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1 Basic Reproduction Numbers

We define the basic reproduction number as the expected number of cases
produced by an average infected individual in the second generation. In
all cases we assume that the probability of transmission per contact in an
interval δt is 1− exp(−τδt), and that infected individuals are infectious with
infectious period exponentially distributed with mean 1/γ. The removal rate
γ = r + µ has two contributions: the recovery rate r and the mortality rate
µ. All the rates are measured in units of the inverse of the recovery rate and
therefore are non-dimensional with r−1 = 1.

1.1 The basic reproduction number for homogeneously

mixed networks

The probability that an infectious individual infects a susceptible contact
during the infectious period is ρ = τ

τ+γ
. One average infectious individual

placed in an homogeneously mixed population of size N − 1 will produce
(N − 1)ρ secondary infections. Secondary cases compete among themselves
for the remaining susceptible population. By disregarding such competition
and re-infections, we estimate that a secondary case produces (N−1)(1−ρ)ρ
new cases. Because R0 is finite, ρ goes to zero as N increases, in such a way
that (N − 1)(1 − ρ)ρ remains constant (and therefore τ → 0 as N → ∞).
For large N , the basic reproduction number is therefore given by

R0HM = Nρ ' N
τ

γ
. (1)

By defining the population-level transmission parameter as β ≡ Nτ , we can
write the mean field model as the mass-action equation dI/dt = (τS−γ)I =
βSI/N−γI with threshold β/γ equal to the basic reproduction number (1).
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1.2 The basic reproduction number for Poisson ran-

dom networks

A secondary case has i contacts with probability Π(i) = iP (i)/n, where P (i)
is the degree distribution and n, its mean. The probability of transmission
per contact is ρ ≡ τ

τ+γ
and therefore the basic reproduction number becomes

(Andersson 1997, Diekmann & Heesterbeek 2000)

R0rdm =
n∑

i=1

(i− 1)Π(i)ρ =

[
(n− 1) +

V AR(i)

n

]
ρ,

where we assumed that the source case would not become a susceptible con-
tact of the secondary cases. For a Poisson network, V AR(i) = n and therefore

R0rdm = nρ. (2)

1.3 Basic reproduction number for regular networks

For φ = 0 each individual is in contact with eight neighbors. These contacts
are of two types, four in the corners (hereafter denoted as type A), and the re-
maining four in between these (denoted as type B). For simplicity, we assume
that secondary cases compete among themselves for susceptible contacts but
do not compete with other generations of infecteds (such as the source case
itself or the ternary cases). The source case produces i secondary cases with
probability ρi(1− ρ)n−i. For each of these cases, several different configura-
tions are possible and therefore, we can compute the approximate expected
number of ternary cases produced by the secondary cases which results in
a polynomial of degree 11. Here we present a much simpler approximation
which works equally well.
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Figure 1: Diagram of the different types of secondary cases to illustrate
competition for susceptibles. A secondary case of type A competes with sec-
ondary cases of type B or C because their respective neighborhoods overlap.
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Instead of computing the probabilities corresponding to the different con-
figurations, we consider that a fraction ρ of the contacts of the source are
infected. Then, if we have a secondary case of type A (fig 1), we assume
that A is infected with ‘level’ 1, while node B is infected with ‘level’ ρ. Then
node D is infected either by A or B in proportions 1

1+ρ
and ρ

1+ρ
respectively.

Thus, the average number of ternary cases of type D produced by secondary
cases of type A is given approximately by ρ

1+ρ
.

More specifically, the contribution to R0 from a secondary case of type A
can be estimated as follows:

A secondary case A will infect contact C with probability ρ (since there is
no competition with other secondary cases).

The average number of ternary cases of type D produced by secondary cases
of type A is given by ρ

1+ρ
.

A secondary case of type A will infect a contact E with probability ρ
1+2ρ

because E is shared with both B and A′.

Finally, the secondary case A will infect contacts B or B ′ with probability
ρ(1− ρ).

From all these contributions, the expected number of ternary cases pro-
duced by a secondary case of type A is:

R0A = ρ +
2ρ

1 + ρ
+

2ρ

1 + 2ρ
+ 2(1− ρ)ρ = ρ

(
3− 2ρ +

2

1 + ρ
+

2

1 + 2ρ

)

In a similar fashion, the expected number of ternary cases produced by a
secondary case of type B is:

R0B =
2ρ

1 + ρ
+

ρ

1 + 2ρ
+ 4(1− ρ)ρ = ρ

(
4− 4ρ +

2

1 + ρ
+

1

1 + 2ρ

)
.

Finally, the basic reproduction number becomes

R0sp =
1

2
(R0A + R0B) =

1

2
ρ

(
7− 6ρ +

4

1 + ρ
+

3

1 + 2ρ

)
(3)

In Fig. 2, we compare expression 3 with empirical values obtained for
different values of τ (see also section 1.5 below).
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Figure 2: Empirical estimates of R0sp obtained with 5000 simulations for µ =
0 (open squares) and µ = 0.05 (solid squares). Bars represent approximate
95% confidence intervals. The continuous line corresponds to equation 3 with
µ = 0.

1.4 The basic reproduction number for small-world

networks

An average individual in the small-world network will have n contacts. The
probability that such individual has i long distance contacts depends on the
disorder parameter φ and is approximately binomial,

P (i, φ) =

(
n
i

)
(1− φ)n−iφi.

In other words, an average individual will have i long-distance contacts (and
n − i local contacts) with probability P (i, φ). Long distance cases will not
compete in the limit of an infinite size network for susceptible individuals
with other cases. We will assume that a long distance contact produces
R0rdm infections among its contacts1.

A fact that complicates the computation of R0 for small-world networks
is that the number of ternary cases produced by a secondary case depends
on the type and number of contacts of the index case itself. For example,
suppose that all of the contacts of the index case are local contacts (the index

1For small φ there is little variability in the distribution of the number of contacts of the
nodes, and therefore R0rdm ∼ (n− 1)ρ, while for a Poisson random network R0rdm = nρ.
Here we used R0rdm = nρ.
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Figure 3: Comparison of empirical estimates and analytical calculations of
R0sw for different values of the disorder parameter φ. A total of 5000 stochas-
tic simulations were performed for µ = 0 in small-world networks, with 50
different network configurations and 100 realizations of the model for each
configuration. Bars represent approximate 95% confidence intervals. The
continuous line corresponds to equation 4 with µ = 0. Two empirical esti-
mates are shown for φ = 1: the lower value was obtained with small world
networks constructed with this value of the disorder parameter, the top value
was obtained with Poisson random networks. Both cases are shown because,
for this value of φ, the networks constructed with the small world algorithm
are not exactly Poisson random networks. The algorithm to generate small
world networks is a two-dimensional version of the one described by Watts
and Strogatz (1998, see also Roy & Pascual 2005), in which the starting point
is a spatial grid with neighborhoods composed of the eight near neighbors
and periodic boundary conditions. Each local connection is rewired with
probability φ to a random site, avoiding self and multiple connections. Only
those configurations that are completely connected are kept.
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case does not have long distance contacts). The secondary case itself may
have some long distance contacts (in this case, no more than five, but for
simplicity,2 we assume that the maximum number is n). With probability
P (0), a secondary case will have only local contacts. In this case it will
produce, on average R0sp ternary cases (this is equivalent to the case in which
all of the contacts of the index case have only contacts of the local type).
With probability P (2), a secondary case will have two long distance contacts
(or only two of the contacts of the index case will have one long distance
contact). In general, a secondary case will have i long distance contacts with
probability P (i).

Then, if the index case has only local contacts (which occurs with proba-
bility P (0)), but there are in turn i long distance contacts among the contacts
of these local neighbors, the expected number of ternary cases is no longer
equal to R0sp. This number may instead be estimated as follows. Given that
a secondary case becomes infected, it will either have only local contacts with
probability (n− i)/n, or,a long distance contact with probability i/n. It will
produce, respectively for these two different cases, an average of R0sp and
R0rdm ternary infections; By averaging over all values of i, we obtain

R0(0) =
n∑

i=0

P (i, φ)[
(n− i)

n
R0sp +

i

n
R0rdm]

when the index case has only local contacts.
Consider now the case where the index infection has only one long distance

contact, which occurs with probability P (1). The index case will infect its
long distance contact with probability proportional to 1/n. But again, the
n − 1 local contacts of the index case may have themselves long distance
contacts. As in the previous calculation, if there are i long distance contacts
among the local contacts of the index case, then the expected number of
ternary cases produced by these is given by

R0av =
n∑

i=0

P (i, φ)[(n− i)R0sp + iR0rdm]/n.

However, if the secondary case is the long distance contact of the index
case, it will produce R0rdm ternary cases. Therefore, the total number of

2For small φ, P (i > 5) ' 0, while for large φ, P (0) ' 0. Therefore, n is a fairly good
approximation.

6



ternary cases produced by secondary cases of an index infection with only
one long distance contact becomes:

R0(1) = [(n− 1)R0av + R0rdm]/n.

In general, if the index case have exactly i long distance contacts, the
number of ternary cases produced by an average secondary case is given by

R0(i) = [(n− i)R0av + iR0rdm]/n.

The basic reproduction number for the small-world network is given by
the corresponding average over all of these possibilities

R0sw(φ) =
n∑

i=0

P (i, φ)R0(i) =
n∑

i=0

P (i, φ)[(n− i)R0av + iR0rdm]/n (4)

Values obtained with equation (4) are in excellent agreement with empir-
ical estimations of the basic reproduction number obtained from simulations
(see Fig. 3).

1.5 Empirical estimates of the basic reproductive num-

ber

To evaluate the above expressions for the basic reproduction numbers, we
obtained estimates from network simulations as follows. For a given value of
φ, we created a network configuration, introduced one infected individual in
a random site, and calculated a value of R0 as the number of ternary cases
over the number of secondary cases. For each value of φ (0, 0.01, 0.1, 0.25,
0.5, 0.75, 1), the process was repeated for 50 different network configurations
and 100 stochastic simulations each. The value of R0 was estimated as the
mean of the 5000 simulations. An excellent agreement between empirical
estimates and expression (4) was observed (see Fig. 3).

It should be noticed that as φ reaches one, expression (4) underestimates
the empirical value of R0, which follows from the fact that the standard
algorithm used to build the small-world network does not produce a Poisson
network for φ = 1. Thus, in Fig. 3 we also include the empirical estimate of
R0 obtained with Poisson random networks.
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2 Empirical Parameterization

At the beginning of the epidemic, new infections are produced at rate neffτI(t)
per unit of time, with I(t) = I0e

λt. Therefore the incidence at a given time
t ≥ D is given by

Inc(t) =
∫ t

t−D
neffτI(s)ds =

neffτI0

λ
(e−λD

− 1)eλt (5)

where I0 is the (initial) infected population at t = 0, and D is the period
during which the new cases are cumulated for reporting. From the linear
regression of the data for ln Inc(t) vs t, estimates are obtained of the slope
(λ̂) and y-intercept (b ≡ ln Inc0, where Inc0 is back-extrapolated).

The best fit of model solutions I(t) = I0e
λt to the data are obtained when

λ = λ̂ and

I0 = eλ̂DInc0

(
λ̂

neffτ

)(
1

eλ̂D − 1

)
. (6)

For the standard mean field model, λ = neffτ − γ and therefore

neffτ ' λ̂ + γ̂

where γ̂ is an estimate of γ.
For the modified mean field model, λ = (τ + γ)(R0 − 1) and then

R0 '
λ̂

τ̂ + γ̂
+ 1

with τ̂ an estimate of τ .
For both cases, the effects of network structure on the initial spread of

the disease are taken into account implicitly in neff and R0 respectively.
These values may be estimated from data when estimates of individual level
parameters (specifically γ and τ) are available.

3 Comparison of the stochastic simulations

with ODE models

Here we compare the stochastic simulations with the trajectories of the ODEs
for both the standard mean-field (MF, eq. 1 in main text) and the modified
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mean-field (MMF, eqs. 2-5 in main text) model as we vary the transmission
rate τ . Six different quantities are compared that characterize the long-
term and initial transients of the system: the equilibrium of susceptibles
(left top panel Fig. 4), the equilibrium of infecteds (right top panel), the
value of the first maximum of infecteds or peak of the first epidemic (left
middle panel), the timing of this peak (right middle panel), the value of the
first minimum of infecteds or the trough of the first epidemic (left bottom
panel), and the timing of this trough (right bottom panels). A total of
300 stochastic runs were considered for each value of τ , and logarithms of
susceptibles and infecteds numbers were used. For each run a difference was
computed between the stochastic quantity of interest (indicated as the label
of the y axis) and the same quantity in the corresponding ODE simulation.
The plots show the average of these differences for the MF (eq. 1 in main
text) and for the MMF system (eqs. 2-5 in main text), as well as the standard
deviation around these means when sufficiently large to be seen in the graph.
Negative differences indicate that the ODE overestimates the corresponding
quantity in the stochastic system, and vice versa. For all quantities and
most values of τ , the MMF model provides a better approximation to the
stochastic run than the standard MF model. The only exception is for the
value of the first trough for large values of τ ≥ 1.75. However, even in this
case, the timing of the trough is better approximated by the MMF which
also captures better the overall oscillatory pattern of the transients (see Fig.
5).
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Figure 4: These panels show the comparison of the stochastic simulations
with the trajectories of the ODEs for both the standard mean-field (eq. 1 in
main text, stars) and the modified mean-field model (eqs. 2-5 in main text,
circles) for different values of the transmission rate τ . See section ”Com-
parison of the stochastic simulations with ODE models” for details. In all
simulations, r = 1, µ = 0.05, and N = 90000.
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Figure 5: Logarithm of infected numbers for the stochastic model (in blue),
the standard mean field model (eq. 1 in main text, in red) and the mod-
ified mean field model (eqs. 2-5 in main text, in green) for τ = 2. Other
parameters as in Fig. 4.
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