
Supporting Information

Damage assessment from high-resolution images

The examination of TPLSM image stacks indicates that the majority of vessels in the

neighborhood of the target (yellow circles in figures 8A and 8B) were structurally unaffected by

the laser light.  Most vessels near the clot do not show extravasation, an effect associated with

vessel damage (1).  Critically, fast and slow flow is observed in vessels close to the occluded

target vessel (Fig. 8A1).  Although flow is extremely slow in many vessels, the motion of RBCs

indicates that vessels away from the target are not occluded.  In particular, movement of RBCs

could often be observed in the penetrating vessel below the clot (final panel in figure 8B3).

While we could not verify that clots never formed in the penetrating arteriole below the first

lateral branch, the vasculature outside the target range was, for the most part, patent.  In two

exceptional cases, as shown by the examples of figure 8, an unconnected vessel (circled in blue

in figure 8A) and the first lateral vessel (circled in blue in figure 8B) that branches off the

penetrating vessel (circled in yellow in figure 8) were clotted.  These vessels show some

extravasation of the fluorescein/dextran dye, an effect associated with vessel damage (1).  A

final exceptional case concerns vessels directly beneath the irradiated zone that do not appear

to have leaked fluorescently labeled dye, yet contain RBCs that are completely stationary

(Fig. 8B1).  To avoid such potentially directly clotted vessels, we were careful not to measure

blood flow in areas directly beneath the irradiated zone.

Analysis of spatial distribution of penetrating arterioles

The change in distance, Δr, to the nearest penetrating arteriole from before, rbaseline, and after,

rpostclot, a clot to a penetrating arteriole was calculated (Fig. 9) for the penetrating arteriole

locations measured from four animals.  We manually identified and noted the locations of each

penetrating arteriole.  The distance between each pixel in the image and the nearest diving

arteriole was calculated numerically to form the distribution of rbaseline.  To simulate the effect of

clotting a penetrating arteriole, we deleted each penetrating arteriole one at a time in

simulations and recalculated the distance from each pixel to the nearest penetrating arteriole, to

form the distribution rpostclot.  Further, for each pixel we calculated the difference Δr ≡ rpostclot-

 rbaseline, which allowed us to define pairs of Δr and rbaseline.  Note that calculations were carried

out only on arteriolar territories that did not meet the edge of the imaging field so as to avoid

over-counting.
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The results of the above calculation were binned in 1-µm intervals of rbaseline, which is three-

times over sampling, and Δr was averaged for each bin.  The resultant plot of Δr versus rbaseline

for the measured penetrating arteriole locations is shown in figure 6C (thick solid red).

We used the above algorithm to calculate Δr as a function of rbaseline for vessels arranged in

three regular lattices: a triangular lattice, a square, and a hexagonal lattice.  We used the mean

nearest neighboring arteriole distance measured from the image data as the nearest-

neighboring distance in the regular lattices and used the same-size field, 2.3 mm x 2.3 mm, and

pixel size, 3 µm x 3 µm, as the TPLSM images.  The results are plotted as thin dotted lines in

Figure 6C, which appear very different than the data.  Lastly, we calculated Δr as a function of

rbaseline for a randomly arranged lattice in which the mean number of penetrating arterioles per

area was equal to the experimentally measured value of 13 vessels per mm2.  The curve from

an example of a randomly generated lattice is also shown in figure 6C (dotted black line).

We also found an analytical expression for the dependence ofΔr on rbaseline at any point x and y,

where (x, y) = (0,0) is the location of the clotted arteriole and (xn, yn) describes the location of all

the other penetrating arterioles.  In regular lattices, symmetry may be used to calculate Δr in a

small area in which (x0, y0) describes the location of the next-nearest-penetrating arteriole at

(x0, y0) = (a, 0), where a is the distance between nearest-neighboring penetrating arterioles;

experimentally, a = 130 µm.  We note that

� 

Δr(x,y) = x − x0( )2 + y − y0( )2 .

This expression may be expressed the polar coordinates θ  and rbaseline.  For brevity we

abbreviate rbaseline as rb.  We find

Δr(rb ,θ) = rb
2 + a2 − 2arb cosθ .

The above expression is averaged over angles, θ, to form the dependence of Δr on rb.  The

integral can be divided into two regions:
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where θmax=π/4 for a square lattice, θmax=π/6 for a triangular lattice and θmax=π/3 for a hexagonal

lattice (Fig. 10).  These integrals were evaluated numerically and the results are plotted as thin,

solid lines in figure 6C.

MODEL OF BLOOD FLOW CHANGES AFTER PENETRATING ARTERIOLE OCCLUSION

We developed a geometric model that relates the spatial distribution of penetrating arterioles

(Figs. 6A to 6C) to the decrement in blood flow that occurs upon occlusion of penetrating

arteriole (Figs. 3A and 3B).  We assume the average volume flux through a penetrating arteriole

is F = 2/3πb2v, where b is the radius of the arteriole, and v is the mean speed of RBCs through

the arteriole.  The return path of this blood is ultimately through venules that emerge through the

cortical surface.  The volume flux of RBC that enters the cortex through a penetrating arteriole

must equal the spatially integrated flux of venous blood that exits the tissue.  We denote the

spatial distribution of the exiting flux as f(r, φ) dA, where f is a function that represents the speed

of blood that exits the region of cortex that is centered around a penetrating vessel at the origin

and dA = rdφdr = dxdy is an element of area.

For simplicity of calculation, we assume that the spatial distribution of the blood that exits the

surface can be approximated as a smooth function that is cylindrically symmetric.  We further

assume that all penetrating vessels have the same average flux, F , and same radius b.

Conservation of RBCs flowing in and out of the brain tissue leads to

πb2<v> = dφ rdrf r( )
b

∞

∫
−π

π

∫  = 2π rdrf r( )
b

∞

∫ .

The function f(r) can have any form that allows the above integral to have a finite value.  For

example, a Gaussian function for the flow, i.e.,

f(r) = k e
−
r2

2σ 2 .

where k is a normalization constant, satisfies these criteria, as does an exponential decay, i.e.,
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f(r) =k e−
r
λ .

We consider an additional model for the distribution of blood from penetrating arterioles as a

means to access the territory affected by the blockage of one penetrating arteriole.  We take a

tree-like branching pattern for the capillary network (Fig. 11A), in which all capillaries have the

same cross-sectional area, denoted a, and have straight segments between branches of length

λ.  This pattern ignores collaterals, the tortuous nature of capillaries, the anisotropy in the

distributions of vessels, and the draining of blood flow via a network of venules that return to the

surface.  Yet, as the statistics of microvessel networks are yet unmeasured, the model provides

a starting point for an estimate of the scaling of blood speed.

The total capillary area, ATotal, as a function of the distance, r, from the origin of the primary

branch of the capillary tree at the arteriole scales as:

ATotal = N•a•2r/λ

where N is the number of primary branches that emanate from the arteriole.

We let F denote the flux of blood into the penetrating arteriole, i.e., the volume of blood per unit

time.  The total flux out of the cortical region fed by a given penetrating arteriole must equal the

flux in, by conservation of mass. We assume that the speed as a function of distance can be

describe as a continuous function, denoted f(r). Therefore, the product of the area and the

speed must be constant and equal to the incoming flux, i.e.,

F = f(r) • ATotal = f(r)•N•a•2r/λ

Solving for f(r) yields

  
f (r ) = 

F

N •a
e
− r

λ '

where λ’ = λ/ln2. This suggests that the functional form of the contribution of blood flow speeds

around a penetrating arteriole is exponentially decaying.
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We nest assume that at a given location of cortex, labeled by (x, y), the speed of blood flow is

proportional to the sum over all penetrating arterioles

STotal(x, y) = f x − xn , y − yn( )
n=1

N

∑
where x  = r cosφ , y  = r sinφ, n labels the penetrating arterioles, and N  is the number of

penetrating arterioles.  To model the percentage of baseline speed after the occlusion of one

penetrating vessel, we calculate the ratio of STotal(x, y) with one vessel excluded to STotal(x, y)

with all vessels unperturbed, i.e.,

Fraction of baseline speed (r) = 

f x − xn , y − yn( )
n=1
n≠m

N

∑

f x − xn , y − yn( )
n=1

N

∑

where m labels the blocked penetrating arteriole.  Note that the constant factor k cancels out.

The above fraction can be compared with the data, cf figures 10B and 3B. The calculated

fraction was calculated for exponentially decaying function e-r/λ’ for blood flow with several

values of the constant λ’.  Average capillary lengths are ~ 50 µm between two branch points (2).

Curvature in a semicircle, as a rough estimate of tortuosity, yields λ’ = 40 µm.
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