
Estimating the daily probability of epidemic initiation

Peter Caley, Niels G. Becker and David J. Philp

December 14, 2006

Specifying distribution of time since infection

For each day of the epidemic in the source region, the exponential rate of increase (ρ) of

the epidemic was estimated from the solution of Lotka’s equation:

s
∫ ∞
0

e−ρuβ(u)du = 1,

where s is the proportion of susceptibles in the population and β(x) is the infectious-

ness function. Note that the area under the infectiousness function equals R. That is,∫ t=∞
t=0 β(u)du = R. If the number of infectious cases is changing at exponential rate ρ, it

follows that the probability distribution of the time since infection of a randomly selected

infective has density function fT (t) = a exp(−ρt), where a is an appropriate constant

(proof omitted).

Offspring generated in at-risk country community from infected
traveler and their in-flight offspring

We assume that the number of offspring generated during the flight (X) is distributed as

Poisson with rate parameter equal to the area under the time-dependent infectiousness

function corresponding to the flight duration (dF ). Hence, conditional on the time since

infection upon departure of the infected traveler, the number of offspring they generate

in-flight is

X
∣∣∣ T = t ∼ Pois

(
λ
∫ t+dF

t
β(u)du

)
,

where λ is a scalar which alters the rate of transmission in-flight (e.g. λ = 0 if all

passengers wear masks).

In-flight offspring will have virtually no chance of becoming symptomatic before arrival

and hence being detected by symptomatic border screening. Upon entering the community

of the at-risk country, the X in-flight offspring will infect Z1 + Z2 + · · · + ZX offspring
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in the wider community. The Zi are independent and identically distributed as Poisson

with mean R (the effective reproduction number within the wider community). For the

index infected traveler whose infection originated in the source country and who enters

the community, the number of offspring they generate (Y ) is distributed as Poisson with

its mean determined by the infectious contacts made from the time of disembarking until

presentation to medical authorities after some delay (δ) following the onset of symptoms,

conditional on the time since infection upon departure. That is,

Y
∣∣∣T = t ∼ Pois

(∫ t+dF +δ

t+dF

β(u)du

)
.

In total, an infected traveler generates N0 chains of infection in the at-risk country , where

N0 = Y +
X∑

i=1

Zi .

Calculating the daily probability of minor epidemic arising from
an infected traveler and their in-flight offspring in presence of
individual removal

Branching models enable calculation of the probability that a minor or major epidemic

results from the event that an infected traveler and/or their inflight offspring enter the

community. Let q be the probability that a newly infected individual introduced to a fully

susceptible community fails to initiate a major epidemic. Assuming that the offspring

distribution is distributed as Poisson with rate parameter R, this probability is specified

by the smaller solution of the equation q = exp(−R(1 − q)). We want to estimate the

overall probability q0 of a minor epidemic arising from all epidemic chains initiated by the

infected traveler and their in-flight offspring, where the probability of any one initiated

chain resulting in a minor epidemic equals q. For an infected traveler and all their in-flight

offspring to fail to initiate an epidemic on arrival, all N0 chains must fail to become large

epidemics. That is, the probability of a minor epidemic arising from chains initiated by

the initial infected traveler and all their offspring must equate with the expected value

that these N0 chains become extinct, so that

q0 = E
[
qN0

]
= E

[
qY +

∑X

i=1
Zi

]
.

Consider a single, recently-infected traveler from the source region. Let

T = time since infection at scheduled departure;

AD = event “traveler avoids detection when screened at departure (at time T )”;

X = number of in-flight infections by this traveler;
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σ = sensitivity of symptomatic screening upon arrival;

AA = event “traveler avoids detection when screened at arrival (at time T + dF )”;

Y = number of infections by this traveler after entering the community.

We want

E
[
qY +

∑X

1
Zi

]
.

As AD, X, AA and Y are most easily determined when we know T , we begin by condi-

tioning on T = t. Note that

E
[
qY +

∑X

1
Zi

]
=

∫ 10

0
E
[
qY +

∑X

1
Zi

∣∣∣ T = t
]

fT (t)dt .

We then write

E
[
qY +

∑X

1
Zi

∣∣∣ T = t
]

= E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD

]
Pr (AD |T = t) + E

[
qY +

∑X

1
Zi

∣∣∣ T = t, AD

]
Pr
(
AD |T = t

)
= E

[
qY +

∑X

1
Zi

∣∣∣ T = t, AD

]
Pr (AD |T = t) + Pr

(
AD |T = t

)
,

where

Pr(AD |T = t) = 1− Pr(AD |T = t) =
{

0, if 0 ≤ t ≤ 2,
σ, if 2 < t ≤ 10.

To get E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD

]
we do some more conditioning. First

E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD

]
=
∑
x

E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD, X = x
]
Pr(X = x | T = t, AD)

and then

E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD, X = x
]

= E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD, X = x, AA

]
Pr(AA |T = t, AD, X = x)

+ E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD, X = x, AA

]
Pr(AA |T = t, AD, X = x),

where

Pr(AA |T = t, AD, X = x) = 1− Pr(AA |T = t, AD, X = x) =
{

0, if 0 ≤ t + dF ≤ 2,
σ, if 2 < t + dF ≤ 10,

E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD, X = x, AA

]
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= E
[
qY

∣∣∣ T = t, AD, X = x, AA

]
E
[
q
∑X

1
Zi

∣∣∣ T = t, AD, X = x, AA

]
= E

[
qY

∣∣∣ T = t, AD, AA

]
E
[
q
∑X

1
Zi

∣∣∣ X = x
]

= exp

[∫ t+dF +δ

t+dF

β(u)du (q − 1)

]
exp[R(q − 1)x]

= exp

[∫ t+dF +δ

t+dF

β(u)du (q − 1)

]
qx

and

E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD, X = x, AA

]
= E

[
q
∑X

1
Zi

∣∣∣ X = x
]

= exp[R(q − 1)x] = qx.

Using the fact that Pr(AA | T = t, AD, X = x) = Pr(AA | T = t, AD), i.e. event AA

does not depend on X for this control measure, we find

E
[
qY +

∑X

1
Zi

∣∣∣ T = t, AD

]
= Pr(AA | T = t, AD) E

[
qX

∣∣∣ T = t, AD

]
× exp

[∫ t+dF +δ

t+dF

β(u)du (q − 1)

]
+ Pr(AA | T = t, AD) E

[
qX

∣∣∣ T = t, AD

]
.

Finally, as

X
∣∣∣ T = t and AD ∼ Poisson

(
λ
∫ t+dF

t
β(u)du

)
,

E
[
qX

∣∣∣ T = t, AD

]
= exp

[
λ
∫ t+dF
t β(u)du (q − 1])

]
.

Calculating the daily probability of an epidemic being initiated

On any one day, the probability that an epidemic is initiated (p) is determined by the

number of infected travelers attempting to travel from the source region on that day (K),

the probability they evade detection during departure screening in the source region (θD),

the probability that the evade detection during arrival screening in the at-risk country

conditional on having evaded screening on departure (θA), and the probability they and

their offspring fail to initiate an epidemic (q0). Let n be the number of travelers intending

to depart the source region and π be the prevalence of infected individuals in the source

country on the day. As this prevalence is expected to be low, at least initially, the

probability distribution for the number of infected travelers (K) attempting to depart

from the source region on the day can be approximated as Poisson with mean nπ.

When only cases detected by screening are removed at departure and arrival, the proba-

bility (p̄) that an epidemic is not initiated is

p̄ = E
[
q0

k
]

= exp
(
− nπ(1− q0)

)
.
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When border control at arrival consist of quarantining an entire flight when a case is

detected by screening, some further calculations are needed. Let

E = event “Infected travelers departing on day fail to initiate an epidemic”;

DA = event “At least one infected traveler on day is detected on arrival”;

KD = number of infected travelers successfully departing on day.

The probability of an epidemic not being initiated on day is given by:

p = Pr(E) =
∑
k

Pr(E|KD = k) Pr(KD = k).

Note that

Pr
(
E
∣∣∣KD = k

)
= Pr(E

∣∣∣KD = k,DA) Pr(DA

∣∣∣KD = k) + Pr(E
∣∣∣KD = k, DA) Pr(DA

∣∣∣KD = k)

= 1(1− θk
A) + qk

0θ
k
A,

so

p =
∑
k

(
1− θk

A + (q0θA)k
)

Pr(KD = k).

As KD is distributed as Poisson with mean nπθD, standard probability generating function

results give

p = 1 − exp
(
− nπθD(1− θA)

)
+ exp

(
− nπθD(1− q0θA)

)
.
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