
Jaks and Stats as therapeutic targets

John J O’Shea, Roberta Visconti, Tammy P Cheng, Massimo Gadina

Abstract
Cytokines have critical functions in regu-
lating immune responses. A large number
of these factors bind related receptors
termed the Type I and Type II families of
cytokine receptors. These receptors acti-
vate Janus kinases (Jaks) and Stat family
of transcription factors. The essential and
specific function of Jaks and Stats is
particularly well illustrated by human and
mouse mutations. The possibility that
these molecules could be targeted to
produce novel immunosuppressive com-
pounds is considered in this review.
(Ann Rheum Dis 2000;59(suppl I):i115–i118)

Many of the cytokines involved in immune and
inflammatory responses bind to receptors
designated as Type I cytokine receptors. For
instance, the receptors for interleukins (IL) 2 to
IL7, IL9 to IL13 and IL15, all belong to this
family. Also included in this family are the
receptors for ciliary neurotrophic factor, leukae-
mia inhibitory factor, oncostatin M and cardio-
tropin 1. The receptor family also binds
hormones, like erythropoietin (EPO), throm-
bopoietin, prolactin (PRL), growth hormone
(GH) and leptin, and colony stimulating factors
(CSF), such as granulocyte CSF and
granulocyte/macrophage CSF. Closely related
are the Type II cytokine receptors that bind
interferons (IFNs) and IL10. Both Type I and
II receptors have no intrinsic enzymatic activity.
However, the membrane proximal segment of
these receptors is conserved and is responsible
for binding Jaks. Indeed, it has become clear
through a variety of studies that Jaks play a piv-
otal part in signalling via this family of cytokine
receptors. Upon ligand binding, Jaks are
activated and initiate signalling by phosphor-
ylating cytokine receptors. The phosphorylated
receptors, in turn, are recognised by various
signalling molecules, one important class of
which is the Stat (signal transducer and activa-
tor of transcription) family of DNA binding
proteins. Stats also have specific and essential
functions in cytokine signalling. Consequently,
it is of interest to consider these molecules as
potential therapeutic targets.

Janus kinases
The Janus kinase family is a small family of
protein tyrosine kinases; only four vertebrate
Jaks have been identified (Jak1, Jak2, Jak3 and
Tyk2). The essential functions of the Jaks in
signalling by interferons and cytokines were
first established using a panel of mutagenised
cell lines made resistant to the eVects of inter-
ferons.1 Through reconstitution experiments, it
was first shown that Jaks are required for inter-

feron signalling and it is now recognised that all
type I and II cytokine receptors activate various
Jaks.2 3 Some Jaks (Jak1, Jak2 and Tyk2) are
used by a variety of cytokine receptors, whereas
Jak3 is used only by cytokines whose receptors
comprise the common cytokine ã chain, ãc.
The pivotal function of the Jaks is best
illustrated in mice or humans deficient in these
kinases. The first deficiency of a mammalian
Jak was identified in a human disease.4 5 Severe
combined immunodeficiency (SCID) com-
prises various disorders manifested by T and B
lymphocyte abnormalities, associated with se-
vere infections early in life. The most common
form of SCID, X-SCID, is attributable to
mutations of ãc, which results in impaired sig-
nalling via all the cytokines that utilise this
receptor subunit (IL2, IL4, IL7, IL9 and
IL15). As Jak3 associates with ãc, the possibil-
ity of Jak3 mutations was investigated in
selected SCID patients and we demonstrated
that mutation of either ãc or Jak3 leads to the
same functional defects. Shortly thereafter Jak3
knockout mice were generated, and they, too,
have defects of T, B and NK cells; no other
defects have been reported.6–9 The T and B
lymphocyte abnormalities in ãc and Jak3
deficient mice and humans are principally
attributable to the failure of IL7 signalling, as
mice and humans with IL7R mutations also
have SCID.10 In contrast, defective NK devel-
opment in SCID patients is probably the result
of defective IL15 signalling.11 12

Unlike Jak3, deficiency of Jak1 and Jak2
results in more diverse abnormalities.13–15 Jak1
-/- mice die perinatally, apparently because of
impaired neurological development.13 Like
Jak3 -/- mice, Jak1 knockout mice also have
SCID. This is explained by the fact that Jak1
binds the ligand specific subunit of ãc using
receptors. Other cytokine receptors that re-
quire Jak1 include: gp130 cytokine receptors
(for IL6, LIF, OSM, CNTF, and IL11) and
Type II cytokines receptors (for IL10, IFNá,
IFNâ, and IFNã).

In contrast with Jak3 and Jak1 deficient
mice, Jak2 knockouts die as embryos because
Jak2 is essential for EPO signalling and Jak2 -/-
mice do not form blood.15

The critical function of Jaks is supported by
another body of evidence. Specifically, chromo-
somal translocations involving the 3’ region of
Jak2 gene and the 5’ region of the Tel
transcription factor gene have been associated
with leukaemia.16–19 Experimentally it has been
established that uncontrolled Jak2 signalling
produced by this fusion is transforming.

At present, the three dimensional structure
for any of the Jaks is still lacking, so our under-
standing of Jak structure is quite limited. Over-
all conservation of Janus kinases has been
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noted and the regions of homology are termed
Janus homology (JH) domains. The C-terminal
tyrosine kinase or JH1 domain is the catalyti-
cally active portion of the molecule. Amino
terminal to the kinase domain is a segment
homologous to a kinase domains but which
lacks catalytic activity. This segment is termed
the pseudo kinase or JH2 domain and is
unique; no other mammalian tyrosine kinase
has such a domain. While it lacks catalytic
activity, this domain seems to a have regulatory
function.20–22 The association with cytokine
receptors is mediated by the N-terminus of the
Jaks. For Jak3, a relatively small portion of the
molecule confers most of its ability to bind
ãc.23 24 For other Jak/receptor interactions, the
segments mediating this interaction may be
more extended than those of Jak3.25 26

As Jaks are essential elements in cytokine
signalling, it has been widely recognised that
these kinases might be reasonable targets for
the development of novel immunosuppres-
sants.27 Because Jak3 deficiency has such
specific defects (that is, limited to lymphoid
cells), it has been suggested that this kinase
might be a particularly good target.27 Con-
versely, based on the phenotypes of the knock-
out mice, Jak1 and Jak2 would not be expected
to be good targets; the toxicity of targeting
these kinases might be substantial.

Before answering the question of whether
the development of a Jak3 inhibitor is feasible,
it is reasonable to ask whether the development
of any specific protein kinase inhibitor is
attainable. The answer, though, seems clear;
Bcr-Abl, EGFR, HER2, and protein kinase C
(PKC) inhibitors are currently in Phase I and
II clinical trials.28 Moreover, delineating the
three dimensional structure of various tyrosine
kinases should facilitate the development of
specific inhibitors.29–31

A number of compounds have been reported
to be Jak inhibitors.32–41 Exactly how specific
they are for Jaks and in particular, Jak3 in vitro
and in vivo, has yet to be firmly established.
None the less, given their unique structure, it
should be possible to generate Jak specific
inhibitors. However, developing a Jak3 specific
inhibitor may be more challenging. For in-
stance, the most widely tested compound, the
tyrphostin AG-490, inhibits both Jak2 and
Jak3. The likelihood that a Jak2 inhibitor would
cause unacceptable toxicity (for example, cyto-
penias), seems considerable.

Stats
After Jaks are activated by cytokine binding to
cognate receptors, they phosphorylate receptor
subunits, creating docking sites for various sig-
nalling molecules. Signal transducers and acti-
vators of transcription (Stats), latent cytosolic
transcription factors, bind to phosphorylated
cytokine receptors via their SH2 domains; dif-
ferent Stats bind to specific cytokine recep-
tors.1 2 42 43 Stats in turn, are phosphorylated by
Jaks, eVecting their dimerisation via reciprocal
SH2-phosphotyrosine interactions. This leads
to their nuclear translocation where they regu-
late gene transcription. Stats bind two types of
DNA motifs, ISREs (IFN stimulated response

elements, consensus AGTTTNCNTTTCC)
and GAS elements (ã activated sequence, con-
sensus TTCNNNGAA). Thus, as the name
implies, Stats serve essential functions in
rapidly transducing signals from cytokine
receptors to the nucleus, where they bind DNA
and regulate gene transcription. These func-
tions are readily explained by Stat structure;
indeed in the case of the Stats, we are more
fortunate than with the Jaks, as the three
dimensional structure of this family of tran-
scription factors has been solved. Stat mol-
ecules consist of a central DNA binding
domain flanked by a coiled-coiled domain that
binds other transcription factors and co-
activators.44 45 They also have an N-terminal
domain involved in dimer-dimer interactions.46

C-terminal of the DNA binding domain is a
linker domain followed by the SH2 domain
and a conserved site of tyrosine phosphoryla-
tion. The C-terminus of the Stats is variable
and contains the transcriptional activation
domain. Some Stats are also phosphorylated
on a conserved serine residue in the transcrip-
tional activation domain; this seems to be
mediated by a MAPK family member. Re-
cently several studies have pointed to the role of
p38 as the kinase responsible for this
modification47–50 (Visconti et al submitted
data). It is possible that pharmacological
inhibitors of p38 might be therapeutically use-
ful to interfere with Stat activation via this
mechanism.

There are seven mammalian Stats: Stat1,
Stat3, Stat4, Stat5a, Stat5b and Stat6. The
critical functions of Stat1 and Stat2 in
transmitting cytokine dependent signals were
established through the use of mutagenised cell
lines defective in IFN responses; reconstitution
of these cell lines with the missing Stat was
shown to restore signalling.1 Subsequently
various knockout mice have been produced,
which also substantiate the specific and essen-
tial functions of the Stats. Stat1 -/- mice were
found to develop normally but had extreme
susceptibility to viral and some bacterial infec-
tions52 53; entirely consistent with the defects
seen in IFNáR and IFNãR -/- mice and IFNãR
deficient humans. Stat1 also seems to be
important in regulating apoptosis and its
absence is associated with tumorigenesis.54

In contrast, gene targeting of Stat3 leads to
early embryonic lethality.55 Using conditional
knockouts, it has been shown that targeting of
Stat3 in myeloid cells has a dramatic eVect;
these mice have an exaggerated inflammatory
response, which seems to be attributable to the
failure of IL10 signalling.56 Stat4 -/- mice
develop completely normally but have defec-
tive cell mediated immune responses and
T helper (Th)1 diVerentiation and augmented
Th2 development.57 58 This phenotype is en-
tirely consistent with the abnormalities seen in
IL12, IL12R -/- mice, and IL12R deficient
humans, demonstrating an important role for
Stat4 in IL12 signalling and Th1 diVerentia-
tion. Stat6 was originally purified as factor
induced by IL4. Accordingly, in contrast with
Stat4 knockouts, Stat6 -/- mice have defective
Th2 development.59–61 They also have defective

i116 O’Shea, Visconti, Cheng, et al

www.annrheumdis.com

http://ard.bmj.com


IgE response after infection with parasites.
Importantly, they have attenuates experimen-
tally induced allergic and asthmatic disease.
The cytokine IL13 shares a receptor subunit
with IL4; IL13 also activates Stat6 and its
responses are abrogated in Stat6 -/- mice.

Stat5a and Stat5b are 91% identical and can
be activated by the same cytokines; none the
less they have specific functions. Stat5a knock-
out mice have impaired mammary gland devel-
opment and failure of lactation, whereas Stat5b
knockout mice have defective sexually dimor-
phic growth and growth hormone dependent
regulation of liver gene expression.62 63 In dou-
bly deficient, Stat5a/5b -/- mice, T cells
develop but they are very abnormal; although
the cells fail to proliferate in vitro, the mice
develop lymphoproliferative disease, suggest-
ing a defect in apoptosis.

From these knockouts, the two most useful
targets would seem to be Stat4 and Stat6;
inhibitors could block cell mediated immunity
and allergic responses respectively. But what
would one target in the Stats? Unlike the Jaks,
they do not have enzymatic activity. Their major
function, of course, is to bind DNA and activate
gene transcription and so these properties could
be targeted. The crystal structure of the Stats
demonstrates that the phosphotyrosine-SH2
interaction is the major contributor to their
structure bound to DNA. While logical, at-
tempting to disrupt this interaction seems
formidable. Moreover, the precedents for devel-
oping such an inhibitor are less clear than those
for a kinase inhibitor.

Much progress has been made in the identi-
fication of the molecular basis of cytokine
action. The elucidation of the Jak/Stat pathway
provides a solution to some of the problems of
intracellular signalling, comprising surprisingly
specific and essential functions. Much remains
to be learned about the mechanisms by which
cytokine dependent gene regulation occurs and
we still have a limited understanding of the
complex interplay among the various signalling
pathways and the means by which diVerent
transcription factors work in concert to regu-
late gene expression. None the less, the numer-
ous recent advances enable us to define the
targets for the development of novel therapies.
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