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Supporting Methods.
Additional detail on data compilation. We searched BIOSIS and ISI Web of Science

online databases for relevant articles and identified additional articles using their cited

references.  Our goal was not to find all relevant articles, but to build a database of

sufficient size and taxonomic diversity to test our hypothesis.  When multiple studies for15

a single species met our criteria, we chose the study that reported a greater number of

unique test temperatures.

We used the following criteria to include data: (i) studies reported planktonic larval

duration (PLD) (hatching to metamorphosis or settlement) at multiple temperatures for a20

single species, (ii) other environmental factors (e.g., salinity, food availability) were

constant and within the species’ normal range, (iii) temperatures were nonlethal, and (iv)

the interval between maximum and minimum test temperatures exceeded 1.5 °C.  We

extracted the following information for each species: temperature treatments, mean

planktonic larval duration at each temperature (we used the minimum or median value25

when necessary), normal temperature range for the species, geographic location of

collection, and larval size.

Incorporation of larval mass.  Data on larval mass were sparse.  Larval size at

metamorphosis was most commonly available as maximum or standard larval length30

(mm), and for this data set values range over three orders of magnitude (0.2–26.8 mm).

There is no convincing or standard method for converting larval length to volume for

most species, so a quantitative estimate of the potential effect of mass on PLD requires

further research.
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Potential effects of larval size on model selection (Results). Larval size could modify the

temperature dependence of PLD in two ways. Systematic bias would occur if larvae

tested at different temperatures were collected from different regions and had adapted

their size to native temperature conditions (1). The studies we included tested the effect

of temperature on larvae collected at a single location, so this kind of counter-gradient40

variation does not occur in our dataset. Variation in size with temperature could also

occur due to phenotypic plasticity resulting in larger larvae at colder temperature

treatments (2). Of 17 studies in our analysis that tested for an effect of temperature on

larval size, only seven report a significant effect. Therefore, for a subset of species in

this analysis, temperature may affect PLD indirectly through its effects on size in addition45

to the direct effects of temperature.

Temperature measurement error as a source of error in our model (Discussion).
Because these studies are peer-reviewed, we consider measurement error to be

minimal and evenly distributed among species. There are two types of measurement50

error that could influence variance in PLD about the regression line for any particular

species. One type is thermometer error, which we assume to be relatively minor. A

possibly more important source of variation is fluctuation in treatment temperature

between measurement times. This could occur if, for example, temperature fluctuated

overnight but measurements were always made during the day.55
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Composite multilevel model including mean ln(temperature) and developmental mode as
predictors. This is the multilevel model referred to in Fig. 4 and SI Tables 6 and 7.

Level 1: ln(PLD)ij = β0i +  β1 * (ln(Tij / Tc)) + β2 * (ln(Tij / Tc))2 + εij ,    εij ~ N(0, σ2)60

Level 2: β0i = β3 + β3 * (Mean ln(Ti)) + β4 * (developmental modei) + u0i,          [7]

u0i ~ N(0, τ2)

Percent variance explained by mean ln(temperature) (Pseudo R-squared). In multilevel65

models there is no direct equivalent to the R2 of ordinary linear regression. We

calculated a pseudo-R2 value as described by Singer and Willett (3). This value

estimates the amount of variance explained by a model relative to a null model of the

same form. We entered mean ln(temperature) in our model as a level-2 predictor for the

intercept, i0β . The pseudo-R2 we calculate here measures the reduction in the intercept70

variance, 2τ , that occurs when mean ln(temperature) and developmental mode are

added to the model given in Eq. 4 to produce Eq. 7.

Predicting the Trajectories of New Species. One of the attractive features of multilevel

models is that they typically outperform classical regression in predictive accuracy (4, 5).75

Using the multilevel model we’ve developed one can directly predict the PLD of any

species used in building the model at a temperature that was not observed.  With

additional data (one or more observations) it is also possible to use this model to predict

the PLD of a marine species that was not among those used in estimating the model.

The validity of such a prediction hinges on whether the temperature model we’ve80

proposed is truly universal. In this section we explain how to use our model to make

predictions for new species.

The exponential-quadratic model we’ve proposed is shown in its generic

composite form below.
85

ln(PLD)ij = β0 + u0i + β1 * (lnTij – ln Tc) + β2 * (lnTij - ln Tc)2 + εij ,
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where ( )20 ,0~ τNu i  and ( )2,0~ σε Nij .  Based on this the average PLD–temperature

trajectory for species i is the following:90

ln(PLD)ij = β0 + u0i + β1 * (lnTij – ln Tc) + β2 * (lnTij - ln Tc)2

or, written as a level-1 model

ln(PLD)ij = β0i + β1 * (lnTij – ln Tc) + β2 * (lnTij - ln Tc)2, [8]95

where ii u000 += ββ . The terms 0β , 1β , and 2β  are fixed effects while iu0  is a random

effect that is unique for species i.  Before Eq. 8 can be used to make predictions for a

new species, the random effect for that species needs to be estimated from data.

Because random effects are random variables rather than population parameters, it is100

more correct to speak of “predicting” random effects rather than “estimating” them, a

convention that we adopt here.  Our discussion of the prediction of random effects

closely parallels Fitzmaurice et al. (2004), pp. 206–210 (6).

From Eq. 8 we see that predicting iu0  is equivalent to predicting i0β  so we’ll

focus on this latter quantity instead. It can be shown that the best linear unbiased105

predictor (BLUP) of i0β  is a linear combination of the population-averaged estimate 0β̂

and the ordinary least squares estimate OLS
0β̂ .

€ 

ˆ β 0i = wi * ˆ β 0
OLS + 1− wi( ) * ˆ β 0 . [9]

110

The OLS estimate OLS
0β̂  is the ordinary regression estimate obtained by using only the

in  observations available for species i while 0β̂  is the population estimate obtained from

the multilevel model we present using all the available species. The weight iw  appearing

in Eq. 9 is a ratio of the between species variability to the sum of the within- and

between-species variabilities. These quantities are listed in SI Table 2. For a mixed115

model with a single random effect (i.e., Eq. 8) this ratio is the following.
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€ 

wi =
ni *τ

2

ni *τ
2 +σ 2 ,        [10]

where again in  is the number of temperature observations available for species i.  To120

use eqn S4 we substitute estimates of 2τ  and 2σ  obtained from the multilevel model.

Generally REML (restricted maximum likelihood) estimates of variance components are

preferred over maximum likelihood (ML) estimates for this purpose because they tend to

be less biased.  For our data the differences between the REML and ML estimates of the

variance components turn out to be fairly small, so we don’t bother further with this125

distinction in what follows.

i0β̂  as given by Eq. 9 is called a shrinkage estimate because it causes the OLS

estimate OLS
0β̂  to be more or less “shrunk” toward the population-averaged value 0β̂

depending on the relative magnitudes of 2τ , 2σ , and the sample size in  of the full,

multi-species database.  If most of the variability in the data occurs between species130

then iw  assigns more weight to the OLS estimate.  If on the other hand within species

variability is dominant, the shrinkage estimate will more closely resemble the population-

averaged value.  Observe that there is no restriction on size of in ; it can be as small as

one.  Just as with 2τ , larger values of in  will move the shrinkage estimate closer to the

OLS estimate.135

We illustrate the methodology with an example. Suppose we have the following

data for the chiton Tonicella lineata that consists of two observations at two different

temperatures.

Table 1.   Data for new species140

Temperature PLD

10.0 3.83

12.5 2.75

This species actually occurs in our database and was used in fitting the model, but for

point of illustration we’ll treat it as a new species. This will also allow us to check our
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work. Parameter estimates from the exponential-quadratic multilevel model obtained145

using all 69 species and Tc = 15 are the following.

Table S2.  Parameter estimates

Parameter Estimate Standard error

0β 3.1671863 0.10692115

1β – 1.3439341 0.04640600

2β – 0.2775613 0.04096706

2τ 0.75299956 —
2σ 0.02296691 —

150
To make use of Eq. 9 we need OLS

0β̂ . To obtain it we first solve for i0β  in Eq. 8.

€ 

β0i = ln PLD( )ij −β1 * lnTij − lnTc( ) −β2 * lnTij − lnTc( )
2

[11]

Using SI Table 1 and the parameter estimates from SI Table 2, Eq. 11 yields the155

following two separate estimates of i0β .

mod1<-lme(log(PLD) ~ I(log(temp)-log(15))+I((log(temp)-log(15))^2),

random=~1|species,data=inverts.red,method=‘ML’)

b0i.func<-function(x) log(x[2])-fixef(mod1)[2]*(log(x[1])-log(15))-160
fixef(mod1)[3]*(log(x[1])-log(15))^2

b0i.func(c(10,3.83))

I(log(temp) - log(15))

              0.843578

b0i.func(c(12.5,2.75))165
I(log(temp) - log(15))

             0.7757992

The ordinary least squares estimate of i0β  is just the mean of these two values. Note: If

SI Table 1 consisted of only one temperature observation for the new species then the170

OLS estimate would be the single value obtained from applying Eq. 11 to this one

observation.
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b0.OLS<-mean(c(b0i.func(c(10,3.83)),b0i.func(c(12.5,2.75))))

b0.OLS175
[1] 0.8096886

The term 0β̂  needed in Eq. 9 is just the population-averaged value reported in

Table S2. Next we calculate the weights.
180

as.numeric(VarCorr(mod1)[1,1])->tau2

as.numeric(VarCorr(mod1)[2,1])->s2

wi<-2*tau2/(2*tau2+s2)

Finally we can apply Eq. 9.185

wi*b0.OLS+(1-wi)*fixef(mod1)[1]

(Intercept)

   0.845101

190
This is the same answer returned by R that is obtained when we extract the fixed and

random effects and sum the results.

ranef(mod1)[[1]][67]+fixef(mod1)[1]

(Intercept)195
   0.845101

Because between-species variability dominates the within-species variability for our

data, i.e. 22 στ >> , the shrinkage estimate ends up being very close to the OLS

estimate even though we have only two temperature observations for the new species.200

The individual trajectory (empirical Bayes estimate) for Tonicella lineata is the

following.

€ 

ln PLD( )ij = 0.845101−1.3439341* lnTij − ln15( ) − 0.2775613* lnTij − ln15( )
2

205
We can also write the trajectory in the uncentered form,

€ 

ln PLD( )ij = γ 0 + γ1 * lnTij + γ 2 * lnTij( )
2
,
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by multiplying things out and grouping terms. Alternatively, the following transformation210

equations can be used.

€ 

γ 0 = β0 −β1 * ln15 + β2 * ln15( )2

γ1 = β1 − 2β2 * ln15
γ 2 = β2

For our example the transformation equations yield the following uncentered equation for215

Tonicella lineata, predicted from the model based on the multi-species database

reported here.

€ 

ln PLD( )ij = 2.449036 + 0.1593659* lnTij − 0.2775613* lnTij( )
2

220
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