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I. General Modeling Strategies  
 

The main text uses data from multiple 
published studies on many different marine 
species in an attempt to develop a quantitative 
model of the relationship between planktonic 
larval duration time (PLD) and temperature. 
Analysis is complicated by the fact that the data 
are hierarchical consisting both of multiple 
temperature measurements made on the same 
species in the same study as well as observations 
on different species from different studies. 
Because different studies used different species as 
well as different experimental designs and 
laboratory techniques, the data are heterogeneous. 
Observations coming from the same study would 
be expected to show a different degree of 
variability than observations coming from 
different studies. 

Statistically the different studies are blocks. 
Blocks can be included in an analysis as fixed 
effects or as random effects. They are random if 

the individual studies can be viewed as a sample 
from a population of similar such studies and the 
primary research goal is to draw inference about 
the basic phenomenon that the individual studies 
represent. The purpose for including random 
effects in a model is to account for observational 
heterogeneity. Observations that share the same 
random effect will necessarily be more similar 
(and thus correlated) than will observations with 
different random effects. 

The incorporation of random effects in a 
hierarchical design leads to what is generally 
referred to in the social sciences as a multilevel 
analysis. An extensive literature exists describing 
multilevel models (1–7). In other disciplines such 
models are called mixed models or random 
coefficient models (8–10). To model the 
relationship between PLD and temperature we 
employ a mixed model to synthesize the results 
from multiple published studies, thus carrying out 
a form of meta-analysis. Mixed models have been 
used for meta-analysis in many disciplines, e.g., 
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Table 10. The fundamental set of level-2 equations for the level-1 model shown in Eq. 19 
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ijT  is temperature (°C) and  is planktonic larval development time for species i at time j. ijPLD

agriculture (11), sports science (12), medicine 
(13), and fisheries (14). 

We find the multilevel way of viewing mixed 
models to be an especially appealing one. In the 
multilevel formulation parameters at one level of 
a hierarchy are in turn modeled at the next higher 
level using predictors measured at that level. 
Consequently in a 2-level model a distinction is 
made between variables measured at the 
individual and group levels. This distinction 
affects both the degrees of freedom used in 
statistical tests as well as the way in which main 
effects and interactions are interpreted.  

Multilevel modeling is a parsimonious way 
of dealing with observational heterogeneity. In a 
multilevel model the many parameters that would 
need to be estimated in a fixed effects model are 
replaced by the far smaller number of parameters 
needed to describe the distribution of the random 
effects. Multilevel models readily handle 
unbalanced and missing data, so that even units 
with one or two observations can contribute 
useful information in a multilevel analysis. The 
basic strategy in multilevel modeling is to 
construct an equation that describes the behavior 
of individuals (the level-1 model) and then to 
formulate additional equations that explain how 
each parameter appearing in the level-1 equation 
varies across individuals. These additional 
equations comprise the level-2 model.  

As an illustration, one of the models that we 
consider describes planktonic larval duration time 
(PLD) of an individual species as a linear 
function of the ambient temperature (T) when 

both variables are measured on a log scale*. The 
level-1 model is 
 
 ( ) ijijiiij TPLD εββ ++= loglog 10 . [19] 
 
Here i indexes the species and j the individual 
observation on that species. The term ijε  denotes 
the error, which is assumed to arise from some 
probability distribution. Typically this distribution 
is taken to be normal with mean zero and a 
variance to be estimated, i.e., ( )2~ σε Nij ,0 . (In 
Section II, we relax the normality assumption.) 
As is indicated by the subscript i on the 
parameters i0β  and i1β , each species has its own 
intercept and slope.  

The different level-1 equations are linked 
together by the level-2 model. Since there are two 
model parameters in Eq. 19, i0β  and i1β , there 
are potentially two equations at level 2, one for 
each parameter. Thus in this example four 
fundamental sets of level-2 equations are 
possible.† These are listed in SI Table 10.‡  

                                                 
* In this Supporting Text we follow standard 
mathematical convention and use the notation log to 
denote the natural logarithm function. 
† There are only four fundamental level-2 equations 
because we are modeling interspecies variability solely 
by the inclusion of random effects. We don’t consider 
adding level-2 predictors at this point. 
‡ SI here denotes Supporting Information. We use this 
notation to indicate that the table or figure in question 
appears in this Supporting Text or in one of the other 
online supporting documents rather than in the main 
text itself. 
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and is referred to as the subject-specific model. 
Notice that the subject-specific model includes 
both fixed and random effects. The mean 
response averaged over all species is 

The terms u  and u  represent the random 
effects (also called level-2 residuals). As is 
indicated by the index i, they are unique to 
individual species. The level-2 residual for a 
species is a surrogate for all those unmeasured 
variables that make that species different from all 
other species with respect to a specific model 
parameter (and thus make the multiple 
observations on a single species at different 
temperatures similar to each other). The 
univariate or joint normal distributions that are 
assumed for the random effects are standard 
assumptions that need to be examined as part of 
model assessment. The composite equation 
shown in the last column of SI Table 10 is the 
equation that results from plugging the level-2 
equations into the level-1 model given in Eq. 19. 

i0 i1

 
( ) βXY iiE = . 

 
This is usually referred to as the marginal model 
or population-averaged model and includes only 
fixed effects. 

The four fundamental level-2 models given 
in SI Table 10 are interpreted as follows. Model 
A contains no random effects. As a result each 
species is assigned the same intercept and slope. 
Accordingly the composite equation for Model A 
is just an ordinary regression model in which the 
hierarchical structure of the data is ignored. 
Models B and C incorporate random effects for 
one parameter but not the other. Model B assumes 
individual species differ in their intercepts but 
have a common slope, while Model C assumes 
species differ in their slopes but have a common 
intercept. Model D incorporates random effects 
for both the slope and intercept permitting 
individual species to differ in both. 

The linear mixed model in composite form 
can be expressed compactly using vector notation 
to yield what’s called the Laird-Ware formulation 
of the model (15; ref. 16, p. 327). For species i 
any of the models in SI Table 10 can be expressed 
as follows. 

 

iiiii εuZβXY ++=  
Assuming that the level-1 model specified in 

Eq. 19 is an adequate description of the 
relationship between PLD and temperature, the 
various level-2 models allow us to examine our 
primary research question: is there a uniform 
relationship between PLD and temperature across 
species? For this Models A, B, and D are of 
greatest interest. We can compare these models 
using null hypothesis significance testing 
(likelihood ratio tests) and/or information-
theoretic methods (AIC). If the evidence favors 
Model D then this would suggest that all species 
are unique with respect to PLD. In Model D not 
only does overall PLD vary at any given 
temperature across species (different intercepts), 
but the effect of temperature on PLD varies across 
species too (different slopes). If the evidence 
favors Model B then we have support for a 
common temperature effect across species 
(common slope) but with individual species still 
differing in their PLD at any given temperature 
(different intercepts). If the evidence favors 
Model A then a common PLD-temperature model 
is appropriate for all species. 

 
Here  and  are the vectors of fixed and 
random effects respectively while  and  are 
the corresponding design matrices in which the 
observed values of the different predictors appear 
as columns. Typically the columns of  are a 
subset of the columns of , as is the case in our 
model, although this is not necessary. As an 
illustration, for Model B of SI Table 10 the terms 
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Here  is  × 2 and Z  is  × 1 where  
is the number of observations on species i. 

iX im i im im
 Once the appropriate level-2 structure is 
determined, the next obvious step would be to 
include level-2 predictors (variables measured at 
the species level) into the level-2 equations with 
the goal of explaining some of the variability 
currently accounted for by the level-2 random 
effects. SI Table 4 (Supporting Text 1) and Fig. 4 

Continuing with this formulation, the 
conditional mean response for an individual 
species is 
 

( ) iiiiiE uZβXuY +=  
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(main text) make a preliminary attempt at this by 
including developmental mode and the normal 
temperature range of a species as predictors in the 
level-2 intercept equation. Further development of 
the level-2 model will be described in a future 
publication.  
 
II. Choice of Level-1 Model  
 
 While a number of different models have 
been used to relate planktonic larval duration time 
with temperature (see, e.g., ref. 17), the general 
consensus is that the relationship is well-
approximated by a power law function (18), i.e., 
an equation of the form  
 

 . [20] baTY =
 
A model of this form was originally used in 
biology by Huxley (19) to describe allometric 
growth. In Eq. 20 Y is PLD, T is temperature, and 
a and b denote parameters to be estimated. An 
algebraically equivalent linear model can be 
obtained by log transforming both sides of Eq. 20 
to obtain 
 
 . [21] TbaY logloglog +=
 

Statistically Eqs. 20 and 21 are not the same 
and it’s not always clear from the literature 
exactly which of these equations was fit. The 
statistical versions of Eqs. 20 and 21 are 
 

  [22a] ε+= baTY
 εββ ++= TY loglog 10  [22b] 
 

where typically it is assumed ( )2,0~ σε N  in 
both. Eq. 22a models the arithmetic mean 
planktonic larval duration time while Eq. 22b 
models the geometric mean. When converted to 
an arithmetic scale by exponentiating, Eq. 22b 
induces a multiplicative error structure yielding a 
response that is lognormally distributed. Although 
these distinctions are rarely discussed in the 
ecological literature (but see refs. 20–22), they 
have generated a considerable amount of heat in 
other disciplines (see, e.g., refs. 23–24 for a 
history of the debate in paleobiology).  
 To select an appropriate error structure for 
our level-1 model we examined the mean-
variance relationship of the response. SI Fig. 9A 
plots PLD versus temperature and superimposes a 
nonparametric smooth (lowess) estimate of the 
mean. As can be seen the variance does increase 
with the mean; the vertical spread of the data is 
greater on the left side of the plot where the mean 

is also larger. In a lognormal distribution the 
variance of the distribution is proportional to the 
square of the mean.§ Since mean larval duration 
time is a function of temperature we can 
approximate the mean-variance relationship by 
grouping larval duration times by temperature. SI 
Fig 9B plots the means and variances of PLD in 
groups formed from sextiles of the temperature 
distribution. (Sextiles were chosen because they 
provide enough data in each group to yield a 
stable variance estimate while still leaving 
enough data points to fit a regression curve.) A 
least squares fit of a quadratic model (in which 
the intercept is constrained to be zero) is 
superimposed. As is clear from the plot a 
quadratic model seems to approximate the mean-
variance relationship quite well.  

SI Fig. 9B clearly rules out using Eq. 22a 
with normally distributed errors (in which case 
the mean and variance would be independent) and 
instead supports the use of Eq. 22b with normally 
distributed errors (yielding a lognormally 
distributed response on an arithmetic scale). The 
lognormal is not the only distribution 
characterized by having a constant coefficient of 
variation. Another is the gamma distribution. 
Thus an alternative to fitting Eq. 22b with normal 
errors is to fit Eq. 22a with gamma errors.  

A theoretical, a priori case for a lognormal 
distribution can be made, e.g., if the process being 
modeled is decomposable into a product of many 
independent components. Taking the log of this 
product yields a sum of numerous independent 
log-transformed random variables, which, from 
the central limit theorem, should have a normal 
distribution in the limit. A gamma distribution, on 
the other hand, can arise theoretically as a sum of 
independent exponential random variables, each 
of which represents the waiting time to a 
randomly occurring event as dictated by a Poisson 
process.¶  

Wiens (26) showed that the two competing 
models, log-normal and gamma, can yield very 
different results. He recommended fitting both a 
lognormal and a gamma model when possible to 
serve as a check for whether the results obtained 
are model-independent. McCullagh & Nelder (27) 

                                                 
§ Another way of saying this is that in a lognormal 
distribution the coefficient of variation is constant. 
¶ Gamma random variables can be numerically 
generated by summing the logarithms of a finite 
number of uniformly generated random variables (25). 
Thus in this special instance the gamma distribution is 
a finite analog of the lognormal distribution. 
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Fig. 9. Choosing an error structure for the level-1 model. (A) Scatter plot of planktonic larval duration time 
(PLD) as a function of temperature illustrating heteroscedasticity. The variance of PLD appears to increase 
with mean PLD. The superimposed lowess curve indicates the trend in the mean. (B) Means and variances of 
PLD for the observations shown in (A) but grouped into sextiles of temperature. A least squares estimate of 
the theoretical mean-variance relationship for the log-normal distribution is superimposed for comparison. 

note that when the variance of the response is 
small enough such that  
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the two analyses should produce similar results. 
For our data we find the following. 
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suggesting that the choice of a gamma or 
lognormal distribution here may not matter. 

While the lognormal model has often been 
used to model the relationship between larval 
duration time and temperature, a nonlinear model 
with gamma errors to our knowledge has not. In 
all the basic models described in this Supporting 
Text, we found that the choice of probability 
distribution for the response, lognormal versus 
gamma, made only trivial differences in fit. 
Because our final lognormal model provides an 
adequate fit to the data and because of the 
additional complexity that arises when fitting a 
nonlinear random effects model with gamma 
errors to data, we present only the results based 
on a lognormal probability distribution here. 
Consequently in all the log-transformed level-1 

equations presented below we assume 
( )2,0~ σε Nij . 
 

III. Centering the Regressor  
 

Centering a regressor is often crucial to 
successfully fitting a multilevel model. Not only 
does centering improve the interpretability of the 
resulting model (6), it can also reduce the 
correlations between parameter estimates (9). 
Because parameter estimates are obtained using 
numerical optimization routines, this latter effect 
can be essential for ensuring computational 
stability and convergence to a proper solution. 
Furthermore, the presence of a high degree of 
correlation between the random effects in the 
model would undermine our primary objective to 
determine if a common PLD-temperature model 
suffices for most marine taxa.  

As an illustration of this last point suppose 
the random effects of Model D in SI Table 10 
were highly correlated. Using the notation of SI 
Table 10, the correlation, ρ, of the random effects 
in this model is the following. 
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Let ( )ijij PLDY log= , , and suppose ijij Tx log=

( )20~ σNε ij . By using properties of the 
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expectation operator, it is easy to show that for 
Model D 

C. Centering can dramatically reduce the 
correlation of the parameter estimates in 
the model.  

( ) 01
22

1
22

0 2Var τσττ ijijij xxY +++= .  
A.  Centering Improves Interpretation    
 Observe that the response variance does not 

partition neatly into separate, non-overlapping 
variance components. The term 01τ  is the joint 
variability of i0β  and i1β  and its presence in the 
equation modifies the estimates of the individual 
intercept and slope variance components that are 
obtained. A high correlation between the intercept 
and slope random effects prevents the variance of 
the response from being decomposed into 
components that account separately for the 
variability in random intercepts and slopes. 
Consequently it isn’t possible to distinguish 
variability in slopes from variability in intercepts 
in level-2 model D of SI Table 10.  

To simplify notation, we suppress subscripts  
in this section and let ( )ijPLDy log=  and 

ijTx log= . With these identifications Eq. 24 
becomes the following. 
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The notation ( )cxpn ,  is used to denote an nth-
degree polynomial in variable x with centering 
constant c. Consider first a linear equation with 
the predictor centered at c. After some algebra we 
obtain the following. Since distinguishing between intercept and 

slope variability is fundamental to understanding 
interspecific differences in the PLD-temperature 
relationship, some form of centering is 
mandatory. By centering we mean subtracting a 
constant from each observed value of the model 
regressor. Thus the centered version of Eq. 19 
would be the following: 
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 ( ) ( ) ijijiiij cTPLD εββ +−+= loglog 10  [23] We see that the centered model with 

parameters 0β , 1β , and centering constant c is 
equivalent to an uncentered linear model with 
parameters 0γ  and 1γ . From the last equality in 
Eq. 26 by matching the coefficients of 
corresponding terms we obtain the following 
mapping between the two sets of parameters.   

 
for some choice of constant c. For the quadratic 
model considered in Section IV (and also in the 
main text) the centered level-1 equation is 
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The centered UTD model used in the main text is 
the following.  

Thus centering the equation has no effect on the 
value of the slope, but it does change the value of 
the intercept. From the definition of  we 
have, when x = c,  

( cxp ,1
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( ) 0101 ),( βββ =−+= ccccp . where k is the Boltzmann constant. In this section 

we demonstrate three things.  
 So the intercept in the centered model is the value 

of the response variable when x = c. In the 
uncentered model, the intercept is the value of the 
response when x = 0. Since , the 
intercept in the uncentered model corresponds to 
a temperature of 1ºC, a value completely outside 
the range of our data set and outside the thermal 
range of most of the species being considered. 

ijTx log=

A. A judicious choice of centering constant 
c can improve model interpretation. 

B. Centering has no effect on model fit. The 
loglikelihood is the same whether the 
model is centered or not. Furthermore 
there is a one-to-one mapping between 
the parameter estimates of the centered 
and uncentered models. 
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Fig. 10.  Fraction of species used in the current study for which a given 
temperature occurred within the tested range of temperatures 

Thus the value of the intercept in the uncentered 
equation is generally not biologically meaningful. 
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Next consider the quadratic model of Eq. 25. 

Expanding terms we find 
 

( ) ( )
( )

( ) ( )
2

210

2
2212

2
10

22
2110

2
2102

2

2

),(

xx

xxccc

ccxxcx

cxcxcxp

γγγ

ββββββ

ββββ

βββ

++=

+−++−=

+−+−+=

−+−+=

 

 
Thus 1β  is the instantaneous rate of change of the 
response (with respect to temperature) at x = c.  

In the uncentered quadratic model the 
intercept and linear terms reflect properties of the 
response when x = 0, but in the centered model 
the interpretation switches to x = c. By choosing c 
to represent a temperature of interest, the 
coefficients 0β  and 1β  gain biological meaning 
beyond their algebraic role as fitting constants. 
Typical choices for c in applications are the 
sample mean or median of the predictor, because 
under random sampling these values estimate the 
corresponding population values. Because the 
studies from which we obtained our data are not a 
random sample, the sample mean or median are 
not meaningful choices here. Instead we chose the 
logarithm of 15ºC as the centering constant. It 
turns out 15ºC is within the range of tested 
temperatures for a large fraction of the species we 
considered (SI Fig. 10). 

where 0γ , 1γ , and 2γ  are the corresponding 
parameters from the uncentered model. From the 
last equality we can identify the following 
mapping between the parameters of the 
uncentered and centered models. 
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Only the coefficient of the quadratic term is the 
same in the centered and uncentered models. Just 
as with the linear model, the intercept represents 
the value of the response at x = c.  
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B. Centering Does Not Alter the Fit  
 
 We first examine centered and uncentered 
versions of a regression equation for log(PLD) 
that is linear in log(temperature). For centering 
constant we use log 15logTc = . In each equation 
we allow both level-1 parameters to be random at 
level 2. This is Model D of SI Table 10. The 
model summary is shown in SI Table 11. 

 
In a quadratic model 1β  is no longer interpretable 
as the slope because the slope varies with x due to 
the presence of the quadratic term. To understand 
the role of 1β  we differentiate Eq. 25 with 
respect to x and evaluate the result at x = c. 
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Table 11.  Comparing the fit of uncentered and centered linear models. 
 
 Model 1:  Uncentered Model 2:  Centered 
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Model 0β̂  1β̂  Loglikelihood 
1 7.118208 – 1.447185 – 84.3156 
2 3.199160 – 1.447186 – 84.3156 

 

cT  is the centering value 15°C and  is temperature. Observe that the estimated linear ijT
coefficients are the same but that the intercepts are different in the two models. The 
loglikelihoods are identical. 

Table 12.   Comparing the fit of uncentered and centered quadratic models. 
 

 Model 3:  Uncentered Model 4:  Centered 
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Model 0β̂  1β̂  2β̂  Loglikelihood 
3 4.978570 0.1055712 – 0.2823850 – 76.13833 
4 3.193582 – 1.4238550 – 0.2823822 – 76.13833 

 

cT  is the centering value 15°C and  is temperature. Observe that the estimated quadratic ijT
coefficients are the same (within numerical accuracy) but that the linear coefficients and intercepts 
are different in the two models. The loglikelihoods are identical. 
 

 The loglikelihoods in SI Table 11║ are 
identical and as was predicted in Section IIIA the 
estimate for the slopes remains unchanged. The 
estimated intercepts can be converted from one to 
the other using Eq. 27.** 
 

> fixef(Model2)[1]-log(15)* 
      fixef(Model2)[2] 
(Intercept)  

    7.118213 
 
which we see is the reported estimate from the 
uncentered model. 
 Next consider centered and uncentered 
versions of a regression model for log(PLD) that 

is quadratic in log(temperature), again using 
15logTlog c =  as the centering constant (SI 

Table 12). To minimize convergence problems 
we only allow two of the level-1 parameters, the 
intercept and the coefficient of the linear term, to 
be random at level 2, a constraint we relax later. 
 The reported loglikelihoods are identical and 
as expected the estimated coefficient of the 
quadratic term is unchanged (accurate to the 
fourth decimal). The estimated intercept and 
linear terms can be converted from one to the 
other using Eq. 28. 

 
> fixef(Model4)[2]-2*log(15)* 
  fixef(Model4)[3]                                                  I(log(temp) - log(15))  ║ All numerical results displayed in this Supporting 

Text were obtained using R 2.1.1 (28). Mixed models 
were fit using either the lme function of the nlme 
package or the lmer function of the lme4 package. 

            0.1055555 
 

> fixef(Model4)[1]-log(15)* 
  fixef(Model4)[2]+(log(15))^2* 
  fixef(Model4)[3] ** R syntax is displayed here. The R function fixef 

extracts a vector of estimates of the fixed effects (  

and  in this case) from a model object. The bracket 
notation [ ] references a particular element in that 
vector. 

0β

1β

(Intercept)  
   4.978592 
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Fig. 11. The correlation of slopes and intercepts in an uncentered model. (A) Plots of slopes and intercepts 
for individual linear regressions of log(PLD) versus uncentered log(temperature). The high degree of 
negative correlation in the estimates is readily apparent. (B) The negative correlation is manifested in the 
fact that the 95% confidence interval plots for the intercept and slope are mirror images of each other. 

The results are identical to four decimal places to 
estimates obtained for the uncentered model. 
Thus centering does no damage. The fit is the 
same and the coefficients for the uncentered 
model are readily recoverable if desired. 
 
C. Centering Can Reduce Correlations 

Among Parameters   
 
 Consider again a linear model relating 
log(PLD) to log(temperature). Restricting the data 
to species with three or more temperature 
observations, we fit individual linear regression 

models of log(PLD) versus log(temperature), Eq. 
19, for each species separately without centering 
the predictor. SI Fig. 11A plots the individual 
slopes and intercepts that were obtained for each 
species while SI Fig. 11B plots point estimates 
and 95% confidence intervals for slopes and 
intercepts in a pairwise fashion for each species. 

As is clear from SI Fig. 11A the correlation 
of slopes and intercepts is quite large and 
negative. A negative correlation between slopes 
and intercepts in uncentered models is typically 
observed when zero is a value of the predictor 
only as an extrapolation beyond the range of the 
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Fig. 12. The effect of centering on the correlation of slopes and intercepts. (A) Plots of slopes 
and intercepts for individual regressions with a centered regressor. Centering about log 33 has 
made these estimates essentially uncorrelated. (B) 95% confidence intervals are shown.  

data, as is the case here (29; ref. 9, p. 34). 
Observe that in the interval plot (SI Fig. 11B) the 
left half representing the intercepts is essentially 
the mirror image of the right half representing the 
slopes. Thus in the uncentered model it is clear 
that slopes and intercepts cannot be interpreted 
independently of each other. When one is high the 
other is low. 

SI Fig. 12 shows how centering can improve 
things. A centering constant of log 33 was used, a 
choice that causes the slope and intercepts to be 
essentially uncorrelated. In SI Fig. 12B the now 
uncorrelated intercepts and slopes clearly show a 
very different behavior from before. In particular 
notice that while most of the confidence intervals 

for the slopes overlap, many of the confidence 
intervals for the intercepts do not. This is 
evidence for greater interspecific variation among 
the intercepts than among the slopes, an 
interpretation that is now permissible given the 
low correlation that is present. 

Clearly estimating separate slopes and 
intercepts for each species is inefficient. A better 
approach is to fit a common population-averaged 
model about which individual species are allowed 
to vary randomly—a multilevel model. In a 
multilevel model, centering the regressors affects 
the correlation of the random effects. SI Table 13 
gives estimates of the parameters of the random 
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Table 13.   The effect of centering on the correlation of random effects 
 

Model Random effect Variance Correlation 
Intercept 4.206 Uncentered,  c = 0 Slope 0.271 –0.923 

Intercept 0.856 Centered,  c = log 15 Slope 0.271 –0.523 

Intercept 0.628 Centered,  c = log 33 Slope 0.271 –0.092 

 

IV. The Need for a Quadratic Term in the 
Level-1 Model  

effects distribution, , , and ρ, for three 
different multilevel models. All three models 
share a common level-1 linear model between 
log(PLD) and log(temperature) and a common 
level-2 model with random effects for slopes and 
intercepts (model D in SI Table 10) but differ in 
the choice of centering constant. The first model 
is uncentered, the second model is centered at 
log 15, the centering constant used in the main 
text, and the third centers at log 33, the constant 
that yielded the uncorrelated intercepts and slopes 
of SI Fig. 12. 

2
0τ

2
1τ

 
 SI Table 14 shows the results of fitting the 
four models of SI Table 10 using maximum 
likelihood (ML) with independent, normally 
distributed errors. These models are all built on 
the same level-1 equation, Eq. 29, a model linear 
in log(temperature), but each makes different 
assumptions for the random effects. A centering 
constant of log 15logTc =  is used for all four 
models. 
 Just as with the individual regressions in SI 

Fig. 12, using a centering constant of log 33 in a 
multilevel model yields random effects for the 
slope and intercept that are nearly uncorrelated.†† 
The centering constant, , that we 
use in the main text produces an intermediate 
reduction in correlation.

15logTlog c =

‡‡  
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iij
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εβ
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Tloglog
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[29]
 

 
Model D is the clear winner in terms of AIC. 
Boundary-adjusted likelihood ratio tests 
(described in the legend to SI Table 18) can also 
be used to demonstrate that Model D is a 
significant improvement over model B 
(p < .0001), which in turn is a significant 
improvement over Model A (p < .0001). 

 

                                                 
As with ordinary regression models, residual 

plots can be used to examine whether the 
structural specification of the model is correct. In 
particular we can assess whether the assumption 
that log(PLD) is linearly related to 
log(temperature) is tenable. SI Fig. 13 plots the 
level-1 residuals (estimates of ) versus the 
predictor temperature, both on a log-transformed 
scale and an arithmetic scale. A locally weighted 
regression curve (lowess) is included to better 
detect any systematic trend in the scatter. Both 
plots show that the model overestimates log(PLD) 
at both low and high temperatures suggesting that 
the multilevel model could be improved by 
including a quadratic term in the level-1 model.  

ijε

†† A centering constant of log 38 yields predicted 
random effects with the smallest amount of correlation. 
This value is also beyond the range of the data. The 
maximum temperature in our data set is 32ºC. 
‡‡ This choice may seem counterintuitive. Why not use 
a centering constant that makes the random effects 
uncorrelated? For graphical displays (such as SI Fig. 
11a) and for basic interpretation a model with 
uncorrelated random effects is ideal. But if the purpose 
is to compare models then centering is far less 
important because the model diagnostics for centered 
and uncentered models are the same (Section IIIB). 
Still centering can play a role even here because, as 
noted in the introduction to Section III, the algorithms 
used to estimate mixed models can fail to converge 
when correlations between the different random effects 
are high. We’ve chosen log 15 as a centering constant 
because it facilitates convergence in all the models we 
fit, it reduces the correlation enough so that the 
different random effects are not totally confounded 
(Section IIIC), and it allows us to interpret model 
parameters with reference to a meaningful temperature 
value (Section IIIA). 

As a result we modify the level-1 model of 
Eq. 29 to the following. 
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 Table 14.   Fit statistics for the four models of SI Table 10  
 

Model Model description No. of parameters Loglikelihood AIC 
A No random effects 3 –263.51 533.02 
B Random intercepts 4 –103.72 215.45 
C Random slopes 4 –241.53 491.06 
D Random slopes and intercepts 6 –84.32 180.63 
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Fig. 13. Plot of level-1 residuals versus temperature on a log scale and an arithmetic scale for Model D 
in SI Table 10. The superimposed lowess curve reveals a quadratic pattern to the scatter in both plots. 
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Comparing Model E to Model D we find that 
including a quadratic term yields a significant 
improvement (SI Table 15). In addition, the 
residual plot no longer shows any systematic 
trend (SI Fig. 14). 

How should this latest modification of the 
level-1 model be interpreted? Although an 
allometric power law  can be a useful 
starting point in some instances, it is often found 

in practice that a constant power law relationship 
is an inadequate description of relative growth for 
biological data. A growth process that satisfies an 
allometric relationship but only if one or more 
parameters are allowed to vary is said to exhibit 
complex allometry (30). Bervian et al. (31) 
review the various modeling strategies for dealing 
with complex allometry. One of the simplest 
approaches (32) is to assume that the allometric 
exponent can be expressed as  for some 
function f. It is this form of complex allometry 
that is assumed in Eq. 30 as we now demonstrate. 

baTy =

)(Tfb =

( )
( ) TT

Tc

loglog

log 2+

 

 Suppressing the centering constant  for 
simplicity, consider again Eq. 21 but this time 
extended to include a term quadratic in 
log(temperature) as in Eq. 30. 

cTlog
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TbaY

log

logloglog

++=

+=
 

 
Exponentiating both sides yields the following. 
 

 Table 15.  Testing for a quadratic term in the level-1 equation 
 

Model df AIC Loglikelihood Likelihood 
ratio p 

D 6 180.63 –84.32   
E 7 166.28 –76.14 16.35 <0.0001 
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Fig. 14. Plot of level-1 residuals versus temperature on a log scale and an arithmetic scale for Model E in 
which the level-1 model includes a quadratic term. The superimposed lowess curve fails to reveal any 
pattern to the scatter in either plot. 

 
 Table 16.  Testing for a quadratic term random effect 
 

Model df AIC Loglikelihood Likelihood 
ratio p 

E 7 166.28 –76.14   
F 10 163.87 –71.94 8.41 0.027 
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By adding a quadratic term in  to the log-
transformed allometric equation shown in Eq. 21, 
the constant b is replaced by the function 

 to yield what is now the 
complex allometric equation, Eq. 31. 

Tlog

( ) TcbTf log+=
 

Comparing Model E and Model F we obtain the 
results shown in SI Table 16.§§ Although the 
evidence isn’t strong, using either AIC or 
significance testing to compare models we should 
prefer a quadratic model in which all three level-1 
parameters are allowed to be random at level 2.  

Because the level-1 model has been modified 
to include a new regressor and its associated 
parameter, new modeling possibilities arise at 
level 2. In addition to permitting intercepts and/or 
linear terms to be random, a random quadratic 
term is also a possibility. We call this Model F. 

 
V.  Other Aspects of Model Fit  

  
Model F As with any regression model, residual 

analysis can be used to test model assumptions. 
One difference with multilevel models is that 
there is more than one kind of residual to 

 

Level 1: 
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( )2,0~ σε Nij  
§§ The legend of Table 18 explains how to determine 
the p-value that is reported here for a sequential 
likelihood ratio test comparing two nested models with 
different variance components. 
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Fig. 15. Examining the level-1 residuals for heteroscedasticity. (A) Scatter plot of residuals against model 
predicted values. (B) Variance of residuals within 12 quantile groupings of the predicted values. The horizontal 
line denotes  the residual variance calculated using all the data. 

Turning to the level-2 residuals, SI Figs. 
16B–16D display univariate normal probability 
plots for the three different sets of predicted 
random effects. Univariate normality doesn’t 
guarantee joint multivariate normality but it can 
be used to locate obvious problems. Based on the 
plots neither the predictions of , SI Fig. 16D, 
nor the predictions of , SI Fig. 16C, show any 
obvious problems, but the predictions of u , SI 
Fig. 16B, are highly deviant.  

iu2

iu1

i0

consider. The level-1 residuals estimate ijε  and 
are assumed to be independent, normally 
distributed random variates with constant 
variance. The level-2 residuals of model F are 
empirical Bayes predictions of u , , and  
and are assumed to have a joint multivariate 
normal distribution. Because the level-2 residuals 
are always confounded with the level-1 residuals 
(ref. 4, p. 132), a level-1 analysis is typically 
more useful as a diagnostic tool. 

i0 iu1 iu2

Model assumptions for the level-2 residuals 
are expected to hold only after all relevant 
explanatory variables and parameters have been 
included. Since at this point we have included no 
predictors in the level-2 equations it’s not 
surprising that problems are seen in the residual 
plots. These most likely indicate that systematic 
differences among the species exist that are not 
accounted for by our simple probability model of 
a common mean of zero for each random effect. 
The fact that the problems appear to be most 
severe with random effects for the intercept and 
not at all for the random effects for the linear and 
quadratic terms will prove to be important in 
Section VII where we examine the level-2 
residuals more closely in light of our thesis that a 
common planktonic larval duration time model 
with respect to temperature holds for all 
planktonic species.¶¶ 

We’ve already used the level-1 residuals to 
investigate the structural form of the level-1 
model (Section IV). Here we’ll examine the 
assumptions of homoscedasticity and normality. 
The plot in SI Fig. 15A of the residuals versus the 
predicted values for Model F reveals no obvious 
change in variability from left to right. SI Fig. 
15B explores this further. Here the residuals have 
been placed into twelve equal-sized groups whose 
boundaries are defined by quantiles of the 
predicted values,  

 

maxmin ,,,,,
12

11
6

1
12

1 qqqqq K .  
 

Within each group the variance of the 
corresponding residuals has been calculated. Once 
again there’s no obvious trend (linear and 
quadratic regressions are not significant, p > 
0.19). 

 SI Fig. 16A is a normal probability plot of 
the level-1 residuals along with a 95% confidence 
envelope. With 214 level-1 residuals we’d expect 
on average roughly 11 observations to fall outside 
of these bands. In the plot there is only one 
residual that plots on or outside the bands. 

                                                 
¶¶ A thorough development of a level-2 explanatory 
model for the level-1 parameters will be detailed 
elsewhere (O’Connor et al., in preparation). 
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Fig. 16. Univariate normal probability plots of (A) level-1 residuals and predictions of the level-2 residuals for 
(B) , (C) , and (D) u . iu0 iu1 i2

 
VI. The Influence and Fit of Level-2 Units on 

the Log(PLD) Quadratic Model   
A. The Influence of Level-2 Units    

 
 To describe the influence of the ith level-2 
unit Snijders & Bosker (4) propose using a 
weighted average of  and , defined as the 
influence of the i

F
iC R

iC

γ

th level-2 unit on the model’s 
fixed effects and random effects, respectively. 
Each is calculated similarly. Let  be the vector 
of fixed effects. This consists of 1,0 ββ , and 2β , 
from the PLD quadratic model, model F. Let ϕ  
be the vector of random effects parameters 
consisting of the level-2 variances , , and 

, the level-2 covariances of the random effects, 

2
0τ

2
1τ

2
2τ

01τ , 02τ , and 12τ , and the level-1 variance . 
We fit model F with and without the i

2σ
th level-2 

 
 In their chapter on “Assumptions of the 
Hierarchical Linear Model”, Snijders & Bosker 
(ref. 4, pp. 134–139), give a protocol for 
identifying those level-2 units that are poorly 
described by a fitted model. They recommend 
looking at two criteria, influence and fit, and 
argue that worrisome level-2 units are those that 
simultaneously have a large effect on model 
estimates (big influence) and are poorly described 
by the model (bad fit). In this section we 
summarize their approach and apply it to our 
model (Model F). We use their notation in what 
follows.  
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unit and calculate the differences in the estimates 
of the fixed and random effects that result. If 

 and  are the vectors of estimates 
obtained without the i

)(ˆ i−γ )(ˆ i−ϕ

)(ˆ i−− γ

th level-2 unit, we then 
compute  and γ̂ )(ˆˆ i−− ϕϕ . If the ith level-2 
unit is not influential on model fit, then the 
observed deviations in these vectors should look 
like random noise.  

FΣ̂

( ) 1
) ˆˆ

F
T

i
−Σ γˆ1

1
r+ γ

( ))(
ˆˆ T

i− Σ− ϕ

R
iC

F
iCr + )1(

r +
=

Let  and  be the estimated variance-
covariance matrices for the fixed and random 
effects estimates obtained using all the data 
(without omitting any level-2 units). We could 
extract the diagonal elements from these matrices 
and use them to standardize the observed 
deviations by dividing them by the square root of 
their respective variances thus forming z-scores. 
Large z-scores would indicate deviations that are 
unusual for random noise. To get a single 
influence score for a level-2 unit we could then 
square the individual z-scores of each parameter 
(to prevent cancellation due to sign differences) 
and add them up. But because the estimates are 
correlated merely dividing by the square root of 
the variance is not enough. We need to use the 
entire variance-covariance matrix in the 
standardization process constructing what’s called 
a quadratic form. The relevant quadratic forms 
here are 

RΣ̂

( )(ˆ i−− γ )(ˆ −− γ  for the 

fixed effects and (1 ˆR
− −ϕ ))(ˆ i−ϕˆ1

q ϕ  for 

the random effects. Here r is the number of 
predictors in the model and q is the number of 
estimated variance components and correlations.  

These expressions are what Snijders & 
Bosker (4) call  and  respectively. In 
order to have a single summary statistic, Snijders 
& Bosker (4) recommend averaging these two 
quantities yielding what they call C . 

F
iC

i
 

( )R
ii qC

q
C +

+1
1  

 
They don’t recommend formally testing  but 
instead suggest examining the empirical 
distribution of C  for all the level-2 units and 
flagging those units that have unusually large 
values. 

iC

i

 
B. The Fit of Level-2 Units   

 
To assess fit, Snijders & Bosker (4) 

recommend using the level-1 residuals, , 

of each level-2 unit. Here  is the estimate of 
 obtained using only the estimated fixed 

effects. Let  be the vector of observed values 
for the i

ijij yy ˆ−

ijŷ

iy

ijy

iy
th level-2 unit and let  be its vector of 

estimated values. Let  be the estimated 
variance-covariance matrix for the observations 
coming from the i

iŷ

Σ̂

th level-2 unit. (Note: This 
matrix is denoted  in the Appendix of this 
document where it is used in a different context. 
A sample estimate Σ  can be obtained by using 
the theoretical formula given there and replacing 
the theoretical quantities by their corresponding 
sample estimates.) 
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( yi i
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2
iS

 as a scaled measure 

of deviation.  is called a standardized 
multivariate residual and has a chi-square 
distribution with  degrees of freedom, the 
number of observations made on the ith level-2 
unit, and can be used in a lack-of-fit test. A small 
p-value for this test is taken as evidence of lack-
of-fit. Because the test is repeated for each level-2 
unit thus inflating the nominal Type I error, 
Snijders & Bosker (4) recommend carrying out 
the tests using an adjusted α-level based on the 
Bonferroni correction. 
 
C. Combining Level-2 Unit Influence and Fit   

 
We calculate these diagnostics for the PLD 

data set. The model being used is Model F: 
 

Level 1:
 

)
( ) ij

ijij T
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2
c

c0

Tlog
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 A plot of  versus the p-value of the 
standardized multivariate residual for each level-2 
unit is shown in SI Fig. 17. The two displayed 

C
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Fig. 17. The influence and fit of level-2 units. A diagnostic plot for level-2 units using the 
methodology described in ref. 4. The p-value displayed on the x-axis corresponds to a goodness 
of fit test. Level-2 units with large influence diagnostics and significant p-values should be viewed 
as problematic. Only one species, Circeus spirillum, satisfies both of these criteria. 

Circeus spirillum

Callianassa tyrrhena

Limulus polyphemus 
Sprattus sprattus

 
vertical lines indicate the usual significance level 
α = .05 (blue and dashed) and the Bonferroni-
adjusted α-level for 72 tests, 00069.72

05. ==α

iC

, 
(red and dotted) corresponding to the 72 different 
level-2 units. 

 
IQ325. ×−q

75.q

The marginal rug plot on the y-axis shows 
that there are four species whose  influence 
scores might be unusual. They are identified by 
name on the plot. All four of these would be 
deemed extreme outliers (in that they would be 
located beyond the outer fence in a box plot).║║ 
Based on the p-values displayed on the x-axis, 
only one of these four also exhibits a significant 
lack of fit (when tested at α = .05 and also at the 
Bonferroni-adjusted α-level). Snijders & Bosker 
(4) require a level-2 unit to be both influential and 
exhibit a significant lack of fit in order to be 
considered worrisome. Following them we would 

conclude that there is only one level-2 unit to 
worry about, Circeus spirillum. 
 SI Table 17 lists the fixed and random effects 
parameter estimates obtained for the four species 
that yielded the largest values of . Also listed 

are , , and the p-value for the 
multivariate residual lack-of-fit test. The last 
column of the table contains the corresponding 
parameter estimates for the full model, a model in 
which all species are included. 

iC
F
iC R

iC

From the table we see that what distinguishes 
Circeus spirillum from the rest is that it has a 
large impact on the estimate of 2β . When this 
species is included 2β  decreases roughly 12% 
(from –0.238 to –0.270). No other species has a 
comparable effect on any of the fixed effects. 
(This is also apparent from the reported value of 

 which is larger for Circeus spirillum than 
for any other species although Sprattus sprattus 
comes close.) All four of the species do have 
large effects on one or more of the variance 
components, but these effects are harder to 
interpret. It’s worth noting that Limulus 
polyphemus has a very large effect on the estimate 

F
iC

                                                
║║ The outer fences in a box plot occur at  

and  where  and  are the first and 
third quartiles and IQ is the interquartile range, 

. 

IQ375. ×+q

25.q−

25.q

75.q
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Table 17. Model results for species that are extreme outliers in the C  distribution i
 

 

Omitted species  
Parameter Circeus 

spirillum 
Callianassa 

tyrrhena 
Limulus 

polyphemus 
Sprattus 
sprattus 

All species 
in model 

0β̂  3.230 3.208 3.160 3.253 3.203 

1β̂  –1.401 –1.374 –1.393 –1.428 –1.404 

2β̂  –0.238 –0.259 –0.257 –0.257 –0.270 
2
0τ̂  0.838 0.846 0.774 0.698 0.843 
2
1̂τ  0.199 0.127 0.106 0.168 0.154 
2
2τ̂  0.034 0.026 0.017 0.036 0.034 

01τ̂  –0.196 –0.180 –0.070 –0.148 –0.156 

02τ̂  –0.090 –0.077 0.014 0.005 –0.053 

12τ̂  0.082 0.056 0.039 0.069 0.071 
2σ̂  0.013 0.019 0.018 0.017 0.021 
F
iC  0.217 0.066 0.054 0.187 — 
R
iC  0.746 0.172 0.398 0.542 — 

iC  0.553 0.134 0.273 0.413 — 
p 0.0001 0.803 0.671 0.406 — 
n 3 4 3 2  

 

 of , the variance of the quadratic random 
effects, causing a roughly 50% increase in the 
estimate when it is included. This fact will loom 
large in Section VII where we evaluate the 
evidence for a common temperature model of 
planktonic larval duration. 

2
2τ VII.  Caterpillar Plots and the Search for a 

Common Temperature Model   
 

An extremely useful graphical tool for 
exploring the relationships between level-2 units 
(species in our model) is the caterpillar plot, a 
terminology used in the multilevel modeling 
package MLWin (ref. 33, p. 39). The theory for 
these plots was developed by Goldstein and co-
workers (1, 34–35). A caterpillar plot displays 
95% confidence intervals for the predicted level-2 
residuals for a given parameter plotted against the  
rank order of the point predictions. Typically the 
95% confidence intervals are adjusted for 
multiple testing so that pairwise tests can be 
carried out and deemed significant at the 5% 
level. Formulas for calculating the standard errors 
are described in refs. 1 and 36. Specific details of 
these calculations for our data are presented in the 
Appendix of this document. 

 SI Fig. 18 displays the individual regression 
“lines” computed using model F (a quadratic 
level-1 model with random effects for each 
coefficient) in which the influential species 
shown in SI Fig. 17 and listed in SI Table 17 are 
identified. Individual trajectories are obtained 
from the composite equation that combines the 
estimated fixed effects and predicted random 
effects for individual species (the so-called 
empirical Bayes estimates). The population 
model, one that contains only the fixed effects 
portion of the multilevel model, is shown for 
comparison. 

In the plot both Limulus polyphemus and 
Circeus spirillum look deviant, while Callianassa 
tyrrhena does not look particularly unusual. 
Sprattus sprattus looks as if it fits worse than 
Circeus spirillum until one realizes that its curve 
is based on only two observations. Sample sizes 
for the four most influential species are given in 
the last row of SI Table 17. 

SI Figs. 19A–19C display caterpillar plots for 
the three predicted level-2 residuals for a 
quadratic level-1 model with random effects for 
each coefficient, model F. Each plot displays one 
of , , or  in rank order from smallest to 
largest, along with error bars representing 95% 
confidence intervals for each random effect not 

iu2ˆ iu1ˆ iu0ˆ

18 of 26  O’Connor et al. 



Supporting Text 2—Statistical Methods 

Temperature  (°C)

P
la

nk
to

ni
c 

La
rv

al
 D

ur
at

io
n 

(D
ay

s)

0 5 10 15 20 25 30

0
50

10
0

15
0

Callianassa tyrrhena

Limulus polyphemus 

Sprattus sprattus

Influential & lack of fit
Influential but no lack of fit
Population model

 
Fig. 18. Locations of influential species (as determined by C ) among all estimated 

trajectories. The individual species trajectories are computed from the estimated 
fixed effects and predicted random effects obtained using Model F.  

i

Circeus spirillum

adjusted for multiple testing. Note: The striking 
similarity of SI Figs. 19A and 19B is due to the 
high correlation that exists between these two sets 
of random effects. 

What’s apparent from these plots is that 
while many of the confidence intervals for  
fail to overlap zero, SI Fig. 19C, nearly all of the 
confidence intervals for u  and u  do, SI Figs. 
19A–19B. In fact the caterpillar plots suggest that 
there may only be a few species driving the need 
for random effects for the linear and quadratic 
terms. To test this we sequentially drop the most 
deviant species, as reflected in the caterpillar plots 
of SI Figs. 19A–19B, each time comparing the 
following three models that share the same level-
1 model but differ in their level-2 models. 

iu0

i1 i2

 
Model 1: Random intercepts only 
Model 2: Random intercepts and linear 

coefficients 
Model 3: Random intercepts, linear 

coefficients, and quadratic 
coefficients 

 
Likelihood ratio tests require nested models so we 
compare model 3 against model 2 and model 2 
against model 1. The results of these tests are 
summarized in SI Table 18 where we report p-
values for both the maximum likelihood (ML) 
and restricted maximum likelihood (REML) 
estimates of the test statistic. 

Observe that by dropping a single species, 
Limulus polyphemus, the likelihood ratio test for 

the inclusion of a quadratic random effect is no 
longer significant at α = .05. Based on 
significance testing alone we should favor a 
random intercept and random linear coefficients 
model (model 2) over either of the other two. AIC 
agrees with this ranking. Recall from Section VI 
that Limulus polyphemus was flagged as an 
influential level-2 unit. If the second and third 
most deviant species in the caterpillar plots, 
Laqueus californianus and Callianassa tyrrhena, 
are also dropped, then neither likelihood ratio test 
is significant, causing us to prefer the random 
intercepts model, model 1. Using AIC leads to a 
similar conclusion (the random intercepts model, 
model 1, and the random intercepts and linear 
coefficients model, model 2, are essentially tied). 
Dropping additional deviant species continues to 
yield results that support model 1. 
 Thus using 69 of the 72 species we conclude 
that a temperature model with constant linear and 
quadratic terms, but random intercepts, 
adequately describes the relationship between 
PLD and temperature. This supports the 
hypothesis that the PLD-temperature relationship 
is uniform across most species. Further analysis 
reveals that additional simplification is not 
possible. Random intercepts must be retained in 
the model. Continuing with the protocol of SI 
Table 18 we would need to remove 82% of the 
most deviant species shown in SI Fig. 19C before 
a constant intercept model would be preferred 
over a random intercepts model (details not 
shown).  
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 Fig. 19. Caterpillar plots for the three sets of random effects, (A) u2i, (B) u1i, and (C) u0i 
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Table 18.  Model results after dropping the most aberrant species shown in caterpillar plots (SI Figs. 19A and 19B).  
 

Omitted species Model AIC 
Log-

likelihood 
LR test  

p  
AIC-
best  

  

Random effects 
included in model 

 (ML) (ML) (REML) model 
None 3 iu0 , , &  iu1 iu2 163.87 –71.93 – –  
 2 iu0  & u  i1 166.28 –76.14 0.027 0.035  
 1 iu0  172.21 –81.10 0.004 0.003  

3 iu0 , , &  iu1 iu2 150.00 –65.00 – –  
2 iu0  & u  i1 148.29 –67.15 0.174 0.214  

Limulus polyphemus 

1 iu0  153.03 –71.51 0.008 0.005  
3 iu0 , , &  iu1 iu2 143.76 –61.88 – –  
2 iu0  & u  i1 142.95 –64.47 0.117 0.189  

L.  polyphemus & 
Laqueus 
californianus 

1 iu0  143.75 –66.88 0.059 0.037  
3 iu0 , , &  iu1 iu2 136.22 –58.11 – –  
2 iu0  & u  i1 132.00 –59.00 0.515 0.554  

L. polyphemus,  L. 
californianus, & 
Callianassa 
tyrrhena 1 iu0  132.00 –61.00 0.090 0.067  

 

The  in the last column identifies the model(s) with the lowest AIC value in each block of three. The 
sequential LR test being used compares the current model with the model in the row immediately above it and 
hence tests the need for the omitted random effect. Because the null hypothesis is that one of the random effects 
has zero variance, zero being a value that lies on the boundary of the parameter space, the usual regularity 
conditions required in classical likelihood theory do not hold. As a result when standard likelihood ratio tests are 
used here the p-values that are obtained tend to be overestimated. The asymptotic distribution of the likelihood 
ratio statistic (LR) for a comparison of models differing in a single random effect is better represented as a 
mixture of chi-squared distributions with p-value given by ( ) ( )LRLR >> ++ 2

1
2

2
1

2
1

kk PP χχ , where k is the number 
of random effects in the “smaller” model. Simulations suggest that rejection proportions based on the REML 
likelihood ratio test statistic come closer to achieving the prescribed nominal significance level than those based 
on the ML test statistic. We follow the guidelines in ref. 10, pp. 70–71, and ref. 37 for carrying out these tests. 
The original derivation of this test can be found in refs. 38–40. A dissenting viewpoint on the reliability of this test 
is ref. 41.  

  

VIII.  Visualizing the Final Model   
 

Model G:   
 SI Table 19 displays the estimates for a 
level-1 quadratic model in which only the 
intercepts are allowed to be random (model 1 of 
Section VII). The composite version of this 
model, designated Model G, is also shown.  

( ) ( )
( ) ijij

ijiij

T

TuPLD

εβ

ββ

+−

+−++=

2
c2

c100

Tloglog

Tlogloglog
 

 

 

( )2
0 ,0~ τNu i , ( )2,0~ σε Nij   SI Fig. 20 shows the model predictions for 

individual species superimposed on the raw data. 
The common population-averaged trajectory that 
is displayed in each panel is calculated using 
only fixed effects. The model-based empirical 
Bayes trajectories combine the fixed effects with 
the predicted random effects (empirical Bayes 
estimates), here just  for the intercept, and 
thus vary from panel to panel. 

iu0ˆ

 
Table  19. Parameter estimates for a quadratic 

level-1 model with random intercepts 
 

Parameter Estimate Standard error 
0β   3.167 0.107 

1β  –1.344 0.046 

2β  –0.276 0.041 
2σ  0.0230 – 
2τ  0.7530 – 
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Fig. 20. (Part 1) The fitted model for individual species Amphiprion melanopus—Lysmata seticaudata. 
Population-averaged (fixed effects only) and empirical Bayes (fixed and random effects) fitted curves are 
shown (using the random intercepts model, Model G, p. 21, of this Supporting Text) as well as the raw data 
values. 
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Fig. 20. (Part 2) The fitted model for individual species Lytechinus variegatus—Upeneus tragula. 
Population-averaged (fixed effects only) and empirical Bayes (fixed and random effects) fitted curves are 
shown (using the random intercepts model, Model G, p. 21, of this Supporting Text) as well as the raw data 
values. 
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Appendix. The Variance of the Level-2 
Residuals   
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 This section provides additional details of 
the variance calculations that were used in 
constructing the caterpillar plots discussed in 
Section VII. Consider again the random 
intercepts, random linear coefficients, and 
random quadratic coefficients model, model F, 
that was used in constructing the caterpillar 
plots. This model is shown in multilevel form on 
p. 13 of this Supporting Text and is shown in 
composite form in Eq. 32 below. 

 
Let Z denote the design matrix for the 

random effects part of the model. Z contains the 
predictors that multiply the random effects , 

, and  in Eq. 32. For model F it contains 
the same elements as X, just organized 
differently. Here is a portion of Z for the first 
three level-2 units (the first three species in 
alphabetical order). 
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The distribution of the  and the joint 

distribution of , , and u  are as described 
previously. Here i = 1 to 72, the number of 
species considered in our analysis and, for 
species i, j = 1 to , where the number of 
observations m  varies from species to species. 
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The 72 species yield a system of 214 
equations that together comprise a composite 
model that can be written as a single matrix 
equation. The predictors for the fixed effects 
form what is called the design matrix for the 
model. To simplify notation, let 

. Formally i indicates the 
level-2 unit (species) and j the observation on 
that level-2 unit. For these data and the given 
model the design matrix X is the following 214 × 
3 matrix.  

cTloglog −= ijij Tx

From the matrix we see that the first species has 
two temperature observations, the second also 
has two, and the third species has five. Using Z 
the random effects portion of the composite 
model can be written as the following matrix 
product. 
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 Using the design matrix X the fixed effect 
portion of the composite model can be written as 
the following matrix product. 

 We can simplify things further by writing Z 
as the following 214 × 216 block diagonal 
matrix.  
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Here, for example,  Finally form the 216 × 216 block-diagonal 

matrix S in which the blocks are identical each 
consisting of the matrix Ω.  
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and in general Z  is the  design matrix 
for the random effects of level-2 unit h (where 

 is the number of level-1 observations of 
level-2 unit h). 

h 3×hm

hm
 

 Let  Having established the notation we can 
finally get to the formula of interest. The 
comparative (also called the conditional) 
variance of the level-2 residuals is given by the 
following formula (ref. 1, p. 42; ref. 33, p. 15). 
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the variance-covariance matrix of the random 
effects. If  is the response vector for level-2 
unit h and  is its variance-covariance matrix, 
then the variances and covariances of the 
elements of the response vector  can be 
written succinctly as the following matrix 
expression. 
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Here  is the m  identity matrix and 

, a scalar. Arrange the vectors Y  
in level-2 unit order in the single response vector 
Y. Since observations from different level-2 
units are independent, we can write 

hmI

Var

hh m×

( ijεσ 2 = ) h

( )YVar  as 
the following block-diagonal matrix V. 
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 Next form the matrix product R ΩZhh =  
and arrange the 72 3×hm  matrices that result as 
the 214 × 216 block diagonal matrix R. 
 


