Cloning and Nucleotide Sequence of the Gene Coding for the Major 25-Kilodalton Outer Membrane Protein of *Brucella abortus*

PHILIPPE DE WERGIFOSSE,^{1,2}[†] PAUL LINTERMANS,² JOSEPH N. LIMET,³ AND AXEL CLOECKAERT^{4*}

Unit of Experimental Medicine, Catholic University of Louvain, B-1200 Brussels,¹ Institut National de Recherches Vétérinaires, Groeselenberg 99, B-1180 Brussels,² and Facultés Universitaires Notre Dame de la Paix, 5000 Namur,³ Belgium, and Laboratoire de Pathologie Infectieuse et d'Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France⁴

Received 15 August 1994/Accepted 17 January 1995

The cloning and sequencing of the *Brucella abortus* major 25-kDa outer membrane protein (OMP) is reported. The 25-kDa (group 3) OMP has been proposed, on the basis of amino acid composition, to be the counterpart of OmpA (D. R. Verstraete, M. T. Creasy, N. T. Caveney, C. L. Baldwin, M. W. Blab, and A. J. Winter, Infect. Immun. 35:979–989, 1982). However, the amino acid sequence predicted from the cloned *B. abortus* gene did not reveal significant homology with either OmpA sequences from different members of the family *Enterobacteriaceae* or other known protein sequences.

The bacteria of the genus Brucella are gram-negative intracellular parasites of both humans and animals. Brucella abortus is the major species involved in bovine brucellosis and can cause abortions and infertility in cattle, which result in great economic losses. The B. abortus outer membrane contains lipopolysaccharide, proteins, and phospholipids. The major B. abortus outer membrane proteins (OMPs) are 25- to 27-kDa proteins (3, 9, 10), also called group 3 proteins (18), and 36- to 38-kDa proteins (3, 9, 10), also called group 2 porin proteins (7, 18). Variation in apparent molecular masses of these proteins has been shown to be probably essentially due to association with peptidoglycan subunits of different sizes (5, 10, 16). Thus, group 2 and group 3 proteins would be in fact peptidoglycan-associated forms of the same gene product. Both the major 25- to 27-kDa and the 36- to 38-kDa OMPs have been shown by immunoelectron microscopy to be surface exposed (3). These major OMPs are also major components of the sodium dodecyl sulfate (SDS)-insoluble cell wall fraction which confers important vaccinal properties (8-10). The role of the two major OMPs in protective immunity against Brucella infection is being studied by several research groups (8, 9, 19). The gene encoding the B. abortus 36-kDa porin OMP has been recently cloned and functionally expressed in Escherichia coli (11, 13).

The major 25-kDa (group 3) OMP (Omp25) has been previously proposed, on the basis of amino acid composition, to be the counterpart of OmpA (18). The present paper reports the cloning and nucleotide sequence of the gene coding for *B. abortus* Omp25 (*omp25* gene). Predicted amino acid sequence homologies with OmpA proteins from different gram-negative bacteria were determined.

Cloning of the *B. abortus omp25* gene. A λ gt11 genomic library of *B. abortus* 544 (biovar 1 reference strain) was constructed according to a protocol similar to that described by De Kesel et al. (6). Briefly, the DNA of *B. abortus* 544 was purified as described by Verger et al. (17), partially digested with *Sau3A* (Boehringer GmbH, Mannheim, Germany), and filled in with deoxynucleoside triphosphates (Appligene, Illkirch,

France) and Klenow polymerase (Boehringer). EcoRI sites of agarose gel-purified DNA fragments of 2 to 8 kb were methylated with EcoRI methylase (Promega, Madison, Wis.). EcoRI linkers (Boehringer) were then ligated to the DNA fragments. Following EcoRI digestion, the B. abortus 544 DNA fragments were further ligated into EcoRI-digested Agt11 DNA (Promega). The ligated DNA was packaged into phage λ particles by using commercial extract Gigapack II Plus (Stratagene, La Jolla, Calif.) and amplified on E. coli Y1090 (Stratagene). Recombinant λ gt11 phage was screened following transfer to nitrocellulose filters (Stratagene) with anti-Omp25 monoclonal antibodies (MAbs) (3, 4). Individual plaques were removed from the plates and rescreened several times until all of the plaques recovered reacted positively with the MAbs. Among approximately 4×10^5 plaques tested from the *B*. abortus-constructed λ gt11 library, 10 reacted positively with the anti-Omp25 MAbs. One of these recombinant phages was selected on the basis of its strong reactivity with the MAbs. It was further shown that only one MAb (MAb A59/01E11/D11) (immunoglobulin G2a [4]) of a mixture of five anti-Omp25 MAbs reacted with this recombinant phage. The recombinant phage was further propagated in lysogenic E. coli Y1089 (Stratagene), and recombinant protein synthesis was induced with IPTG (isopropyl-β-D-thiogalactopyranoside). As shown by immunoblotting after SDS-polyacrylamide gel electrophoresis of the E. coli lysate with MAb A59/01E11/D11 and an anti-Bgalactosidase MAb (Boehringer), the recombinant phage expressed a β-galactosidase fusion protein with an apparent molecular mass of 116 kDa (data not shown). The size of the B. abortus DNA insert in the recombinant phage was estimated at 1,150 bp. To clone the entire *omp25* gene, a λEMBL3 genomic library of B. abortus 544 was constructed as described by Grimont et al. (12). Briefly, 9- to 23-kb Sau3A-digested fragments of B. abortus 544 DNA were ligated into BamHI-digested and phosphatase-treated λ EMBL3 vector arms (Promega). The ligated DNA was packaged into phage λ particles by using commercial extract Gigapack II Plus (Stratagene) and amplified on E. coli LE 392 (Promega). Immunological screening of plaques was performed with the anti-Omp25 MAbs. Among approximately 10^4 plaques tested from the *B. abortus*-constructed λ EMBL3 library, one was positive with the anti-Omp25 MAb mixture. Southern blot hybridization, performed as described by Grimont et al. (12) and Verger et al. (17),

^{*} Corresponding author.

[†] Present address: FYSA Unit, Catholic University of Louvain, 1348 Louvain La Neuve, Belgium.

TGTTGCCCCTTCAATATAGGGTGTGAAAGCCGGCGTTGCGATAATGCAACATCGCATTTTTGCCATCTTCTCGACA

GAT	FATC'	ICCA	CACA	ATGG	GCA'	TTTC	GTGC	CGCA	ATTA	CCCT	CGAT	ATGT	CACC	CCTG	ICAG	CGCG	GCAT	GGGCG
RBS										Signal Sequenc								
GTT.	FACT	CCCG	ATGC	IGCC	CGCC	CGAT.	AAGG	GACC	GCGC	AAAA	CGTA	ATTI	GTGT.	AAGG	AGAA	IGCC	ATG	CGC
														-		•	Met	Arg
ACT	CTT	AAG	TCT	CTC	GTA	ATC	GTC	TCG	GCT	GCG	CTG	CTG	CCG	TTC	ጥጥ	GCG	ACC	CCT
▶Thr	Leu	Lys	Ser	Leu	Val	11e	Val	Ser	Ala	Ala	Leu	Leu	Pro	Phe	Ser	Ala	Thr	Ala
		-																
TTT	GCT	GCC	GAC	GCC	ATC	CAG	GAA	CAG	CCT	CCG	GTT	CCG	GCT	CCG	GTT	GAA	GTA	GCT
• File	ATA	ATA	Asp	АТа	He	GIN	Gru	Gin	PTO	Pro	vai	Pro	Ага	Pro	vai	GIU	vai	АТА
CCC	CAG	TAT	AGC	TGG	GCT	GGT	GGC	TAT	ACC	GGT	CTT	TAÇ	CTT	GGC	TAT	GGC	TGG	AAC
▶Pro	Gln	Tyr	Ser	Trp	Ala	Gly	Gly	Туr	Thr	Gly	Leu	⊤y r	Leu	Gly	Туr	Gly	Trp	Asn
						~					~~~					~~~		
AAG LV C	GCC A La	AAG	ACC	AGC	ACC	Val	GUV	AGC	AIC	AAG	Pro	GAC	GAT	TGG	AAG	GCT	GGC	GCC
r Ly S	ATa	L y 3		001		vai	ary	Je i	116	Lys	110	A sh	H oh	ιιp	Lys	Aia	ary	Ala
TTT	GCT	GGC	TGG	AAC	TTC	CAG	CAG	GAC	CAG	ATC	GTA	TAC	GGT	GTT	GAA	GGT	GAT	GCA
▶ Phe	Ala	Gly	Trp	Asn	Phe	Gln	Gin	Asp	Gln	lle	Val	Туr	Gly	Val	Glu	Gly	Asp	Ala
											AA S	Seq 1						
GGT	TAT	TCC	TGG	GCC	AAG	AAG	TCC	AAG	GAC	GGC	CTG	GAA	GTC	AAG	CAG	GGC	TTT	GAA
PGly	Ty r	Ser	Trp	Ala	Lys	Lys	Ser	Lys	Asp	Gly	Leu	Glu	Val	Lys	Gin	Gly	Phe	Glu
											Leu	GTU	vai	Lys	GIN	Gry	Phe	GIU
GGC	TCG	CTC	GGT	GCC	CGC	GTC	GGC	TAC	GAC	CTG	AAC	CCG	GTT	ATG	CCG	TAC	CIC	ACG
▶Gly	Ser	Leu	Gly	Ala	Arg	Val	Gly	Tyr	Asp	Leu	Asn	Pro	Val	Met	Pro	Tyr	Leu	Thr
▶Gly	Ser	Leu	Gly															
				~~~		~ ~			~~~~			~~~		~ ~ ~				
GCT ≹∆La	GGT	ATT	GCC	GGT	TCG	CAG	ATC	AAG	CPT	AAC	AAC	GGC	TIG	GAC	GAC	GAA	AGC	AAG
FAId	Gry	ile	ATa	GTy	361	GIII	TIE	Lys	Leu	ASI	ASI	Giy	Leu	Asp	Asp	Gru	Ser	Lys
TIC	CGC	GTG	GGT	TGG	ACG	GCT	GGT	GCC	GGT	CTC	GAA	GCC	AAG	ĊŤĠ	ACG	GAC	AAC	ATC
▶ Phe	Arg	Val	Giy	Trp	Thr	Ala	Gly	Ala	Giy	Leu	Glu	Ala	Lys	Leu	Thr	Asp	Asn	lle
																λ	AA S	Seq 2
CTC	GGC	CGC	GTT	GAG	TAC	CGT	TAC	ACC	CAG	TAC	GGC	AAC	AAG	AAC	TAT	GAT	CTG	GCC
FLeu	Gly	Arg	Vai	Glu	Tyr	Arg	Tyr	Thr	Gln	Туr	Gly	Asn	Lys	Asn	Tyr	Asp	Leu	Ala
												<b>.</b>	•				Leu	Ala
GGT	ACG	ACT	GTT	CGC	AAC	AAG	CTG	GAC	ACG	CAG	GAT	ATC	CGC	GTC	GGC	አጥር	ccr	TAC
▶GIy	Thr	Thr	Val	Arg	Asn	Lys	Leu	Asp	Thr	Gin	Asp	lle	Arg	Val	Gly	lle	Gly	Tyr
▶GIy	Thr	Thr	Val	Arg	Asn	Lys	Leu	Asp			` <b>Þ</b>	lle	Arg	Val	GIy	lle	Gly	Tyr
Terminator																		
AAG	TTC	TAA	TTAT	FAGCA	TAAT	rTGG2	ACACO	GAAZ	ACCO	GAC	AGGCZ	ACTO	TCCC	GTT	TTTC	TTGI	CTGC	CAAAG
Lys	Phe	•••													->			
r ∟y S	r.ii 6																	

GATTTCAGGCATCCGGT

FIG. 1. DNA sequence and predicted amino acid sequence of the *omp25* gene of *B. abortus*. A ribosome binding site (RBS), putative signal peptide sequence, and terminator sequence (underlined with arrows) are shown. The beginning of the  $\lambda$ gt11 recombinant phage DNA insert ( $\lambda$ ) and amino acid sequences determined from *B. abortus* cell wall-isolated Omp25 (AA Seq 1 through 3) are indicated.

between the DNA insert of the  $\lambda$ gt11 recombinant phage and that of the  $\lambda$ EMBL3 recombinant phage showed that a 5-kb *Eco*RI-*Sal*I fragment from the  $\lambda$ EMBL3 recombinant phage insert was homologous to the  $\lambda$ gt11 recombinant phage insert (data not shown).

*omp25* gene sequence. Both the EcoRI insert of the  $\lambda gt11$ recombinant phage and the 5-kb EcoRI-SalI fragment of the  $\lambda$ EMBL3 recombinant phage insert were subcloned into both pTZ18R and pTZ19R phagemid vectors (Pharmacia Biotech). The dideoxy chain termination method of Sanger et al. (15) was employed, using a T7 sequencing kit (Pharmacia Biotech) according to the manufacturer's protocol. Figure 1 shows the DNA sequence and predicted amino acid sequence of Omp25 of B. abortus. The amino acid sequences of three peptidic fragments of Omp25 isolated from B. abortus cell walls were determined (protein sequencer 477A-120A; Applied Biosystems) to confirm that the sequenced gene corresponded to the omp25 gene. The omp25 gene sequence revealed an open reading frame that may begin at two different start codons generating proteins with predicted molecular masses of 26,773 and 23,037 Da. However, DNA sequences bordering the open

reading frames suggest that the omp25 gene starts at the second start codon. Indeed, 6 bp before this start codon, seven nucleotides (TAAGGAG) are homologous to the 16S RNA sequence of E. coli and most probably constitute the ribosome binding site. In addition, after the start codon, a predicted amino acid sequence characteristic of signal peptides for protein export was found. Localization of the signal peptide cleavage site indicated that the mature Omp25 protein has a predicted molecular mass of 20,649 Da. The recombinant  $\lambda$ gt11 insert encoded the last 24 amino acids of the omp25 gene product. Therefore, an epitope recognized by MAb A59/ 01E11/D11 is located in the last 24 amino acids of the carboxyterminal end of Omp25. Downstream of the omp25 gene, a DNA sequence of 30 bp characteristic of rho-independent transcription termination sequences was found. The 30-bp sequence showed a high degree of DNA homology with the gene omp2b encoding the B. abortus 36-kDa porin OMP (11) (data not shown).

Amino acid sequence alignment. The amino acid composition of the *B. abortus* Omp25 protein has been reported to be similar to that of *E. coli* OmpA (18). Therefore, by use of the

Ε.	coli	mkktaiaiavalagfatvaqaaPKDNTW
E.	aerogenes	mkktaiaiavalagfatvaqaaPKDNTW
s.	typhimurium	mkktaiaiavalagfatvaqaaPKDNTW
s.	marcescens	mkktaialavalagfatvaqaaPKDNTW
s.	dysenteriae	mkktaiaitvalagfatvaqaaPKDNTW
В.	abortus	MRtlkslvivsaallpfsatafaa DAIQEQPPVPAPVDVAPQY
Ε.	coli	ytgaklgwSQYHDTGFINNNGPTHENqlgag
E .	aerogenes	yaggklgwSQFHDTGWYNSNLNNNGPTHESqlgag
S.	typhimurium	yagaklgwSQYHDTGFIHNDGPTHENqlgag
S .	marcescens	ytgaklgwSQYHDTGFYGNGYQNGIGNGPTHKDqlgag
s.	dysenteriae	ytgaklgwSQYHDTGFIDNNGPTHENqlgag
В.	abortus	SWAGGytglylgyGWNKAKTSTVGSIKPDdwkag
E .	coli	<b>afggyqvn</b> PYVG <b>femgydwlgr</b> MPYKGSVENGAYKAQG
E .	aerogenes	<b>afggyqvn</b> PYLG <b>femgydwlgr</b> MPYKGVKVNGAFSSQA
s.	typhimurium	<b>afggyqvn</b> PYVG <b>femgydwlgr</b> MPYKGDNINGAYKAQG
s.	marcescens	aflgyqanQYLGfelgydwlgrMPYKGSVNNGAFKAQG
${\mathcal S}$ .	dysenteriae	<pre>afggyqvnPYVGfemgydwlgrMPYKGSVENGAYKAQG</pre>
В.	abortus	<b>afagwnfq</b> QDQIVYGVE <b>gdagyswakk</b> SKDGLEVKQGFEGSLG
E .	coli	VQLTAKLG <b>ypitddl</b> DIYTRLGGMVWRADTKSNVYGKNHDTGV
E .	aerogenes	VQLTAKLG <b>ypitddl</b> DIYTRLGGMVWRADSSNSIAGDNHDTGV
S.	typhimurium	VQLTAKLG <b>ypitddl</b> DFYTRLGGMVWRADTKSNVPGGPSTKDH
s.	marcescens	VQLAAKLS <b>ypiaddl</b> DIYTRLGGMVWRADSKANYGRTGQRLSD
S.	dysenteriae	VQLTAKLG <b>ypitddl</b> DVYTRLGGMVWRADTKAHNNVTGESEKN
В.	abortus	ARVGYDL- <b>npvmpyl</b> TAGIAGSQIKLNNGLDDESKFRVGWTAG
Ε.	coli	SPVFAGGVEYAI <b>tpeiatrleyqwt</b> NNIGDAHTIGTRP
Ε.	aerogenes	SPVFAGGVEWAM <b>trdiatrleyqwv</b> NNIGDAGTVGVRP
S.	typhimurium	DTGVSPVFAGGIEYAI- <b>tpeiatrleyqwt</b> NNIGDANTIGTRP
S .	marcescens	HDTGVSPLAAVGVEYAL <b>tknwatrldyqfv</b> SNIGDAGTVGARP
s.	dysenteriae	HDTGVSPVFAGGVEWAI <b>tpeiatrleyqwt</b> NNIGDAHTIGTRP
В.	abortus	AGLEAKLt <b>dnilgrveyryt</b> QYGNKNYDLAGTT
E.	coli	DNGMLS <b>lgvsyrf</b> GQGEAAPVVAPAPAPAPEVQTKHFT
E. E.	coli aerogenes	DNGMLS <b>lgvsyrf</b> GQGEAAPVVAPAPAPAPEVQTKHFT DNGMLS <b>vgvsyrf</b> GQEDNAPVVAPAPAPAPEVTTKTFT
E. E. S.	coli aerogenes typhimurium	DNGMLS <b>lgvsyrf</b> GQGEAAPVVAPAPAPAPEVQTKHFT DNGMLS <b>vgvsyrf</b> GQEDNAPVVAPAPAPAPEVTTKTFT DNGLLS <b>vgvsyrf</b> GQQEAAPVVAPAPAPAPEVQTKHFT
E. E. S. S.	coli aerogenes typhimurium marcescens	DNGMLS <b>lgvsyrf</b> GQGEAAPVVAPAPAPAPEVQTKHFT DNGMLS <b>vgvsyrf</b> GQEDNAPVVAPAPAPAPEVTTKTFT DNGLLS <b>vgvsyrf</b> GQQEAAPVVAPAPAPAPEVQTKHFT DNTMLS <b>lgvsyrf</b> GQDDVVAPAPAPAPAPVVETKRFTL
E. E. S. S.	coli aerogenes typhimurium marcescens dysenteriae	DNGMLS <b>lgvsyrf</b> GQGEAAPVVAPAPAPAPEVQTKHFT DNGMLS <b>vgvsyrf</b> GQEDNAPVVAPAPAPAPEVTTKTFT DNGLLS <b>vgvsyrf</b> GQQEAAPVVAPAPAPAPEVQTKHFT DNTMLS <b>lgvsyrf</b> GQDDVVAPAPAPAPAPVVETKRFTL DNGLLS <b>lgvsyrf</b> GQGEAAPVVAPAPAPAPEVQTKHFT

FIG. 2. Predicted amino acid sequence alignment of OmpA proteins with Omp25 of *B. abortus*. Amino acid sequence homologies with *B. abortus* Omp25 (lowercase and boldface) were determined with the Match-box program (Pro-Explore, Biostructure). The first homology box corresponds to the signal peptide sequence.

Match-box program (Pro-Explore, Biostructure), which aligns amino acid sequences with regard to both peptide identity and physicochemical relationship, the amino acid sequence predicted from the omp25 gene of B. abortus was compared with those of OmpA proteins from E. coli, Enterobacter aerogenes, Salmonella typhimurium, Serratia marcescens, and Shigella dysenteriae (Fig. 2). No significant homology was found, although the predicted amino acid composition of B. abortus Omp25 was almost identical to that reported for B. abortus group 3 proteins (Table 1) (18). Nevertheless, seven homology boxes were found, including the region coding for the signal peptide (Fig. 2). The homology among these boxes was sometimes poorly significant (especially the third and the sixth). Identity between the five OmpA amino acid sequences was, however, much more important. Therefore, we may conclude that Omp25 of B. abortus does not belong to the OmpA family. It must also be noted that none of the anti-Omp25 MAbs we have produced (3) cross-reacted with E. coli antigens (2). Moreover, a search for homologies was carried out in the MIPSX database, release 30-2 (Martinsried), and at the Belgian EMBnet Mode (BEM) by using the FASTA method (14). NCBI services were also used to consult the Swiss-PROT (release 26.0), GenBank (release 78.0), and EMBL (release 37.0) databases with the

 TABLE 1. Amino acid compositions of OmpA of E. coli, group 3 proteins, and Omp25 from B. abortus

Amina	Mol%										
acid	E. coli OmpA ^a	B. abortus group 3 proteins ^a	Omp25	Mature Omp25 ^b							
Asx	12.6	$11.4 \pm 0.7$	10.3	11.5							
Thr	6.5	$5.5 \pm 0.4$	5.6	5.2							
Ser	4.9	$4.6 \pm 0.4$	5.1	4.2							
Glx	8.9	$9.8 \pm 0.7$	8.4	9.4							
Pro	5.8	$4.2 \pm 0.2$	4.2	4.2							
Gly	11.4	$14.5 \pm 0.4$	12.6	14.1							
Ala	8.9	$10.2 \pm 0.8$	10.7	9.4							
Cys	0.6	ND	0	0							
Val	7.7	$6.7\pm0.6$	7.0	6.8							
Met	1.5	$0.8 \pm 0.7$	0.9	0.5							
Ile	4.3	$6.7 \pm 3.1$	4.2	4.2							
Leu	6.8	$7.2 \pm 0.2$	7.9	6.8							
Tyr	5.2	$3.2 \pm 2.3$	6.1	6.8							
Phe	2.5	$3.4 \pm 0.3$	3.3	2.6							
His	1.5	$2.2 \pm 1.6$	0	0							
Lys	5.2	$6.7\pm0.6$	7.0	7.3							
Arg	4.0	$3.4 \pm 0.3$	3.3	3.1							
Trp	1.5	ND	2.8	3.1							

^a Data from reference 18. ND, not determined.

^b Amino acid composition of Omp25 without its putative signal peptide.

BLAST network service (1). No significant homology between *B. abortus* Omp25 and other known proteins in the databases was revealed. Moreover, none of the OmpA proteins were found in the first homology values.

The possible *Brucella* genus specificity of Omp25 has several implications for both vaccinal and diagnostic purposes. We are currently testing the potential role of *E. coli*-expressed Omp25 in protective immunity against *Brucella* infection and the usefulness of recombinant Omp25 as a diagnostic antigen.

**Nucleotide sequence accession number.** The DNA sequence of the *B. abortus omp25* gene has been submitted to GenBank and assigned accession no. X79284.

We thank Innogenetics (Ghent, Belgium) for amino acid sequence determination. We are indebted to J. M. Verger and M. Grayon (INRA, Nouzilly, France) for supplying *B. abortus* DNA and to J. N. Octave and F. de Sauvage (UCL, Brussels, Belgium) for help in construction of the  $\lambda$ gt11 genomic library. We also thank J. Van Broeck (ICP, Brussels, Belgium) for expert technical assistance.

P. de Wergifosse was supported by Innogenetics. A. Cloeckaert was supported by a CEC fellowship.

## REFERENCES

- Altschul, S. F., W. Gish, W. Miller, W. Myers, and J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
- 2. Cloeckaert, A., and P. de Wergifosse. Unpublished results.
- Cloeckaert, A., P. de Wergifosse, G. Dubray, and J. N. Limet. 1990. Identification of seven surface-exposed *Brucella* outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect. Immun. 58:3980–3987.
- Cloeckaert, A., I. Jacques, N. Bosseray, J. N. Limet, R. Bowden, G. Dubray, and M. Plommet. 1991. Protection conferred on mice by monoclonal antibodies directed against outer-membrane-protein antigens of *Brucella*. J. Med. Microbiol. 34:175–180.
- Cloeckaert, A., M. S. Zygmunt, P. de Wergifosse, G. Dubray, and J. N. Limet. 1992. Demonstration of peptidoglycan-associated *Brucella* outer membrane proteins by use of monoclonal antibodies. J. Gen. Microbiol. 138:1543–1550.
- De Kesel, M., P. Gilot, M. C. Misonne, M. Coene, and C. Cocito. 1993. Cloning and expression of portions of the 34-kilodalton-protein gene of *Mycobacterium paratuberculosis*: its application to serological analysis of Johne's disease. J. Clin. Microbiol. **31**:947–954.
- Douglas, J. T., E. Y. Rosenberg, H. Nikaido, D. R. Verstraete, and A. J. Winter. 1984. Porins of *Brucella* species. Infect. Immun. 44:16–21.
- 8. Dubray, G. 1987. Protective antigens in brucellosis. Ann. Inst. Pasteur Mi-

crobiol. 138:84-86.

- Dubray, G., and G. Bézard. 1980. Isolation of three *Brucella abortus* cell-wall antigens protective in murine experimental brucellosis. Ann. Rech. Vét. 11:367–373.
- Dubray, G., and C. Charriaut. 1983. Evidence of three major polypeptide species and two major polysaccharide species in the *Brucella* outer membrane. Ann. Rech. Vét. 14:311–318.
- Ficht, T. A., S. W. Bearden, B. A. Sowa, and L. G. Adams. 1989. DNA sequence and expression of the 36-kilodalton outer membrane protein gene of *Brucella abortus*. Infect. Immun. 57:3281–3291.
- Grimont, F., J. M. Verger, P. Cornelis, J. Limet, M. Lefèvre, M. Grayon, B. Régnault, J. Van Broeck, and P. A. D. Grimont. 1992. Molecular typing of *Brucella* with cloned DNA probes. Res. Microbiol. 143:55–65.
- Marquis, H., and T. A. Ficht. 1993. The omp2 gene locus of Brucella abortus encodes two homologous outer membrane proteins with properties characteristic of bacterial porins. Infect. Immun. 61:3785–3790.
- 14. Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological

sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444-2448.

- Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
- Sowa, B. A., K. A. Kelly, T. A. Ficht, M. Frey, and L. G. Adams. 1991. SDS-soluble and peptidoglycan-bound proteins in the outer membrane-peptidoglycan complex of *Brucella abortus*. Vet. Microbiol. 27:351–369.
- Verger, J. M., F. Grimont, P. A. D. Grimont, and M. Grayon. 1985. Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol. 35:292–295.
- Verstraete, D. R., M. T. Creasy, N. T. Caveney, C. L. Baldwin, M. W. Blab, and A. J. Winter. 1982. Outer membrane proteins of *Brucella abortus*: isolation and characterization. Infect. Immun. 35:979–989.
- Winter, A. J., G. E. Rowe, J. R. Duncan, M. J. Eis, J. Widom, B. Ganem, and B. Morein. 1988. Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against *Brucella abortus* in mice. Infect. Immun. 56:2808–2817.