Additional File 1: Estimation of the volume sputtered, useful ion yield and detectability limit We will illustrate below how we will estimate the volume sputtered, the useful yield and the detectability limit. | Field analyzed | $6 \mu m \times 6 \mu m = 36 \mu m^2$ | |---|---| | Cs ⁺ beam intensity | $\sim 0.40~\text{pA}$ | | or | 2.5 x 10 ⁶ ions Cs ⁺ s ⁻¹ | | Dwell time/pixel | 20 ms | | Number of pixels | 256 x 256 | | Acquisition time | 1310 s | | Total dose (TD) | 3.27 x 10 ⁹ Cs ⁺ ions | | $Dose/\mu m^2$ | $9.10 \times 10^7 \text{Cs}^+ \text{ions}$ | | Dose / surface atom | 5.94 ~ 6 Cs ⁺ ions / surface atom | | | | | Sputtering efficiency ^a | 5 target atoms / Cs ⁺ | | Sputtering efficiency ^a → Total number of atoms sputtered ^b | 5 target atoms / Cs^+
1.64 x 10^{10} | | 1 0 1 | - | | → Total number of atoms sputtered ^b | 1.64 x 10 ¹⁰ | | → Total number of atoms sputtered ^b Atomic density ^c | 1.64×10^{10} 6.00×10^{10} atoms / μm^3 | | → Total number of atoms sputtered^b Atomic density^c Thickness of one atomic layer | 1.64×10^{10}
6.00×10^{10} atoms / μ m ³
2.55×10^{-4} μ m | | → Total number of atoms sputtered^b Atomic density^c Thickness of one atomic layer Number of atoms / μm² in one layer → Sputtered volume for TD | 1.64 x 10^{10}
6.00 x 10^{10} atoms / μ m ³
2.55 x 10^{-4} μ m
1.53 x 10^{7}
0.27 μ m ³ (1) | | \rightarrow Total number of atoms sputtered ^b Atomic density ^c Thickness of one atomic layer Number of atoms / μ m ² in one layer | 1.64 x 10 ¹⁰ 6.00 x 10 ¹⁰ atoms / μm ³ 2.55 x10 ⁻⁴ μm 1.53 x 10 ⁷ | Supported by many measurements in material sciences. The measured values approximately range between 3 target atoms/Cs⁺ for ¹²C to 20 target atoms/Cs⁺ for ¹⁹⁷Au. For one series of parallel images. Lower estimate calculated from concentration of H, N, O and P in dry biological tissue and excluding embedding medium. The useful ion yield for detecting nitrogen can be estimated; in the above conditions Dose / pixel $\sim 5.00 \text{ x } 10^4 \text{ Cs}^+ \text{ ions};$ they sputter 2.5×10^5 atoms / pixel Nitrogen atomic concentration in the sample^a 5.00×10^{-2} \rightarrow Nitrogen atoms sputtered / pixel: 1.25 x 10⁴ Signal intensity for ¹²C¹⁴N⁻ 2000 ions / pixel^b → Useful yield 1.6 x10⁻¹ CN⁻ion / target N atom Minimum detectable: Atomic density 6.00×10^{10} atoms / μm^3 Useful yield^c 1.0 x10⁻¹ ion / atom 30 sputtered atoms \rightarrow 3.0 ions (mean) probability of 0 ion detected 5% probability for detecting a least 1 ion 95% From (1), volume analyzed $0.27 \mu m^3$ Number of atoms 1.62×10^{10} Minimum detectable $1.85 \times 10^{-9} \sim 2 \text{ ppb}$ a Estimated from concentrations of H,C, N, O, P in dry biological tissues. b Experimental data. Preliminary results. c Under estimate from our experimental conditions. Assume now, Analyzed diameter 100 nm Thickness 10 nm \rightarrow Volume 7.85 x 10⁻⁵ μ m³ Number of atoms 4.71×10^6 Minimum detectable $6.37 \times 10^{-6} \sim 7 \text{ ppm}$