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Abstract
There is now good evidence to demon-
strate that aberrations in tumour necrosis
factor (TNF) production in vivo may be
either pathogenic or protective and sev-
eral plausible mechanisms may explain
these contrasting activities. According to
the classic pro-inflammatory scenario,
failure to regulate the production of TNF
at a site of immunological injury may lead
to chronic activation of innate immune
cells and to chronic inflammatory re-
sponses, which may consequently lead to
organ specific inflammatory pathology
and tissue damage. However, more cryptic
functions of this molecule may be consid-
ered to play a significant part in the devel-
opment of TNF mediated pathologies.
Direct interference of TNF with the
diVerentiation, proliferation or death of
specific pathogenic cell targets may be an
alternative mechanism for disease initia-
tion or progression. In addition to these
activities, there is now considerable evi-
dence to suggest that TNF may also
directly promote or down regulate the
adaptive immune response. A more com-
plete understanding of the temporal and
spatial context of TNF/TNF receptor
(TNF-R) function and of the molecular
and cellular pathways leading to the
development of TNF/TNF-R mediated
pathologies is necessary to fully compre-
hend relevant mechanisms of disease
induction and progression in humans. In
this paper, the potential pathogenic
mechanisms exerted by TNF and recep-
tors in models of multi-organ inflamma-
tion, rheumatoid arthritis, multiple
sclerosis and inflammatory bowel disease
are discussed. Elucidating the nature and
level of contribution of these mechanisms
in chronic inflammation and autoimmu-
nity may lead to better regulatory and
therapeutic applications.
(Ann Rheum Dis 1999;58:(Suppl I) I32–I39)

Tumour necrosis factor (TNF) is produced in
response to infection or immunological injury
and eVects multiple responses, which extend
beyond its well characterised proinflammatory
properties1 to include diverse signals for cellu-
lar diVerentiation, proliferation and death.2

Part of the complexity of TNF mediated
responses may be related to the apparent

diVerential bioactivities of its soluble and
transmembrane form3 and the diVerential
functioning of its two tumour necrosis factor
receptors (TNF-Rs).2 TNF has been for many
years at the apex of factors showing dominant
contribution to disease pathogenesis, especially
chronic inflammation and autoimmunity. Its in
vitro activities are now well understood and the
signals transduced by the two TNF-Rs have
been suYciently detailed both at the molecular
and the cellular level. However, the specific role
of TNF and receptors in disease pathogenesis
remains still poorly defined. Data discussed in
this review, point towards multiple in vivo
activities for this molecule. Firstly, the potent
innate inflammatory activities of TNF seem
central to disease induction and progression,
particularly when sustained TNF expression is
provoked. Evidence for direct eVects of TNF
on non-immune stromal cell types, which are
important for the function of a given tissue or
organ, is also available, and may oVer alterna-
tive mechanisms for pathogenic contribution.
Lastly, more recent data indicating direct
modulation by TNF of the adaptive immune
response may also be taken into consideration,
to explain the beneficial or at times detrimental
role of TNF in spontaneous models of autoim-
munity. It is evident that no unique scenario is
available to explain the role of TNF in inflam-
matory or autoimmune pathology. Rather, a
diverse range of activities is expected to
function in each model case, and most
probably also in human disease. In figure 1, we
have summarised the factors aVecting TNF/
TNF-R function in disease. Obviously, the
diverse in vivo functions of TNF may signifi-
cantly depend on the duration, quantity and
quality of TNF signals. In addition, genetic
background, locality and timing of TNF
expression may also modulate the function of
this molecule and diversify the end result of the
immune response, either to the benefit or
distress of the host. Experimental modification
of these parameters in transgenic and knockout
animal models of TNF mediated disease has
been revealing.

Role of TNF in models of rheumatoid
arthritis (RA)
The majority of the joint inflammatory disor-
ders, typified by the manifestations of RA, are
characterised by the hyper-proliferation of
synovial tissue and the infiltration of blood
derived cells resulting in the progressive
erosion of the cartilage and bone. Genetic sus-
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ceptibility, physical stress, infectious agents and
aberrant immune responses have all been
implicated in the pathogenesis of RA.4 The
increased genetic linkage of specific HLA-DR
haplotypes with RA5 and the presence of
experimental models of RA, induced in geneti-
cally susceptible animals after immunisation
with collagen, led to the original assumption of
autoimmune mechanisms playing a dominant
part in both the induction and maintenance of
the disease. However, the contribution of
adaptive mechanisms in the pathogenesis of
RA could not be confirmed at the clinical level,
as both anti-CD4 and anti-CD5 clinical trials
failed to induce a beneficial outcome.6 7

The role of lymphocytes in driving the
arthritogenic response in the popular animal
model of collagen induced arthritis (CIA) has
also recently been challenged. Although T cell
transfers and antibody depleting studies8–10 had
previously established the pathogenic potential
of specific antigen reactive cells in this model,
administration of collagen type II in CD4- and
CD8-deficient mice resulted in the appearance
(albeit with lower incidence) of the typical CIA
profile, failing to provide evidence for an
essential role in disease induction.11 In view of
the conflicting evidence on the role of an adap-
tive pathogenic immune response in CIA, we
recently backcrossed Rag-1 deficient mice
lacking mature lymphocytes into the CIA sus-
ceptible DBA/1 genetic background.12 Colla-
gen type II immunisation of these mice resulted
in the development of arthritic lesions in their
joints characterised by synovial hyperplasia
with occasional inflammation as well as carti-
lage and bone destruction. The observed
delayed onset and reduced severity of disease
suggests that lymphocytes do play a significant,
yet secondary part in disease induction.
Evidence of synoviocyte proliferation in the
absence of inflammation, after collagen admin-
istration in the DBA/1-immunodeficient mice,
indicated an immediate responsiveness of this
cell type to collagen. It may therefore be
suggested that in susceptible genetic back-
grounds, sequestration of collagen resulting
from insults aVecting joint integrity may
activate the synoviocyte and cause pathology.
These, non-antigenic properties of collagen
may oVer new clues as to the mechanisms
operating in the pathogenesis of RA.

Early detection of a broad range of pro-
inflammatory cytokines in RA biopsy speci-
mens and explant cultures, established their
importance in joint inflammation.4 Among
them, the significance of TNF in mediating the
arthritogenic response, has been demonstrated
by the amelioration of arthritic lesions in anti-
TNF treated animal models of arthritis13 14 and
most importantly in human disease.4 Perhaps,

the most informative animal model, as to the
TNF mediated mechanisms operating in ar-
thritis, has been produced by the introduction
of modified human TNF transgene in mice.15

Based on the possible role of TNF 3’UTR on
the translational repression of TNF mRNA,
this region was replaced by that of the â-globin
gene. The resulting transgenic mice developed
a form of erosive arthritis with similar histo-
logical characteristics to RA. A similar form of
arthritis appeared also in targeted mutant mice
lacking the 3’AU–rich elements (TNFÄARE

mutant mice), confirming the role of these ele-
ments in the maintenance of a physiological
TNF response in the joint.16 In addition,
neutralisation of arthritis by treatment of the
hTNF transgenic mice with antibodies against
TNF or the type I IL1 receptor established the
idea that a functional hierarchy exists, in which
the IL1R acts in series and downstream of
TNF to eVect TNF mediated arthritogenic
responses.17

Absence of the 3’ARE elements from the
mRNA of TNF results in chronic polyarthritis.
A proposed mechanism that may aVect the
pathogenic outcome in arthritis, may be the
inability of natural anti-inflammatory signals to
suppress the destructive TNF expression in the
arthritic joint. Anti-inflammatory mediators
such as IL10, IL4 and TGF-â are abundant in
rheumatoid joints, supporting the hypothesis of
a counter-reaction compensating for the in-
creased proinflammatory load.18 19 However,
this equilibrating response is apparently not
suYcient to block disease progression. The
inability of IL10 to eYciently suppress macro-
phage and/or synoviocyte TNF production
because of the absence of the natural TNF
3’UTR (our unpublished observations), postu-
late a possible involvement of mutations aVect-
ing the expression of TNF (for example, func-
tional mutations in TNF’s ARE sequences) as
aetiopathogenic factors in disease initiation or
progression. This is further suggested by the
fact that treatment of hTNF3’globin trans-
genic mice with cellular vectors producing IL4,
IL10 and IL13 did not significantly aVect
development of arthritis in this model.20 The
minimal, if any, role of adaptive immunity in
the development of arthritis in these models
has been confirmed in studies demonstrating
that the course of disease in hTNF transgenic
and TNFÄARE mutant mice is not aVected by the
absence of mature T and B cells.16 21 This is in
agreement with transplantation studies show-
ing destruction of human cartilage by RA
derived synoviocytes engrafted in the kidney
capsule of SCID mice.22 23

Perhaps most importantly, the ARE deletion
results in a profound spontaneous capacity of
synoviocyte fibroblasts to produce TNF.16 21

Figure 1 The diverse in vivo functions of TNF may significantly depend on the duration, quantity and quality of TNF
signals. In addition, genetic background, locality and timing of TNF expression may also modulate the function of this
molecule and diversify the end result of the immune response, either to the benefit or distress of the host.

Quality

Quantity

Duration

Locality

Developmental timing

Genetic background
Non-specific inflammation

Direct cell effects

Immune activation

Immune suppression

TNF in RA, MS and IBD I33

http://ard.bmj.com


Synoviocytes have been considered pivotal for
the development of the arthritic reaction as
they proliferate in response to TNF24 and pro-
duce extracellular matrix-degradative enzymes
and chemokines.25 26 Their capacity to also
produce TNF as a result of an ARE deletion,
underscores their central role as both target
and eVector cells capable of initiating and
maintaining the arthritogenic response. In an
eVort to assess if the TNF expressing synovial
fibroblast is suYcient to induce disease, we
have recently transferred clones of hTNF
expressing synovial fibroblasts into the knee
joint of histocompatible normal recipients.
Migration of such fibroblasts from the injection
site into other joints and diVerent organs of the
mouse could be demonstrated. Furthermore,
four weeks after engraftment, a percentage of
the mice developed polyarthritis with all the
basic characteristics described for the donor
(David Plows, Sylva Haralambous and George
Kollias, unpublished observations). Interest-
ingly, synoviocytes are seen to behave like
tumour cells and can readily invade and
destroy the environment that they home into.27

In this context, the migration and homing of
transferred TNF transgenic synoviocytes into
multiple joints of recipient mice can be viewed
as a metastatic process and the capacity to form
a tumour mass may also rely on the angiogenic
activities of TNF.

In conclusion, in models of TNF mediated
arthritis, conceivably also in RA, the most
critical phenomenon for both the initiation and
perpetuation of disease seems to be the capac-
ity of TNF to transform the nature of the syno-
vial fibroblast, a cell with immense potential for
unrestricted proliferation and autonomous
invasion into the cartilage or bone. In this con-
text, the contribution of non-specific inflam-
mation and adaptive immunity seems to be in
the regulation rather than initiation of disease.
Understanding further the biology of the syno-
vial fibroblast may oVer new clues on addi-
tional molecules and mechanisms playing criti-
cal parts in the pathogenesis of arthritic
disease.

Role of TNF in models of inflammatory
bowel disease (IBD)
Pathogenesis of idiopathic IBD has been
closely associated with the altered production
of several pro-inflammatory cytokines. More
specifically, the correlation between increased
TNF production and IBD development has
been exemplified in several animal models for
this disease via the use of specific neutralising
antibodies or cytokine gene knockouts.28–30

Most convincing, the central role of TNF in
the pathophysiology of human Crohn’s disease
(CD) has been overtly confirmed in clinical
trials using a single dose of anti-TNF mono-
clonal antibody in patients with treatment
refractory CD.31 Furthermore, a similar to the
human form of IBD appeared also in targeted
mutant mice lacking the 3’AU–rich elements,16

further substantiating the role of TNF in the
development of diseases aVecting the gut. The
gut histopathological characteristics of the
TNFÄARE mice, including transmural inflamma-

tion, granuloma formation and ileal confine-
ment, most closely resemble the human condi-
tion of CD32 providing, for the first time
positive evidence for TNF in inducing this
form of IBD.16

TNF action in IBD has been considered
mainly inflammatory through the activation of
endothelial cells, induction of chemokines, and
recruitment of neutrophils in the gut mucosa.33

TNF has been shown to influence intestinal
epithelial cell growth,34 permeability,35 and
integrity via matrix metalloproteinase (MMP)
production36 and to induce epithelial cell
apoptosis.37 In addition, TNF has been impli-
cated in the formation of bacterial induced
granulomas through the induction of MCP-1
production by endothelial cells.38 Intestinal
epithelial damage is considered an early
histopathological manifestation in CD39 sup-
porting the assumption that TNF plays a cen-
tral part in initiating mucosal events in IBD.
However, the action of TNF in the TNFÄARE

model of CD does not seem to be solely of an
innate pro-inflammatory character. Intestinal
pathology in these mice is heavily dependent
on the presence of mediators or cells of the
adaptive immune response, because in the
absence of mature lymphocytes (for example,
in backcrosses to Rag-1 deficient mice) intesti-
nal inflammation is neutralised.16 It is therefore
possible that the chronic TNF production
resulting from the ARE deletion shapes up a
pathogenic lymphocytic response. TNF pro-
duction has been numerously suggested to
drive pathogenic Th1-like responses in concert
with both IL12 and IFNã.40–44 Interestingly,
activated mucosal T cells from CD patients
demonstrate a characteristic Th1 cytokine pro-
file associated with active disease.45 Further-
more, a significant reduction of Th1-like
lamina propria mononuclear cells has been
reported in CD patients treated with the cA2
anti-TNF antibody, suggesting that anti-TNF
treatment may proceed through the down
regulation of mucosal Th1 cytokines.46

Our observation that in TNFÄARE mice, IBD
progression is also dependent on the function
of the p75TNF-R, a receptor that is expressed
mainly on hemopoietic cells, raises the intrigu-
ing possibility that TNF overproduction
modulates the pathogenic response via the uti-
lisation of this receptor. A suggested mecha-
nism to explain disease pathogenesis in murine
IBD has been provided by the CD4+ T cell
transfer model of colitis.29 In this model a T
helper cell population (CD4+CD45RBhigh) iso-
lated from healthy mice, elicits an aggressive
from of colitis upon transfer to SCID mice.
Anti-TNF/IFNã treatment ameliorates disease
progression indicating that this population eli-
citis pathogenic Th1 responses. In addition, a
counteracting T regulatory population
(CD4+CD45RBlow) can suppress disease in-
duction upon co-transfer. The presence of such
regulatory T cell subsets in gut mucosa
indicate a general homeostatic mechanism that
should exist in this locality to counter balance
the proinflammatory state resulting from the
continuous bacterial assault from the gut
lumen. Our data predict that the abnormal

I34 Kollias, Douni, Kassiotis, et al

http://ard.bmj.com


TNF production results in the activation of the
pathogenic T cell compartment, either through
pro-inflammatory mechanisms or via direct
suppression of the immunomodulatory com-
partment. It is even more appealing to predict
that engagement of the p75TNF-R is diVeren-
tially providing the suppressive signal for regu-
latory T cell populations. Mechanistically,
chronic TNF production can induce a state of
hypo-responsiveness via attenuation of TCR
signalling47 and/or induction of apoptosis.48 49

It remains unclear if localised or systemic
events are necessary for the IBD phenotype to
develop in the TNFÄARE mice. In many animal
models of IBD, a central immunological
imbalance, for example, deficiency in IL2,
TCRáâ, or overexpression of CD3, the pro-
found alterations in T cell compartments
favour the development of the disease.50 It is
therefore possible, that a central (thymic)
deregulation will favour the development of the
disease in TNFÄARE mice. In light of what has
been discussed so far, it is possible that TNF
mediated dysregulation may impair the
homeostatic interaction of these compartments
leading to the expansion of pathogenic specifi-
cities. Further use of transgenic and mutant
TNF mice as models of IBD, should allow bet-
ter understanding of the intriguing activities of
TNF in mucosal immunity.

Role of TNF in spontaneous and antigen
induced models of multiple sclerosis
(MS)
A pivotal role for TNF in the pathogenesis of
inflammatory demyelinating disease of the
central nervous system (CNS) has been
suggested in several studies of MS in humans
and in experimental autoimmune encephalo-
myelitis (EAE), an established autoimmune
model for human MS. TNF is overproduced in
the serum and cerebrospinal fluid of MS
patients51 and by resident and infiltrating cells52

at sites of CNS injury. TNF can induce selec-
tive cytotoxicity of oligodendrocytes in vitro53

and myelin damage in brain slices,54 and is
therefore directly implicated in the demyelinat-
ing process. The established activities of TNF
in the initiation and maintenance of local
inflammation, which are mediated by its known
inductive eVects on adhesion molecule
expression55 and macrophage activation,56 may
also contribute to the CNS lesions. In EAE,
anti-TNF treatment completely prevents ini-
tiation of pathology and ameliorates the
progression of established disease.57 58 More-
over, similarly to the organ specific inflamma-
tory phenotypes obtained in several TNF over-
producing transgenic and mutant mice,15 16 59 60

TNF overexpression in the CNS of transgenic
mice has revealed the potential of this cytokine
to induce an inflammatory CNS demyelinating
disease.61 62 In these transgenic models, TNF
triggered CNS demyelinating disease is charac-
terised by oligodendrocyte apoptosis, primary
demyelination, and lymphocyte and macro-
phage infiltration of the CNS, resulting in loss
of neural function.63 Thorough characterisa-
tion of the demyelinating process at the
histological level has validated TNF transgenic

mice as accurate models for MS.63 The mecha-
nism of action of TNF in these models is not
fully defined, but it could predictably involve
recruitment and activation of macrophage/
microglia, direct cytotoxicity of oligodendro-
cytes and/or triggering of a quiescent myelin
reactive encephalitogenic component. How-
ever, removal of the mature lymphocytic popu-
lation in these mice, by means of backcrossing
to the immunodeficient Rag-1 knockout strain,
did not change the development of primary
demyelination demonstrating that TNF medi-
ated pathology in this model does not require
the adaptive arm of the immune response.64

Similar mechanisms leading to primary demy-
elination with minimal, if any, immune involve-
ment might also operate in MS.

The important role of TNF in inflammatory
demyelination has also been examined in TNF
deficient mice generated by gene targeting in
embryonic stem (ES) cells. Myelin basic
protein (MBP) induced EAE in TNF deficient
mice crossed to the SJL/J strain was consider-
ably delayed compared with an SJL.H-2b con-
genic control or the SJL/J strain itself,65 in
agreement with myelin oligodendrocyte glyco-
protein (MOG) induced EAE in TNF or
p55TNF-R deficient mice.66–68 However, al-
though TNF deficiency reproducibly delays
the onset of EAE in diVerent models of the dis-
ease, severe EAE with perivascular inflamma-
tion and primary demyelination eventually
develops in TNF deficient mice,65 66 indicating
that other mediators may compensate for the
absence of TNF during these processes.
Although a more extensive quantitative com-
parison of the level of demyelination in wild
type and TNF deficient mice is necessary, it is
evident that TNF is not an obligatory mediator
in the demyelinating process. The use of MBP
as immunogen for EAE induction in TNF
deficient mice also allowed an assessment of
the role of TNF in autoimmune T cell
development in general. The specificity of the
T cell response of H-2b mice to MBP maps to
a part of the molecule69 that is expressed in the
thymus of SJL mice70 and the role of this thymic
expression of MBP in T cell negative selection
has recently been established.71 72 In light of the
ability of TNF to attenuate T cell receptor
signalling,47 a prediction has been put forward73

that TNF expression imbalances in the thymus
would have an eVect on autoreactive T cell
negative or positive selection. If TNF were
influencing the strength of antigenic stimula-
tion of thymocytes by a given autoantigen, it
would possibly aVect the susceptibility to the
disease induced by this selecting autoantigen.
However, analysis of the T cell responses of
TNF deficient mice to MBP demonstrated that
the avidity and the peripheral response of auto-
reactive T cells to MBP and the incidence and
severity of MBP induced EAE in mice are not
influenced by the TNF deficiency.65 This result
argues against an involvement of TNF in the
generation and function of MBP specific self
reactive T cells.

In conclusion, the important role of TNF in
the development of inflammatory demyelina-
tion in the CNS has been revealed both in
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spontaneous models of transgenic TNF over-
expression in the CNS and in the antigen
induced EAE model. In the former, TNF is
clearly shown to cause primary demyelination.
In EAE, TNF deficiency is shown to delay the
onset of clinical disease. Studies in knockout
mice have been useful in revealing the essential
properties of disrupted genes as well as their
redundant functions. For example, the finding
that TNF deficiency does not completely
prevent the development of demyelination
during EAE underscores the existence of alter-
native pathways of demyelination. In that
sense, the concept that there may be a single
immunological pathway ultimately causing
pathology in MS, is probably too simplistic.
The presented studies indicate the existence of
at least two distinct and seemingly independent
immunological pathways leading to clinically
indistinguishable types of myelin pathology
classified in humans as “MS”. Coexistence of
multiple demyelinating pathways operating in
concert could also explain the apparently
unsuccessful trials of anti-TNF/LTá74 75 or,
anti-CD4 treatment76 in established MS. Alter-
natively, mechanisms of disease induction as
seen in the animal models, suggest that
anti-TNF treatments in MS may be more eY-
cacious at earlier stages where leucocyte
traYcking and non-specific inflammation
should play a most critical part in the amplifi-
cation and perpetuation of disease. As addi-
tional information regarding initiating factors
and common mediators of these pathways will
emerge, better strategies for immune interven-
tion will be discovered.

Role of the p75TNF-R in multi-organ
inflammation
The two TNF receptors are known to mediate,
either in cooperation or independently, a wide
spectrum of cellular responses ranging from
proliferation and diVerentiation to cytotoxicity
or apoptosis.2 77 In addition, soluble forms of
the two TNF-Rs (sTNF-R) have been identi-
fied in biological fluids and are thought to have
regulatory functions by aVecting systemic TNF
bioavailability.78 Although knowledge of the
biochemistry of TNF-R signal transduction is
quite advanced,79 understanding of the in vivo
functions of the two TNF receptors remains
vague. Using TNF or TNF-R knockout mice,
the TNF/p55TNF-R pair was shown to have
an essential role in many physiological proc-
esses including lymphoid organ architec-
ture,80 81 activation induced T cell death,49 and
resistance against bacterial,80 82 83 parasitic,84 or
viral infections.85 A dominant role of the
p55TNF-R has also been apparent in at least
the induction phase of several TNF mediated
pathologies, including endotoxemic shock in
the presence of TNF sensitising agents,82 83 or
in several transgenic models of disease where
deregulated production of TNF has been
pathogenic.15 59 63 In contrast, using p75TNF-R
knockout mice, there has been very little
evidence for a specific involvement of the
p75TNF-R in physiology or experimental
models of disease.2 86 This failure to demon-
strate an in vivo independent activity of the

p75TNF-R in the knockout system, together
with ample in vitro evidence for a cooperative
role of this receptor in p55TNF-R mediated
responses, have led to the concept that the
p75TNF-R serves an accessory role in increas-
ing p55TNF-R signalling.87 It should be noted,
however, that some in vivo functions of this
receptor have been recently revealed in murine
models of cerebral malaria,88 in concanavalin-A
induced hepatitis89 and in the allergen induced
migration of Langerhan’s cells.90 Interestingly,
so far, the in vitro activities of the p75TNF-R
have always been associated with the capacity
of this molecule to induce the proliferation of
thymocytes and peripheral T cells,91 92 but also
the death of activated CD8+ T cells.48 93 Indeed,
in contrast with the p55TNF-R, which is
expressed on almost every cell type, the expres-
sion patterns of the p75TNF-R are restricted to
endothelial cells and cells of haemopoietic
origin,94 95 suggesting that the in vivo activities of
this molecule may only be evident in phenom-
ena involving these specific cell types. In
addition, the well documented preference of the
p75TNF-R to signal upon binding to
transmembrane,3 rather than soluble TNF,96

may hamper attempts to identify an in vivo role
for this receptor in models where soluble TNF
overexpression or p55TNF-R dependent activi-
ties often dominate the ensuing phenotypes.

The independent in vivo activities of the
p75TNF-R, have recently been investigated in
transgenic mice that express constitutively
increased, yet disease relevant levels of a wild
type human p75TNF-R.97 These transgenic
mice carry the entire genomic region of the
human p75TNF-R gene, and expression analy-
sis has revealed that tissue patterns of transgene
expression were comparable to those seen for
the endogenous murine p75TNF-R. Further-
more, fold induction in the levels of wild type
versus transgenic soluble human p75TNF-R,
correlated with increases in the levels of the
sp75TNF-R between healthy and diseased
human sera. It is important to note that
heterozygous transgenic mice producing con-
stitutively, threefold to fourfold higher levels of
soluble hup75TNF-R in comparison with con-
trols, develop a chronic perivascular inflamma-
tory pathology in the liver, pancreas and lung at
2–3 months of age. Moreover, homozygous
mice producing constitutively soluble
hup75TNF-Rs at levels similar to those seen
for the endogenous murine p75TNF-R in LPS
treated normal mice (that is, about 200 ng/ml),
develop a severe pathology characterised by
multi-organ inflammatory lesions, and liver
and pancreas necrosis, that lead to their
premature death between 2 and 4 weeks of
age.97 These results indicate that the severity of
the developing inflammatory phenotypes cor-
relates positively with the levels of soluble
human p75TNF-R measured in diseased sera.
Interestingly, serum sp75TNF-R levels meas-
ured in several human inflammatory diseases,
including AIDS, are usually threefold to
fourfold increased over normal controls,98

while septic shock patients display an approxi-
mately fivefold increase.99 In addition, these
levels strongly correlate with the clinical stage
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and the progression of disease and can be of
predictive value.100

With reference to human disease, a plethora
of studies have indicated that chronic increased
production of the soluble p75TNF-R demar-
cates fatal human inflammatory conditions
including sepsis,99 chronic viral hepatic dis-
eases,101 acute respiratory distress syndrome,102

acute pancreatitis,103 lupus,104 rheumatoid
arthritis105 and AIDS.98 The actual involvement
of soluble TNF receptors in disease pathogen-
esis remains controversial and it has been
suggested that they may act both as antagonists
of TNF action by competing with its cell surface
receptors but also as agonists by protecting TNF
from degradation and therefore stabilising its
activity.78 In addition, shedding of both TNF
receptors occurs in both a constitutive and
inducible manner and is thought to serve in ren-
dering cells temporarily unresponsive to TNF.78

It is conceivable, however, that sustained up-
regulation of the p75TNF-R may lead to both,
an increase of shed soluble receptors levels, but
also to a chronic accumulation of the receptor
on the cell surface. We have confirmed this
hypothesis both in the transgenic system of
p75TNF-R overexpression,97 but most impor-
tantly also in a group of septic patients, where we
have recently detected a parallel upregulation of
the soluble p75TNF-R in their sera and of the
membrane bound form of this receptor on their
peripheral blood mononuclear cells. It is there-
fore evident that increased levels of shed
p75TNF-Rs, as reported in human disease,
reflect a similar upregulation of the membrane
bound form of the receptor that may conse-
quently interfere with immune homeostasis and
disease pathogenesis. Importantly, also, sus-
tained upregulation of the p75TNF-R during
human disease may not be accompanied by
chronically increased levels of TNF. Indeed, in a
recent study investigating kinetics of soluble
TNF-R production after leakage of high doses
of TNF in the circulation of patients undergoing
isolated limp perfusion treatment, it has been
observed that levels of soluble p75TNF-R
remain high, long after TNF disappears from
the circulation, indicating regulatory and per-
haps also functional disengagement from
TNF.106

Interestingly, the lethal inflammatory pheno-
type developing in the hup75TNF-R transgenic
mice is shown to evolve independently of the
presence of TNF, LTá, or the p55TNF-R.97

This finding suggests a physiologically signifi-
cant role for ligand independent signalling of
the p75TNF-R, a receptor known to be
strongly induced during the course of an
inflammatory response.107 There is substantial
evidence in vitro, that induced production of
members of the TNF-R family, such as the
p75108 109 or the p55TNF-R,110 Fas,110

CD40,108 111 or the p75NGF-R112 may lead to
spontaneous signalling even in the absence of
ligand. The in vivo relevance of this phenom-
enon, especially for the p75TNF-R, may be of
pivotal importance in many clinical conditions
including sepsis. Notably, although the TNF/
p55TNF-R system seems to operate only in an
initial narrow window of time during clinical

sepsis,113 soluble p75TNF-R levels are found
constantly increased, correlate with sepsis
scores and show maximal values in patients
that do not survive.99 After the disappointing
outcome of anti-TNF trials in sepsis, it is
tempting to speculate that the increased mor-
tality seen specifically in patients treated with a
soluble p75TNF-R-IgG protein,114 may have
been attributable to an agonistic eVect of this
specific construct on the endogenous cell sur-
face p75TNF-R either by interference with the
shedding of this receptor or by mounting an
agonistic humoral immune response. Taking
into account the observed adverse eVects of
enhanced p75TNF-R production in trans-
genic mice, it is conceivable that strategies
aiming at inhibiting induced self association or
constitutive signalling of this receptor may
oVer new opportunities of interfering thera-
peutically with its putative harmful involve-
ment in disease pathogenesis.
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