Table 5: AIC comparison of three models of temperature dependence of PLD for 72 species. Model $\Delta I \cap$ Log-likelihood Λ m.

MOUEI	AIC	Log-like iii lood	Δ_{i}	ω_{i}
Linearized power law (Eq. 1): random intercepts and slopes				_
	180.63	-84.32	16.77	0.000
Linearized power law with quadratic in temperature (Eq. 2): random intercepts, 'slopes', and quadratic term				
	163.86	-71.93	0	1.000
Universal temperature dependence (Eq.				

3): random intercepts and "slopes" 182.13 -85.06 18.27 0.000 Δ_i = difference in AIC of the current model from that of the lowest AIC value of among all

Akaike weights (ω_i) can be interpreted as the probability under repeated sampling that a model is the best model among the set of models under consideration (9). Equation

numbers refer to *Methods*.

tested models, ω_I = Akaike weight, a normalized relative likelihood for each model.