) (.107) (.106) (.105)
... ... .073 .071 .070 .069

(.119) (.117) (.115) (.114)
... ... ... .090 .088 .086

(.133) (.130) (.128)
... ...... ... .114 .111

(.149) (.146)

NOTE.-Figures in parentheses for one parent affected.

approximately to the general population incidence. Not surprisingly, the risk is
seen to change very little with s within a given r. The recurrence risks for the
families with r = 1 are at maximum when s - 1: .055 and .104 for h = 0 (no
parent affected) and h 1 (one parent affected), respectively. It is of interest to
note that within a given sibship size the risk gradually increases with increasing
r over r 0. For example, with s 3 the risks are .055, .061, and .073 for the
cases of r - 1 2, and 3, respectively, when = 0. The increases of the risk under
h l over the case of h =0 are much greater when r is small. Thus for s = 3,
the risk is about 12-fold for h = 1 when r 0, while the risk for h = 1 approxi-
mately doubles that for h 00 when s 2.

Table 6 gives the CL(P) recurrence risks under the model of multifactorial
inheritance. In contrast to the single-locus model, the risks decrease significantly
with increasing s within a given r. The increases of recurrence risks with r within
a fixed s are much more drastic than in the single-locus model. For example, with
s = 3 the risk has tripled (.038 to .113) from r = 1 to r = 2 when h= 0. The
increase of risks from the case of h = 0 to that of h= 1 is much more pronounced
than in the single-locus model.

It is important to note that in general the recurrence risks are greater for the
multifactorial model compared to the alternative models for every combination of
s and r whether h = 0 or h = 1. However, the differences are rather small to be of
major consequence when r= 1 and h 0, which is a usual situation in human
families. The differences become very pronounced as r increases over 1 or when
h = 1. The significance of this finding will be discussed presently.

.001
(.008)
.053

(.101)
.058

(.105)
.068

(.112)
.084

(.125)
.108

(.144)

.001
(.007)
.053

(.100)
.058

(.104)
.067

(.111)
.082

(.123)
.105

(.141)
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TABLE 6

CL(P) RECURRENCE RISKS OF SIBS FOR VARYING SIBSHIP SIZE AND NUMBER OF AFFECTED SIBS
BASED ON MULTIFACTORIAL MODEL FOR CASES OF BOTH PARENTS NORMAL AND ONLY ONE PARENT

AFFECTED

SIBSHIP SIZE (S)
No.

AFFECTED
SIBS (r) 0 1 2 3 4 5 6 7 8

0 ......... .001 .001 .001 .001 .001 .001 .001 .001 .001
(.061) (.053) (.047) (.043) (.039) (.036) (.034) (.032) (.030)

1 ..... .... .044 .041 .038 .035 .033 .031 .029 .028
(.179) (.155) (.137) (.123) (.111) (.102) (.094) (.088)

2 ......... ... ... .123 .113 .104 .097 .090 .084 .079
(.288) (.254) (.226) (.204) (.186) (.171) (.158)

3 ......... ... ... ... .194 .181 .169 .158 .148 .139
(.372) (.334) (.302) (.275) (.253) (.233)

4 ......... ... ... ... ... .249 .235 .222 .210 .198
(.436) (.397) (.364) (.335) (.310)

5 ......... ... ... ... ... .291 .2 78 .265 .253
(.485) (.448) (.415) (.385)

NOTE.-Figures in parentheses for one parent affected.

Table 7 gives CP recurrence risks of sibs based on the single-locus model with
d .0, x 0, and t - 0.059. Table 8 shows recurrence risks based on multi-
factorial inheritance with heritability of .72. As expected, the levels of sib risks

TABLE 7

CP RECURRENCE RISKS OF SIBS FOR VARYING SIBSHIP SIZE AND NUMBER OF AFFECTED SIBS BASED
ON SINGLE-LOCUS MODEL WITH d = 0, X = 0, AND t = 0.059 FOR CASES OF BOTH PARENTS NORMAL

AND ONLY ONE PARENT AFFECTED

SIBSHIP SIZE (S)
No.

AFFECTED
SIBS (r) 0 1 2 3 4 5 6 7 8

0 ......... .0008 .0008 .0007 .0007 .0007 .0007 .0007 .0007 0007
(.007) (.007) (.006) (.006) (.006) (.006) (.006) (.006) (.005)

1 .... .018 .018 .018 .018 .018 .018 .018 .018
(.033) (.033) (.032) (.032) (.032) (.032) (.032) (.032)

2 ......... ... ... .021 .021 .021 .021 .021 .021 .020
(.035) (.035) (.035) (.035) (.035) (.034) (.034)

3 ... . ... .026 .026 .026 .025 .025 .025
(.039) (.039) (.039) (.039) (.038) (.038)

4 .... ... ... .033 .033 .032 .032 .032
(.044) (.044) (.043) (.043) (.043)

5 ............ . ......... ... ... .041 .040 .040 .040
(.049) (.049) (.048) (.048)

NOTE.-Figures in parentheses for one parent affected.



CLEFT LIP AND PALATE: SEGREGATION ANALYSIS

TABLE 8

CP RECURRENCE Risxs OF SIBS FOR VARYING SIBSHIP SIZE AND NUMBER OF AFFECTED SIBS BASED
ON MULTIFACTORIAL MODEL FOR CASES OF BOTH PARENTS NORMAL AND ONLY ONE PARENT

AFFECTED

SIBSHIP SIZE (S)
No.

AFFECTED
SiBS (r) 0 1 2 3 4 5 6 7 8

0 ......... 0008 .0007 .0007 .0007 .0007 .0007 .0007 .0007 .0007
(.020) (.019) (.018) (.017) (.016) (.016) (.015) (.015) (.014)

1 ......... ... 018 .017 .016 .016 .015 .015 .014 .014
(.073) (.067) (.063) (.059) (.056) (.053) (.050) (.048)

2 ......... ... ... .063 .059 .056 .053 .050 .048 .046
(.141) (.130) (.120) (.112) (.105) (.099) (.094)

3 ......... ... ... ... .121 .113 .106 .100 .094 .090
(.208) (.192) (.178) (.167) (.157) (.148)

4 ......... ... ... ... ... .181 .169 .158 .149 .141
(.268) (.249) (.232) (.218) (.205)

5 ......... ... ... ... ... ... .238 .222 .208 .196
(.320) (.299) (.280) (.264)

NOTE.-Figures in parentheses for one parent affected.

of CP are considerably lower than those of CL (P) for the corresponding s and r
combinations for both models. However, the observation made on (CL (P) appear
equally applicable to the case of CP.

DISCUSSION

Unfortunately, the complex segregation analysis has offered no clear-cut dis-
crimination between the single-locus and multifactorial models in both CL(P) and
CP. For either condition, the best fitting rank-1, single-locus hypothesis appeared
to be recessive inheritance with reduced penetrance and no phenocopies. The
estimated penetrance was much higher for CL(P) than for CP (.195 compared
to .059). The difference in penetrance (.136 ± .050) was highly significant.
Under this hypothesis, the respective estimated gene frequencies were .0811 and
.1152. The estimated heritabilities under multifactorial inheritance were .99 and
.72 for CL(P) and CP, respectively. These values are in contrast to .86 and .69
which were obtained by the method of Falconer [4] without adjusting for ascer-
tainment probability and affected parents.
Our findings appear to confirm generally the observations of others that under

certain conditions the discrimination between the single-locus and multifactorial
genetic models is difficult. Based on results on simulated data, Smith [8] con-
cluded that the single-locus model is very flexible and can fit multifactorial data
well unless the frequency is low and the heritability is high. Conversely, the
model of multifactorial inheritance can fit fairly well the single-locus data as
the parameters of the single-locus model become less Mendelian. Cavalli-Sforza
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and Kidd [9] were not able to discriminate the alternate models on schizophrenia.
Reich et al. [10] investigated conditions under which the discrimination is
possible.
The conclusion of lack of discriminating power in the present study and others

is based on the usual human family data with relatively rare traits in which no
parents are affected, family size is small, and affected individuals per sibship are
predominantly isolated. Though the calculation of recurrence risks was largely
based on the data with k = 0, certain useful conclusions can be drawn from the
expected recurrence risks under the alternative models. As demonstrated earlier,
the recurrence risks computed indicate an increasing degree of divergence between
the two alternative models as r and h become large which increases the power of
discrimination. Therefore, we expect that disproportionately more critical infor-
mation can be obtained from families with one or both parents affected and/or
families with two or more affected sibs. For example, the predicted CL(P) recur-
rence risks for families with r - 2 and s - 3 for h - 1 are .108 and .254 for
the single-locus and multifactorial models, respectively. Based on a small amount
of data for I -- 0 and without adjustment for s, Curtis et al. [11] estimated the
recurrence risk of CL(P) after two affected sibs as .09, whereas Woolf [12] gave
.146 for the similar situation. These figures appear to be more close to the pre-
dicted values on the multifactorial model. However, it should be kept in mind
that our predicted CL(P) risks for multifactorial inheritance were based on an
artificial boundary value of heritability of 1. Further informative family data are
needed for CP as well as CL(P).

According to the criterion suggested by Morton [13], very high heritability
can be considered as an indicator of the presence of major genes. This was further
corroborated by Smith [8] on simulated data. If we apply this criterion, our
CL(P) data are consistent with the hypothesis of the presence of major genes,
which are most likely to be recessive with reduced penetrance. It would be of
further interest to compare published monozygotic twin concordance data with
the predicted recurrence risks from the two alternative models (table 9). On
face value, the concordance rates are consistent with the single-locus model for
CL(P) and the multifactorial hypothesis for CP.

Irrespective of the mode of inheritance, our data show that recurrence risks
for CL(P) are generally higher than for CP. This is in agreement with earlier

TABLE 9

COMPARISON OF PUBLISHED MONOZYGOTIC TWIN CONCORDANCE DATA WITH PREDICTED RECURRENCE
RISKS UNDER SINGLE-LOCUS AND MULTIFACTORIAL MODELS

Model CL(P) CP

Recessive ............... ................ 0.195 0.059
Multifactorial ................ ........... 1.000 0.169
Concordance rate [14] ......... .......... 0.377 0.235
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studies [11, 15-17]. The differences in our data may be partially explained by a
higher risk for Orientals [1] in CL(P), but Ching [18] has shown only slight
differences among races in segregation frequency. It would be of interest to test
possible differences between races in the genetic etiology when larger racial
samples are available in the future.

SUMMARY

Family data on cleft lip with or without cleft palate and isolated cleft palate
collected in Hawaii were analyzed to discriminate the two models of two-allele,
single-locus and multifactorial inheritance using the method of complex segre-
gation analysis. The three parameters in the single-locus model were degree of
dominance, penetrance, and proportion of phenocopies.

For either condition, the best fitting single-locus model was found to be as
good as the multifactorial model in explaining the data. However, the heritability
of cleft lip with or without cleft palate was so high that involvement of major
genes was suspected. Sib recurrence risks for various combinations of sibship
size and number of affected sibs showed that disproportionately more critical
information can be derived from families with familial cases and/or one or more
affected parents.
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