
Eronen et al.: HaploRec: Efficient and accurate large-scale reconstruction of haplotypes

Additional file 1: Algorithms, proof of convergence, and complexity analysis

1 Algorithms

Given one of the models we defined — fixed-order Markov chain, variable-order Markov chain, or the

segmentation model — and its parameters, we can in principle estimate the probability of any given

haplotype. Consequently, assuming independence between the two haplotypes of an individual

(Hardy-Weinberg equilibrium), we can estimate the probability of any haplotype configuration of any

genotype. We reproduce the central equations here for reference.

Fixed-order Markov model:

P (H) = P (H(1, d))
∏

i=d+1,...,ℓ

P (H(i) | H(i − d, i − 1)) (1)

Collection of frequent fragments:

Fminfr = {frag(h, i, j) | 1 ≤ i ≤ j ≤ ℓ,F(frag(h, i, j)) ≥ minfr}, (2)

Variable-order Markov model:

P (H) = P (H(1))
∏

i=2,...,ℓ

P (H(i) | H(si, i − 1)) (3)

Segmentation model:

P (H) =

∑

S∈S q|S|−1 ·
∏

(si,ei)∈S P (H(si, ei))
∑

S∈S′ q|S|−1
(4)

The algorithmic problem is twofold: the haplotype reconstruction method has to simultaneously learn the

model parameters and reconstruct the individual haplotypes. Our haplotype reconstruction

algorithm,HaploRec, is based on maximum likelihood estimation with the EM algorithm [1,2]. For

finding frequent fragments and computing their frequencies in the M-step of the algorithm, we use

depth-first search. In the E-step of the algorithm, we use a sequential pruning approach to avoid the

computational complexity of enumerating all possible haplotype configurations. Efficient computation of

the models during the E-step is also crucial for the practical applicability of the method. In the following,

we describe each of these components of the HaploRec algorithm in detail.

1



Algorithm 1 HaploRec(G, P, ǫ, B,C,minfr,maxlen)

1: {Ht is the set of reconstructed haplotypes in step t}
2: {weightt(H) is the frequency of haplotype H in Ht}
3: {Parameter initialization step:}
4: F0 :=ComputeFrequentFragments(G, [Equation 6], minfr, maxlen);
5: L0 := −∞; ∆L := ∞; t := 1;
6: while ∆L > ǫ do

7: Ht := ∅;
8: weightt(H) := 0 for all H;
9: {Haplotype reconstruction step:}

10: for all G ∈ G do

11: C t
G = ReconstructOneGenotype(G,P,Ft−1, B,C);

12: for all {H1,H2} ∈ C t
G do

13: Pt({H1,H2} | G) := Pt({H1,H2})
P

{H,H}∈C t
G

Pt({H,H})
;

14: Ht := Ht ∪ {H1} ∪ {H2};
15: weightt(H1) := weight(H1) + 1

2|G|Pt({H1,H2} | G);

16: weightt(H2) := weight(H2) + 1
2|G|Pt({H1,H2} | G);

17: end for

18: end for

19: {Parameter estimation step:}
20: Ft =ComputeFrequentFragments(Ht, weightt, minfr, maxlen);
21: Compute the likelihood Lt according to Eq. 5;
22: ∆L := Lt − Lt−1; t := t + 1;
23: end while

The overall structure of HaploRec

HaploRec (Algorithm 1), is a modified version of the EM algorithm. The algorithm aims to find a

maximum-likelihood estimate for the model parameters F , by iteratively improving estimates for (1) the

model parameters (lines 4 and 20) and (2) the haplotypes of each individual (line 13), where the likelihood

is defined as

L(G | F) =
∏

G∈G

∑

{H1,H2}∈CG

P ({H1,H2} | F). (5)

HaploRec terminates when the change between consecutive likelihoods, ∆L, is smaller than the

parameter ǫ (line 6). Our modifications to the EM algorithm [2] consist of (a) a sequential pruning

strategy, used to reduce the number of haplotype configurations considered, and (b) the use of

fragment-based haplotype probability models instead of a multinomial model.

The sequential pruning strategy is implemented by the subroutine ReconstructOneGenotype

(line 11). This routine enumerates the haplotype configurations of each genotype and computes their

probabilities, given a haplotype probability model (P ) and the current estimate of the haplotype fragment

probabilities (Ft). When the number of markers is large, it is not practical to go through all possible
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haplotype configurations, and ReconstructOneGenotype will only return a restricted number of the

most probable configurations, with parameters B and C controlling the pruning. We explain the pruning

strategy in more detail below.

Parameters of the three models are slightly different. In the Markov models, the parameters are the

conditional allele probabilities; in the segmentation model, the parameters are the fragment probabilities.

In practice, the conditional probabilities are derived from fragment probabilities as follows:

P (H(i) | H(i − d, i − 1)) =
F(H(i − d, i))

F(H(i − d, i − 1))
,

where d is the number of previous markers conditioned on and F(H) denotes the estimated probability

(frequency) of fragment H. As conditional probabilities can be straightforwardly derived from fragment

frequencies, we always use the set of fragments as a representation for the model parameters, also in the

case of the Markov models. The fragment frequencies are re-estimated at each parameter estimation step

(line 20). Subroutine ComputeFrequentFragments is used to implement this and is controlled by

parameters minfr and maxlen. We explain this in more detail later, too.

We start by explaining the EM-steps performed by HaploRec.

Expectation-Maximization

HaploRec performs at each iteration t (loop between lines 6 and 23), the following two steps:

Haplotype reconstruction step In this step (line 13 in HaploRec) we calculate, for each G ∈ G, and each

compatible haplotype pair {H1,H2} ∈ CG, the probability that the genotype actually consists of that

haplotype pair:

Pt({H1,H2} | G) = P ({H1,H2} | G,Ft−1) =
P (H1 | Ft−1)P (H2 | Ft−1)

∑

{H,H}∈CG
P (H | Ft−1)P (H | Ft−1)

.

The model parameters, Ft−1, are obtained from the previous parameter estimation step. The denominator

is just a normalization factor.

Parameter estimation step In this step (line 20 in HaploRec), fragment frequencies Ft are estimated,

conditioned on the previous resolution probabilities. The resolution probabilities from the haplotype

reconstruction step give the expected frequency of any haplotype in a given genotype. In a given genotype,

the frequency of a haplotype fragment is thus obtained by a sum over all those haplotypes that match the

fragment. Finally, the overall frequency of a fragment is obtained as an average over all genotypes:

Ft(h) =
1

2|G|

∑

G∈G

∑

{H1,H2}∈CG

Pt({H1,H2} | G)δh,{H1,H2},
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where δh,{H1,H2} = |{i ∈ {1, 2} | h matches Hi}| ∈ {0, 1, 2} is the number of haplotypes in configuration

{H1,H2} that match h.

Parameter initialization step The initial frequencies, F0, are computed somewhat similarly as in the

parameter estimation step. The difference is that there is not yet any information about the probability of

different haplotype configurations, and thus all configurations of a genotype must be considered equally

likely. The number of haplotype configurations compatible with a genotype G is exponential in the number

of heterozygous markers in G, and enumerating all the possible configurations in CG is thus infeasible.

Fortunately, the initial frequencies can be counted directly from the genotype data as follows, without

explicitly generating the elements of CG:

F(frag(h, i, j)) =
1

2|G|

∑

G∈G,G matches frag(h,i,j)

21−kG(i,j) , (6)

where kG(i,j) is the number of heterozygous markers in genotype fragment G(i, j) (note that a homozygous

genotype has two identical haplotypes both matching the fragment, and thus weight 2).

Convergence As already observed above, HaploRec terminates as soon as no substantial changes occur

between consecutive computed likelihoods (this is represented by the condition ∆L > ǫ on line 7 in

HaploRec). The EM algorithm is guaranteed to converge to a local maximum of the likelihood, as long

as the M-step always improves the likelihood from the previous iteration. When using the fixed-order

Markov model (Equation 1), the frequency-counting procedure used to estimate the model parameters

always finds the maximum-likelihood values for the model parameters (conditioned on the haplotype

estimates from the previous E-step), assuming that all haplotype configurations are enumerated in the

haplotype reconstruction step, i.e., without pruning (see section Proof of convergence below).

In general, however, we cannot guarantee the convergence to a local maximum. For the variable-order

Markov model the context lengths can be different at each iteration, and for the segmentation model, the

set of possible segmentations varies between iterations. For these more complex models, it is not

theoretically guaranteed that the frequency-counting procedure that is used to update the parameters in

the M-step improves the likelihood from the previous iteration. In addition, with a large number of

markers, pruning the set of enumerated haplotype configurations is necessary, which further complicates

the analysis. In these cases the algorithm terminates when the likelihood would decrease for the first time.

However, our experiments with a wide range of different data sets indicate that the algorithm performs

well in practice despite this theoretical drawback.
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Subroutine ComputeFrequentFragments

The parameter estimation step and the parameter initialization step are both implemented by depth-first

search in the fragment containment lattice. Given a set of input haplotypes H and a weighting function

weight(H) (the estimated frequency of H), subroutine ComputeFrequentFragments finds all the

fragments with frequency at least minfr and length at most maxlen. Note that the same subroutine can be

used to find the set of frequent fragments (Equation 2) used by the variable-order Markov model

(Equation 3) and the segmentation model (Equation 4), as well as the set of patterns with fixed lengths d

and d + 1 used by the fixed-order Markov model (Equation 1). The subroutine generates all possible

fragments of length one, and recursively extends the fragments to the right as long as the frequencies of

resulting fragments are above the given threshold and the fragments do not exceed the given maximum

length. The algorithm is guaranteed to find all frequent fragments, as frequency decreases monotonically

when a fragment is extended.

Subroutine 2 ComputeFrequentFragments(H, weight, minfr, maxlen)

1: F := ∅;
2: for all markers i do

3: for all a ∈ Ai do

4: depthFirst(frag(a, i, i), H, weight, minfr, maxlen, F);
5: end for

6: end for

7: return F ;

Subroutine 3 DepthFirst(frag(h, i, j), H, weight, minfr, maxlen, F)

1: H′ := {H ∈ H : frag(h, i, j) matches H};
2: F(frag(h, i, j)) :=

∑

H∈H′ weight(H);
3: if F(frag(h, i, j)) ≥ minfr then

4: F = F ∪ {frag(h, i, j)};
5: if j − i + 1 < maxlen then

6: for all a ∈ Aj+1 do

7: depthFirst(frag(ha, i, j + 1), H′, weight, minfr, maxlen, F);
8: end for

9: end if

10: end if

The frequency of a fragment can be efficiently counted by maintaining, for each fragment, a linked list of

haplotypes that match the fragment. This way, each fragment has to be matched only against the

haplotypes that match the prefix of the fragment. Moreover, only the last allele of each fragment has to be

matched against the haplotypes (line 1 of subroutine DepthFirst).

In the parameter initialization step, a slightly modified version of ComputeFrequentFragments is used
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(algorithm not shown). The main difference is that genotypes are used as input instead of haplotypes, and

the weighting is done according to Equation 6 instead of weights obtained from the previous haplotype

reconstruction step.

Subroutine ReconstructOneGenotype

Pruning The haplotype reconstruction step is implemented by the subroutine

ReconstructOneGenotype. The aim is to examine all possible haplotype configurations for each

genotype and compute their probabilities. However, exhaustively going through all possible configurations

is feasible only when the number of heterozygous markers is small (≈ 20 or less). With more markers, we

use a pruning strategy in which the set of possible haplotype configurations is built up marker by marker,

starting from a partial configuration containing only the allele pair at the leftmost marker. (Subroutine 4).

At each step, all partial configurations are extended with the allele pair at the new marker: for

homozygous markers, each configuration is extended with the same allele pair; for heterozygous markers,

there are two possible extensions for each configuration, and only the the B most probable configurations

are propagated to the next step. In the final step, the C(≤ B) most probable configurations are returned.

The approach is greedy; it is not guaranteed that the set of returned configurations consists exactly of the

most probable ones. In preliminary experiments it was found that B = 25 and C = 10 give a reasonable

computational efficiency, while increasing the parameters beyond these values does not significantly

improve accuracy. These values were used in the experiments.

Subroutine 4 ReconstructOneGenotype(G,P,F , B,C)

1: {Ci
G is a set of haplotype fragment pairs compatible with G(1, i)}

2: C1
G := {G(1)};

3: for all markers i ∈ {2, . . . , ℓ} do

4: Ci
G := ∅;

5: {a1, a2} := G(i);
6: for all {H1,H2} ∈ Ci−1

G do

7: Ci
G := Ci

G ∪
{

{H1a1,H2a2}, {H1a2,H2a1}
}

;
8: end for

9: Compute probabilities for elements of Ci
G, using P and F ;

10: Prune away all but the B most probable elements of Ci
G;

11: end for

12: return C most probable elements of Cℓ
G;

Fragment data structure Implementing the haplotype reconstruction step efficiently is crucial for the

practical applicability of the algorithm. In this section we describe the data structures and algorithms used
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for storing the model parameters and efficiently computing the probabilities defined by the models. We

first define some notation for describing the fragment data structure. For all fragments H(i, j), we call

fragment H(i, j − 1) a parent of H(i, j), and similarly call H(i, j) a child of H(i, j − 1). Moreover, fragment

H(i + 1, j) is called the suffix of fragment H(i, j).

The fragments and their frequencies are stored in a set of tries. In the following, we will associate each

fragment with a node of the trie data structure, and interchangeably speak of fragments and nodes of a

trie. There is one trie for fragments starting at each marker. The root node of the trie that contains the

fragments starting at marker i is denoted by tries[i]. The root node represents frag(ǫ, i, i − 1), which is the

empty fragment starting at marker i. Each fragment h contains an array children; for each allele a,

frag(h, i, j).children[a] contains a link to the fragment frag(ha, i, j + 1). For example, the root of the trie at

marker i, tries[i].children, contains links to all fragments of length one at marker i. Each fragment h also

contains a link to its parent, denoted h.parent.

The frequency of each fragment is stored in the corresponding node, but for compatibility with the

previous notation, we will still denote the frequency of H(i, j) by F(H(i, j)). The conditional probability

corresponding to any fragment h is obtained as F(h)/F(h.parent). Finally, each fragment h contains a link

to its suffix (contained in the trie of the next marker), denoted as h.suffix, while suffixes(h) denotes the set

of fragments obtained by recursively following the suffix links starting from h. We define that

suffixes(H(i, j)) also contains the fragment itself, as well as the empty fragment frag(ǫ, j + 1, j).

Efficiently extending haplotype configurations A crucial operation in Algorithm

ReconstructOneGenotype is computing the probabilities of the extended haplotypes based on the

probabilities of their prefixes. In the following, we describe how the fragment data structure is used to

efficiently implement this for each of the models.

1. Markov model of fixed order: Expressing Equation 1 in terms of fragment frequencies gives the

following product:

P (H) = F(H(1, d))
∏

i=d+1,...,ℓ

F(H(i − d, i)

F(H(i − d, i − 1))
.

The computation breaks down into a product of conditional probabilities, with one multiplication in

each extension step. For the fixed-order Markov model extending the probability of a partial

haplotype is simple:

P
(

H(1, i)
)

= P
(

H(1, i − 1)
) F

(

H(i − d, i)
)

F
(

H(i − d, i − 1)
) .

For each partial haplotype H(1, i), a link to the fragment H(i − d, i) (spanning d + 1 last markers of
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H(1, i)) is maintained. The required fragments can be accessed in constant time by alternating

between child and suffix links: for each i, H(i − d, i − 1) is obtained as H(i − d − 1, i − 1).suffix, from

which H(i − d, i) is then obtained as H(i − d, i − 1).children[H(i)].

2. Markov model of variable order: The solution for the variable-order Markov model is very similar to

the case of fixed-order Markov model. The only difference is that now a link to the longest fragment

ending at i, H(si, i), is maintained for each partial haplotype H(1, i), instead of the fragment

corresponding to the fixed context length, H(i − d, i). H(si, i) is obtained from H(si−1, i − 1) as

h.children[H(i)], where h is the longest suffix of H(si−1, i − 1) such that h.children[H(i)] 6= null.

When a suffix link is traversed, the index of the leftmost marker in the new fragment is always one

larger than in the previous marker. Although multiple suffix links may have to be traversed in a

single extension step, the total number of suffix links traversed when reconstructing a single complete

haplotype is thus at most equal to the length of the haplotype, and the amortized cost of a single

extension step is constant.

3. Segmentation model: For the segmentation model, the probability of a haplotype H is computed as a

product of frequencies of fragments that cover H, averaged over all possible segmentations

(Equation 4). The summing of the numerator (denoted by P ′(H(1, k))) over all possible

segmentations, ignoring the normalization factor, can be done with dynamic programming as follows:

P ′
(

H(1, k)
)

=
∑

i:sk,...,k

P
(

H(1, i − 1)
)

F
(

H(i, k)
)

· q,

where sk = min{j : F
(

H(j, k)
)

≥ minfr}, that is, the first marker of the longest frequent fragment

ending at k. This is because each segmentation of H(1,k) contains, as the last fragment, some

fragment ending at k, H(i, k), and the sum of probabilities of all segmentations containing H(i, k) is

just the sum of the probabilities of all the segmentations up to (i− 1), (P (H(1, i− 1))), multiplied by

the probability of the last fragment, P (H(i, k)).

To compute the the sum, the probabilities of partial haplotypes P ′
(

H(1, i)
)

and corresponding

fragment frequencies F
(

H(i, k)
)

are needed for all i : sk ≤ i ≤ k. The probabilities of partial

haplotypes are stored by using a backwards-linked list: each partial haplotype H(1, i) contains a link

to its prefix, H(1, i − 1). As the set of fragments compatible with H and ending at marker k is the

same as the set of suffixes of H(sk, k), the fragments can be enumerated by following the suffix links

from H(sk, k). Thus the probability of each partial haplotype H(1, k) can be computed in time
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proportional to the length of the longest compatible fragment that ends in marker k.

Computational complexity

The time complexity of the method is linear in all important parameters (see section Complexity analysis

below).

The time complexity of the haplotype reconstruction step is O(|G|Bℓ) for the Markov models, and

O(|G| ℓfrBℓ) for the segmentation model, where ℓfr is the length of the longest frequent fragment. In other

words, it is linear in the number of genotypes (|G|), the number of markers (ℓ), and the number of partial

configurations maintained in the reconstruction step (parameter B).

The time complexity of the parameter estimation step is |A| · 2C · |G| · |F| · fravg, where fravg is the average

frequency of frequent fragments and |A| is the number of different alleles.

The complexity of performing a single iteration of the algorithm is thus linear in the number of genotypes

(|G|), the number of best configurations used in the parameter estimation step (parameter C), the number

of different alleles (|A|), the total number of frequent fragments (|F|) and the average (normalized)

frequency of frequent fragments (fravg). In our test cases the algorithm has typically converged in 10 to 20

iterations.

Handling of missing data

Practically all real genotype data sets have some missing values, due to limitations of laboratory methods

used to determine the alleles. The approach taken by most existing haplotyping methods is to impute

alleles (either all possible alleles or only the most probable ones) in the place of the missing ones when

reconstructing a haplotype. The approach in this paper is in contrast with the previous approaches. The

pattern language of haplotype fragments is extended so that also fragments with missing alleles (wild-card

characters) are included in the set of model parameters. When reconstructing a haplotype configuration,

the missing marker of a genotype will be missing also in the reconstructed haplotype configurations. In the

haplotype reconstruction step, the missing alleles are treated equivalently with any other allele; a missing

allele in a fragment only matches a missing allele in a haplotype. This means that no changes need to be

done to the haplotype reconstruction step to account for missing data.

In the parameter estimation step, the frequency of a fragment with a missing allele is obtained as the sum

of frequencies of the matching full haplotype fragments. A problem that has to be solved when estimating

frequencies of fragments in the presence of missing data is how a haplotype containing missing data
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contributes to the weight of a matching fragment that has a non-missing allele in at least one marker that

is missing in the haplotype. We solve this by dividing the probability mass of a haplotype over all the

fragments obtainable by imputing all possible alleles in the missing marker, weighted by the allele

frequencies at the missing markers:

F
(

frag(h, i, j)
)

=
1

|H|

∑

H∈H,H matches frag(h,i,j)

∏

k:G(k)=∗

F
(

H(k)
)

weight(H),

where F(H(k)) is the frequency of allele H(k) in marker k, and * denotes a missing allele. The required

allele frequencies can be obtained easily as a preprocessing step. This weighting scheme can also be

straightforwardly adapted to work with the parameter initialization step (Equation 6), which works

directly on the genotypes.

Possible improvements to the methods

For reconstructing the haplotypes on the last iteration of the algorithm, it could be useful to develop a

pruning strategy that is guaranteed to find the configuration that has the maximal probability (according

to the learned model), instead of the current greedy approach. For the fixed-order Markov chain, this

should be a relatively simple task, using an adaptation of the well known Viterbi algorithm (see e.g. [3]). It

is however not clear whether the approach is adaptable to the VMM and segmentation models. In the

intermediate iterations of the algorithm, it is not sufficient to only find the single best haplotype pair;

instead, a sample from the set of consistent haplotype pairs is needed.

The current algorithm is somewhat mixed in its representation of the data: the fragments employed by the

models describe local regularities in the data, while complete haplotypes are produced at each

reconstruction step. Only a fixed number of haplotype configurations of each genotype is propagated to the

parameter estimation step. When the number of markers is very large, this may cause a major fraction of

the uncertainty in phase relationships between neighboring markers to be ignored since a list of B

haplotype configurations can only represent alternative phases in log(B) positions. A potential

improvement on this could be to use an adaptation of the Baum-Welch algorithm (see e.g. [3]) instead of

the current approach based on the EM algorithm. Instead of reconstructing complete haplotypes in the

intermediate iterations of the algorithm, only the phase relationships between nearby markers would be

estimated. In the case of a fixed-order Markov model of order d, this would in practice mean estimating

probabilities of partial haplotype configurations of length d + 1. In the final iteration, these conditional

probabilities could then be combined into the most likely complete haplotype configuration, using the

10



equivalent of the Viterbi algorithm. It is, however, unclear whether this approach would be extendable to

the VMM and segmentation models.

2 Proof of convergence

We will prove the local convergence of HaploRec for the Markov model of order d. More specifically, we

consider the HaploRec algorithm without the pruning phase.

Let G = {G1, . . . , GN} be the set of observed genotypes consisting of n alleles. The complete data for G

consists of 2N haplotypes Hi and Hi, for i ∈ [1, N ], each of them given by a sequence of haplotype

fragments, i.e., (1a1 · · · dad, 1a1 · · · (d + 1)ad+1, 2a2 · · · (d + 2)ad+2, . . . , (n − d − 1)an−d−1 · · ·nan), where

iai · · · jaj denotes the fragment consisting of the alleles ak at position k, for k ∈ [i, j].

The parameters which need to be estimated are (1) the probabilities Θ1a1···dad
that alleles a1 · · · ad appear

on the first d positions; and (2) the conditional probability Θiai···(i+d)ai+d
that alleles ai · · · ai+d appear on

positions i, . . . , i + d + 1, given that alleles ai · · · ai+d−1 appear on position i, . . . , i + d − 1. We need to

estimate these probabilities for all such position intervals of length d + 1 (and d for the first interval) and

possible alleles. We will abbreviate the set of all these parameters by Θ. We omit the estimation for the

parameters Θ1a1···dad
since they can be obtained from

∑

a Θ1a1···dad(d+1)a.

Suppose that we have estimates for the parameters in Θ, then we can define for each genotype Gi, for

i ∈ [1, N ], the function fi(Gi,H,H | Θ) which is equal to 0 in case H and H are not compatible with Gi; is

equal to

2Θ1a1···dad

n−d
∏

i=1

Θiai···(i+d)ai+d
Θ1ā1···dād

n−d
∏

j=1

Θjāi···(j+d)āj+d

in case H 6= H; and equal to (Θ1a1···dad

∏n−d

i=1 Θiai···(i+d)ai+d
)2 otherwise. Here, the ai’s denote alleles in

the fragments in H; similarly the āi’s denote the alleles in the fragments in H.

Furthermore, for each genotype Gi ∈ G, we define the probability distribution

P (H,H|Gi) =
fi(G,H,H)

∑

H,H fi(G,H,H)
(7)

We then proceed as in the standard EM algorithm by defining the expectation function Q and obtain the

update rules for the parameters in Θ by maximizing Q through the computation of the partial derivatives.

Hence, first we define the function

Q =

N
∑

i=1

∑

(Gi,H,H)

P (H,H|Gi) log(fi(G,H,H | Θ0)) −
n

∑

i=1

λi(
∑

ai···ai+d

((Θiai···(i+d)ai+d
)0 − 1)),
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in which we include Lagrangian multipliers λi to force the parameters in Θ to sum up to one. Note that Q

involves two sets of parameters Θ (i.e., the current set of parameters, implicitly present in P ) and Θ0 (i.e.,

the new parameters to be estimated).

We then maximize Q by taking the partial derivatives in Q with respect to the parameters in Θ0 and λi,

for i ∈ [1, n], and equating the obtained formulas to zero. A standard calculation shows that Q is

maximized by choosing new values for parameters in Θ as follows:

Θiai···(i+d)ai+d
=

1

2N

N
∑

i=1

∑

(Gi,H,H)

P (H,H|Gi)δiai···(i+d)ai+d,{H,H̄}, (8)

where δh{H,H} = 0, 1, 2 depending on whether the fragment h does appear in neither H nor H; appears

only in H or H; or appears in both. Note that Equations (7) and (8) are exactly the Expectation and

Maximization steps performed by HaploRec.

3 Complexity analysis

We analyze the time requirement of the algorithm in two separate parts: the parameter estimation step

and the haplotype reconstruction step. Each step is executed once at each iteration. The total complexity

is the sum of the complexities of these two steps, multiplied by the number of iterations.

Haplotype reconstruction step The dominating factors of the complexity of the haplotype reconstruction

step (subroutine ReconstructOneGenotype) are the number of genotypes (|G|) and number of markers

(ℓ). For the segmentation model, the complexity of each haplotype extension operation depends on the

length of the matching fragments, which is bounded by the maximum fragment length (ℓfr). Parameter B

governs the number of best partial haplotype configurations that are maintained in memory during the

haplotype reconstruction step. Recall that |G(i)| ∈ {1, 2} for all i: at each marker, each of the B previous

configurations is extended with 1 (in the case of a homozygous marker) or 2 (heterozygous marker) partial

configurations of length 1. In the case of a heterozygous marker, the most improbable half of the new

configurations is pruned away. At most 2B extension operations are done at each step, and each operation

involves extending both haplotypes of a partial configuration. There are thus in total 4B haplotype

extension operations. For the Markov models, each extension operation takes constant time; for the

segmentation model it takes time linear in the length of the longest frequent fragment ending at the new

marker. Reconstructing one genotype thus uses O(Bℓ) time for the Markov models, and O(ℓfrBℓ) time for

the segmentation model, where ℓfr is the length of the longest frequent fragment. Consequently, the total

complexity of the haplotype reconstruction step is O(|G|Bℓ) for the Markov models, and O(|G|ℓfrBℓ) for
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the segmentation model.

Parameter estimation step The main parameters determining the time complexity of the parameter

estimation step (subroutine ComputeFrequentFragments) are the number of genotypes (|G|), number

of frequent fragments (|F|) and parameter C, which gives the number of best configurations for each

haplotype that are considered in the fragment search.

For a Markov model of a fixed degree d, |F| is bounded by
∑

s<ℓ−d+1

∏

s<i<s+d−1 |Ai|, which can be

expressed more simply as (ℓ − d + 1)(d + 1)|A| when Ai ≤ A for all i (i.e. when A bounds the number of

alleles in all markers). For the other proposed models, the set of fragments is restricted by a frequency

threshold; there is no upper limit to the length of fragments, besides the length of the marker map, and no

upper limit for |F| can be derived easily; therefore, |F| is an constant term in the complexity.

Consider now the number of times each fragment h ∈ F has to be matched with a haplotype (line 2 of

subroutine DepthFirst). If we denote the set of haplotypes matching a fragment h ∈ F by haplos(h), the

number of operations needed for h is |haplos(h.parent)|.

It is difficult to characterize the number of haplotypes matching each fragment. A trivial upper bound for

haplos(h) is |H| = 2|G|C, the total number of haplotypes generated by the haplotype reconstruction step of

algorithm HaploRec. If we make the simplifying assumption that all the haplotypes in |H| have the same

weight, 1
2|G|C , then F(h) = |haplos(h)| · 1

2|G|C , which gives |haplos(h)| = F(h) · 2C|G|. For each frequent

fragment h, |A| children are generated and matched against all the haplotypes in haplos(h). The number of

matching operations performed for each frequent fragment is thus |A| · |haplos(h)|. The total number of

matching operations performed by the algorithm is

∑

h∈F

|A| · |haplos(h)| =
∑

h∈F

|A|F(h)2C · |G| =

|A| · 2C · |G|
∑

h∈F

F(h) = |A| · 2C · |G| · |F| · fravg,

where fravg is the average frequency of frequent fragments.

Under the assumption of uniform weights of the haplotypes, the complexity of the fragment search

algorithm is thus linear in the number of genotypes (|G|), parameter C, the number of different alleles

(|A|), the total number of frequent fragments (|F|) and the average (normalized) frequency of frequent

fragments (fravg). It is not clear how large fravg will be in practice; in any case, the minimum frequency

threshold gives a lower bound for fravg, and the average value will probably be close to the lower bound.

Performing a similar analysis without the assumption of uniform weights for the input haplotypes is
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currently an open problem; it is possible that a very similar complexity could be obtained also without the

assumption, by using average-case analysis.
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