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Failure of Nucleotide Independence in P. falciparum

Table 1 shows typical intergenic DNA from P. falciparum. Low complexity DNA, such
as long stretches of ‘TTTTT. . . ’ and ‘ATATAT. . . ’, occur with vastly more frequency
than permitted by the independent nucleotide model required for the Berg von Hippel
equivalence.

Non-Gaussian Intensity Ratios

Fig. 5 shows a histogram of PBM LIRs, along with a histogram of corresponding intensity
ratios (i.e. LIRs exponentiated using base 2). One expects the bulk of these distributions
to be caused by experimental noise, and while the bulk of the LIR distribution (Fig. 5a)
appears surprisingly Gaussian (the physical reasons for this are unclear), the intensity ratio
distribution (Fig. 5b) clearly has a very fat tail on the right. This calls into question the
assumption of Gaussian noise in intensity ratios, implicitly made by Foat et al. (7) when
fitting predicted intensity ratios to data using least squares. This is of concern because
underlying distributions with heavy tails can cause outliers to dominate such χ2 fits.

Energy Matrix Models

In our analysis we assume the simplest possible model for SDBE, one where each base
within a contiguous TF binding site of length L contributes independently to the overall
Gibbs free energy. While simplistic, this assumption has proven surprisingly accurate in a
number of cases (1-3) (see ref. 4 for a situation in which couplings might be important).
This SDBE is naturally represented by a 4 × L “energy matrix” whose elements {Mbl}
(where l ∈ {1, . . . , L} and b ∈ {A,C, G, T}) constitute the model parameters θ. The
energy assigned to a site b1b2 · · · bL is given by

∑
l Mbll, with lower energy corresponding

to stronger binding. Because only energy differences matter, we generally fix the smallest
matrix element minb Mbl in each column l to zero.
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Because such a TF model assigns energies to each of the ∼ 103 possible overlapping
sites in each intergenic region si, we need some way of collapsing all these energies into a
discrete set of values {xi}, which, if the TF model is accurate, will largely account for our
experimental observations. For simplicity, we declare a sequence si to be bound (xi = 1)
if it contains at least one site with energy below some binding threshold and otherwise
declare it to be not bound (xi = 0). In our analysis we set this threshold to unity, thus
fixing the overall scale of the energy matrix elements. While this hard energy cutoff is
only a crude approximation to the more complicated physics of binding site occupancy, we
find that it can account for real data surprisingly well. It also greatly speeds the necessary
computations.

EMA Likelihood Calculation

For brevity, denote Ezx ≡ E(z|x). Assuming each probability Ezx is restricted to the
interval [0, 1], the only a priori constraint on {Ezx} is that, for every x,

∑
z Ezx = 1.

Letting E denote the set of variables {Ezx} which constitute the error model, we define
the uniform prior on the space of error models as the maximum entropy distribution p(E)
subject only to the constraint that p(E) = 0 whenever, for some x,

∑
z Ezx 6= 1. Explicitly,

this uniform prior is
pU (E) ≡ Γ(m)n

∏
x

δ(1−
∑

z

Ezx), [1]

where δ(·) is the Dirac delta function, m and n are the number of possible values for z
and x, respectively, and Γ(m)n = (m − 1)!n provides the necessary normalization for this
distribution.

Now suppose we have data {zi}, as well as a specific model which makes corresponding
predictions {xi}. Let czx denote the number of data points i for which zi = z and xi = x.
Also define cx ≡

∑
z czx. Using the uniform error model prior pU (E), the EMA likeli-

hood (i.e. the likelihood averaged over all error models according to pU ) can be calculated
analytically:

pU ({zi}|{xi}) =
∫

dE pU (E)
∏
z,x

(Ezx)czx =
Γ(m)n

∏
z,x Γ(czx + 1)∏

x Γ(cx + m)
. [2]

This is the result quoted in Eq. 3 in the main text, which uses factorials in place of gamma
functions, but is otherwise identical. As with most likelihood calculations, this depends on
model parameters only through the specific predictions {xi} of the model. However, since
all possible error models are considered with equal weight, no prior assumptions are made
about which measurements z should result from which predictions x.

One can also bias the error model prior toward a specific error model E∗
zx through a

simple generalization. Using some set of nonnegative weights {Wx}, we define the Dirichlet
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error model prior
pD(E) ≡ N

∏
x

δ(1−
∑

z

Ezx)
∏
z

(Ezx)WxE∗
zx , [3]

which requires the normalization constant

N =
∏

x Γ(WxE∗
x + m)∏

z,x Γ(WxE∗
zx + 1)

. [4]

Given the counts {czx}, we can again compute the EMA likelihood explicitly using this
Dirichlet piror:

pD({zi}|{xi}) =
∫

dE pD(E)
∏
z,x

(Ezx)czx = N
∏

z,x Γ(czx + WxE∗
zx + 1)∏

x Γ(cx + WxE∗
x + m)

. [5]

Up to a multiplicative constant, this is exactly what one gets by computing the EMA
likelihood with the uniform error model prior after “spiking” each count czx with WxE∗

zx

additional data points. Indeed, when Wx = 0 for all x, one recovers the uniform EMA
likelihood. In the other limit, when all Wx →∞, one obtains

pD({zi}|{xi}) −→
∏
z,x

(E∗
zx)czx , [6]

which is the likelihood one gets by using the single error model E(z|x) = E∗
zx without

any averaging. Dirichlet error model priors thus provide a convenient way of interpolat-
ing between an analysis using a single, well defined error model and an analysis, which
is completely agnostic about error models. As shown in the main text, however, the ag-
nostic approach can lead to a very informative analysis when copious amounts of data are
available.

EMA Likelihood and Mutual Information

For any error model prior p(E), the EMA likelihood can be parsed to reveal a striking con-
nection with mutual information. Our considerations are based on the identity (equivalent
to Eq. 4 in the main text),

p({zi}|{xi}) =
∫

dE p(E)
∏
z,x

(Ezx)czx = expN [I(z;x)−H(z)−∆], [7]

where I(z;x) is the empirical mutual information between the N observations {zi} and the
N model predictions {xi}, H(z) is the empirical entropy of the observations, and ∆ is a
correction factor that vanishes as N →∞ under very general considerations.
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To show this explicitly, define the joint distribution f(z, x) ≡ czx/N of z and x, along
with the marginal distributions f(z) ≡

∑
x f(z, x), f(x) ≡

∑
z f(z, x) and the conditional

distribution f(z|x) ≡ f(z, x)/f(x). By the standard definitions,

I(z;x) =
∑
z,x

f(z, x) ln
f(z, x)

f(z)f(x)
[8]

and
H(z) = −

∑
z

f(z) ln f(z). [9]

Substituting these definitions into the right hand site of Eq. 7, one finds

∆ = − 1
N

ln
∫

dE p(E)e−ND(f ||E) with D(f ||E) ≡
∑
z,x

f(z, x) ln
f(z|x)
E(z|x)

. [10]

The correction ∆ therefore captures all information about our choice of error model prior
and the fact that we have only finite data. Note: D(f ||E) is the Kullback-Leibler diver-
gence between the empirical distribution f(z|x) and the error model E(z|x). Since the KL
divergence is always non-negative, so is ∆.

In the case of the uniform error model prior pU , ∆ becomes

∆U =
1
N

ln

[ ∏
x(m− 1 + cx)!c−cx

x

(m− 1)!n
∏

z,x czx!c−czx
zx

]
=

1
N

ln
∏
x

m−1∏
i=1

(i + cx) +
lnAB

N
[11]

where A = (m− 1)!−n ≤ 1 and

B =

[ ∏
x cx!∏

z,x czx!

]∏
z,x

(
czx

cx

)czx

[12]

is a term in the binomial expansion of

1 =
∏
x

(∑
z

czx

cx

)cx

, [13]

and so is ≤ 1 as well. The last term in Eq. 11 is therefore negative, giving

∆U ≤ 1
N

m−1∑
i=1

∑
x

ln(i + cx). [14]

Concavity of the logarithm implies

m−1∑
i=1

∑
x

ln(i + cx) ≤ (m− 1)n ln
(

m

2
+

N

n

)
, [15]
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and thus,

0 ≤ ∆U ≤ (m− 1)n
N

ln
(

m

2
+

N

n

)
. [16]

These are loose bounds, but they show explicitly that ∆U → 0 as N → ∞. Similarly,
∆D → 0 as N → ∞ for the Dirichlet prior in Eq. 3, and generally it appears that ∆ → 0
as N →∞ if p(E) is continuous and nonzero almost everywhere on the space of properly
normalized error models (though we do not provide a proof here).

The MCMC Algorithm

To implement MCMC, one must first define the prior distribution p(θ) one places on the
space of models Ω. This choice of prior is largely arbitrary, so to speed up computations we
choose to define p(θ) in terms of the projection of a uniform prior on the space of models
Ω̃ where θ̃ ∈ Ω̃ consists of an energy matrix whose elements {M̃bl} can take on values
anywhere from 0 to 1 independent of each other, and an energy cutoff µ ∈ [0, L]. Any such
θ̃ = ({M̃bl}, µ) that makes nontrivial predictions can be projected to a normalized model
θ = {Mbl} ∈ Ω, having an energy cutoff of 1 and matrix elements satisfying minb Mbl = 0
for all l, without changing the predictions {xi}. This is done by performing the following
shifts and rescalings on energy matrix elements (which have no effect on whether any given
sequence is or is not below the energy cutoff):

Mbl =
M̃bl −minc M̃cl

µ−
∑

l′ minc M̃cl′
. [17]

The advantage of doing MCMC on Ω̃ instead of Ω is the added ease with which the
algorithm can explore parameter space. On the other hand, it is convenient to work in
Ω when analyzing MCMC results because all the “gauge freedoms” have been removed,
forcing models which make similar predictions to have similar parameters.

MCMC starts from a seed model θ̃0 ∈ Ω̃, then wanders from model to model so that the
resulting chain of models encountered along the way, θ̃1, θ̃2, . . . , θ̃T , is distributed according
to the posterior distribution which, because we use a uniform prior on Ω̃, is essentially the
EMA likelihood p({zi}|θ̃). This is done as follows. In each step t of the Markov chain, the
parameters of the current model θ̃t−1 are perturbed slightly to give a new model θ̃′t−1. The
perturbations we allow are

• Adding a small normally distributed number to one of the matrix elements M̃bl.

• Adding a small normally distributed number to the energy cutoff µ.

• Adding the same small normally distributed number to the energy cutoff µ and all
energy matrix elements M̃bl in some specific column l.
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Given the new parameters θ̃′t−1, we compute the new posterior probability p({zi}|θ̃′t−1). If
all parameters remain within their allowed range, we set θ̃t = θ̃′t−1 (i.e. accept the new
parameters) with probability

min

(
1,

p({zi}|θ̃′t−1)

p({zi}|θ̃t−1)

)
. [18]

Otherwise we set θ̃t = θ̃t−1 (i.e. reject the new parameters) and try again. These computa-
tions are sped up greatly by restricting, for many consecutive steps, matrix perturbations
to elements in two specific columns, then choosing two different columns to focus on, etc.
In this way we build a large sample of properly distributed models which are projected
onto Ω for analysis.

MCMC Sampling and Convergence

In the main text we discuss the results of MCMC sampling on Mukherjee et al.’s Abf1p
PBM data (5) (with 20 intergenic sequences per z-bin) and Lee et al.’s Abf1p ChIP-chip
data (6) (with 50 intergenic sequences per z-bin). For each of these data sets, 10 MCMC
runs were started with a seed model derived from the known qualitative Abf1p recognition
motif NNNRTCAYTNNNNACGWNNN by assigning an energy of 0 to allowed nucleotides
and 1 to disallowed nucleotides. We then let each run go for 5 × 106 steps, and every
1,000th model visited by MCMC in each run was recorded. The last 4,000 models recorded
for each of the 10 runs were then concatenated to give a representative ensemble ΘPBM

(or ΘChIP ) of 4× 104 models.
MCMC was seeded with the known Abf1p motif only to reduce the amount of time

it took for the algorithm to “burn-in” to the true posterior distribution. Other than the
particular alignment of matrix elements within the 20-bp window, this choice of starting
point does not affect the distribution of models found after burn-in has occurred. In
particular, we have been able to achieve burn-in de novo through simulated annealing,
starting from seed models with randomly chosen parameters (data not shown).

Evidence for convergence of our MCMC routines is presented in Fig. 7a and 7c where
we plot, for PBM and ChIP-chip data respectively, the mean intrarun variance (the mean
over the 10 runs of the variance within each MCMC run) against the interrun variance (the
variance across models in the 10 MCMC runs concatenated together) for the 80 energy
matrix elements. The scatter plot of these two numbers should lie along the diagonal if the
different MCMC runs thoroughly sampled the same distribution, and should lie above the
diagonal if the MCMC runs did not have time to converge. This computation was done
for different numbers of models (20, 100, 1,000, 5,000) taken from the beginning of each
run and the results for each of these sample sizes (distinguished by color) are shown. The
scatter plot collapses convincingly to the diagonal by the time the sample size reaches 5,000
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models, and we take this as evidence that MCMC indeed provided a thorough sample of
the true marginal distribution of each matrix element in both data sets.

Another way to assess MCMC convergence is to look at the per-datum log likelihood
achieved by models from each MCMC run as a function of the order in which these models
were sampled. For the MCMC runs on PBM and ChIP-chip data, shown in Fig. 7b and
7d respectively, the per-datum log likelihood saturated by the time the 50th model was
recorded. The fact that no large jumps in the per-datum log likelihood occurred in any of
the runs after that point strongly suggests that all MCMC runs quickly found the bulk of
the posterior distribution and had ample time to sample it before being terminated.

χ2 Test for Distribution Consistency

In the course of this work we needed to assess the consistency of independently obtained
MCMC distributions for model parameters describing the same TF, either inferred from
different data sets (as in Results) or by MCMC sampling using different matrix widths or
data quantizations. We perform this assessment as follows:

Suppose we have well sampled model ensembles Θ1, . . . ,ΘK , generated by different
MCMC runs. Let µblk and σ2

blk denote the mean and variance of matrix element Mbl in the
distribution Θk. Let us also assume, for these purposes, that all underlying distributions are
Gaussian. The value M∗

bl of Mbl that maximizes the joint likelihood over all K distributions
is then the value that minimizes the χ2 statistic

χ2
bl =

∑
k

(M∗
bl − µblk)2

σ2
blk

. [19]

This statistic is minimized by the weighted average of means

M∗
bl =

∑
k µblk/σ2

blk∑
k 1/σ2

blk

. [20]

This is the best solution to the problem of satisfying all the distributions at once, but it
may not be a good solution: if χ2

bl is too large, then M∗
bl is improbable according to at least

some of the distributions {Θk}. For the different distributions for Mbl to be consistent with
each other, this minimized χ2

bl should not be much larger than its expected value in the χ2

distribution with K degrees of freedom. The p-value, or the probability of finding values
> χ2

bl, therefore provides a convenient element-by-element diagnostic of the consistency
of multiple MCMC runs (e.g., Fig. 3c). Since the Gaussian assumption is generally not
accurate, these p-values should not be interpreted too literally. They do, however, provide
a useful and easy-to-compute diagnostic.
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Robustness of EMA Likelihood Analysis

To test for over-fitting in ΘPBM , we divided Mukherjee et al.’s (5) Abf1p data into two
randomly chosen halves: A and B. For each half of the data, we partitioned the probed
sequences into equi-populated z-bins containing 20 sequences each and ran separate MCMC
samplings. The mean matrix elements in the two resulting ensembles, ΘPBM,A and ΘPBM,B

are shown in Figs. 8a and 8b. Clearly these means are very similar despite being inferred
from two completely disjoint sets of data. Even much of the fine structure in the low
specificity regions of the binding site is similar. The χ2 consistency p-values shown in Fig. 8c
confirm this, revealing no significant discrepancy between the two parameter distributions
for any of the matrix elements.

We also tested whether or not our results were sensitive to how we binned the data.
Fig. 6a and 6b shows the matrix element means deduced from MCMC runs performed with
20 and 50 sequences per z-bin, respectively. Again, these means are very similar, and the
χ2 consistency p-values shown in Fig. 6c confirm the absence of significant discrepancies in
any of the matrix elements. However, we note that MCMC sampling using 50 sequences per
bin was much less efficient, and multiple MCMC replicas were needed to obtain consistent
estimates of the posterior distribution.

We further tested the sensitivity of our predictions to the choice of matrix width.
MCMC runs were performed on Mukherjee et al.’s (5) Abf1p PBM data using matrix
widths ranging from 14 to 26; all enough to encompass the primary Abf1p binding site.
The MCMC ensembles for the shorter matrices tended to have larger matrix elements,
but this is expected because the lack of additional positive energy contributions in the
flanking bases should result in a lower energy cutoff; when this cutoff is normalized to 1,
matrix elements across the entire energy matrix become artificially large. When checking
these MCMC ensembles for consistency, we therefore allowed an arbitrary rescaling for
each. The resulting rescaled energy matrix means from each ensemble are shown in Fig.
9. Chi-squared consistency p-values for these seven different ensembles are shown at the
top (only for matrix elements shared by all MCMC ensembles) and reveal no significant
discrepancies.

Analysis of ChIP-chip Data

Figs. 10 and 11 (mirroring Figs. 1 and 2) show our analysis results for ΘChIP , which was
inferred from Lee et al.’s (6) Abf1p ChIP-chip data (using 50 regions per z-bin instead
of 20). These results are very similar to those obtained for Mukherjee et al.’s (5) PBM
data. Fig. 12 reveals a lack of over fitting in ΘChIP , and Figs. 13 and 14 demonstrate
the insensitivity of these results to the level of z-bin quantization and the choice of matrix
width. We note that, for unknown reasons, MCMC sampling was much more efficient on
this data than on PBM data when coarser z-bin quantizations were used. This allowed us
to test quantizations ranging from 20 to 200 regions per z-bin.
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