Additional File 5: MIMS analysis vs. ¹⁴C Autoradiography

 $N=N_0e^{-\gamma t}$

where N_0 is the number of atoms at time 0 and N number of atoms after radioactive decay time t

 $\gamma = \text{decay constant}; \gamma = 0.693/T_{1/2}$

¹⁴C $t_{1/2} = 5715$ years $\gamma = 2.3 \times 10^{-10}$ per minute

Number of radioactive ¹⁴C atoms in 1 μ C :

 $1 \ \mu C = 2.22 \ x \ 10^{6} \ dpm$ $N = N_{0} exp(-2.3x10^{-10})$ After 1 minute: N = N_{0} - 2.22x10^{6} $N_{0} - (2.22x10^{6}) = N_{0} exp(-2.3x10^{-10})$ $N_{0} = 9.56x10^{15}$

Fraction of ¹⁴C atoms disintegrated in 1 minute per μ C:

2.22x10⁶ / 9.56x10¹⁵ Thus, even if only 1‰ of the ¹⁴C atoms were sputtered and if only 1% of the sputtered atoms were ionized, the number of secondary ¹⁴C⁻ ions would be 9.56x10¹⁰ and **the efficiency of MIMS would be** 9.56x10¹⁰ / 2.22x10⁶ or **approximately 5x10⁴ fold higher than that of autoradiography.**