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Supporting Text 

 

A More Realistic Model of Circadian Rhythms in Drosophila 
 

Currently about a dozen proteins have been identified as key players in generating 

circadian rhythms in Drosophila melanogaster.  Experts believe that two interlocked 

feedback loops create a robust biochemical oscillator with a period close to 24 h.  One loop 

involves negative feedback, whereby PERIOD (PER) and TIMELESS (TIM) proteins (1-7) 

enter the nucleus, interact with transcription factors, dCLOCK (dCLK) and CYCLE (CYC) 

(8), and inhibit their own transcription (9).  PER and TIM proteins are synthesized in the 

cytoplasm, where they are phosphorylated by DOUBLETIME (DBT) and SHAGGY (SGG), 

respectively (10-13).  Phosphorylated PER monomers are rapidly degraded, but PER in 

complex with TIM is more stable.  PER also forms homodimers in low abundance, and 

homodimers may also be stable (14).  PER and TIM enter the nucleus with independent 

transport rate (15), but TIM facilitates the nuclear transport of PER (16). PER enters the 

nucleus in multimeric complexes with TIM and DBT.  Once in the nucleus, TIM appears to 

dissociate from the complex, and then DBT participates in intranuclear turnover of PER. In 

the nucleus, PER interacts with dCLK and CYC via PAS domains on all three proteins, and 

inhibits the function of dCLK and CYC to promote transcription of per and tim genes.  Light 

interacts with this mechanism by down regulating a photoreceptor protein, 

CRYPTOCHROME (CRY), whose role is to bind to and stabilize TIM (17-19).  Light-

induced degradation of TIM creates either phase delays or advances, depending on the time 

of the light pulse. 

A second feedback loop also involves dCLK and CYC, which activate transcription of 

PAR domain protein 1 (PDP1) and VRILLE (VRI) as well as PER and TIM.  dCLK and 

CYC are positively regulated by PDP1 (20) and negatively regulated by VRI (20, 21).  The 

interlocked feedback loops, through PDP1, VRI and PER, introduce complicated dynamical 

behaviors in this biochemical control system.   

Based on these facts, we propose a new model of the CR mechanism that retains the 

autocatalytic accumulation of PER which is a defining feature of the simple model (Box 1, 

main text). The new, more realistic model, with 12 variables and 31 parameters, is related to 

recent studies by Leloup and Goldbeter (22, 23), and Forger and Peskin (24). Several 

assumptions of the model are noteworthy. First of all, we assume that it is a tetrameric form 
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of PER/TIM complex that enters the nucleus. This assumption preserves the property of 

autocatalytic accumulation of PER. (Alternative assumptions, which preserve the 

autocatalytic accumulation of PER, are possible, e.g. PER homodimers interact with TIM to 

produce PER/TIM heterodimers plus PER monomer.) Second, we assume that dCLK-

regulated transcription is inhibited by nuclear PER only, because it has been shown that PER 

without a cytoplasmic localization domain (CLD) performs its function in the absence of 

TIM.  At present, we do not include the dynamics of VRI and PDP1, but dCLK’s self-

inhibition via VRI is included.  Also, the effect of light can be simulated by the degradation 

of TIM, thereby excluding another variable, CRY. A schematic diagram of the more 

complete model is represented in Fig. 5, and a set of rate constants is proposed in Table 2. 

Bifurcation analysis of the larger model reveals many qualitative similarities to the 

simple model. For example, Fig. 1A of the main text and Fig. 6 show that both models 

exhibit a region of bistability with a SNIC bifurcation to large-amplitude, long-period, stable 

limit cycle oscillations. This behavior seems to be a common property of regulatory systems 

with both positive and negative feedbacks. As for the simple model in the text, the expanded 

model presented here, with a resetting mechanism for kin, exhibits cycles (dash-dot line in Fig. 

6) with a period, T = μ-1 ln σ = 24 h, that is largely independent of the kinetic constants of the 

reaction network. A detailed analysis of the expanded model is left for future work. 

  

Kinetic Equations of Expanded Model 
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b) PER monomer, homodimer, and nuclear PER 



 3

1 1 2 2 2 2 11
3 1 3 2 3 2 1

22 2 2
1 2 3 2 2

2 2 22
1 2 3 2 2 1

2 2
2 2

2
2 2 2

2
2 2

p p p
p m p p p

p to t p to t p to t

p
app dpp p ou t N

p to t

p
app dpp p ap t dp t

p to t

k P k P k P TdP v P k P k P k P T
dt J P J P J P

k P T
k P k P k P T k P

J P

k PdP k P k P k P k P T k P
d t J P

⋅ ⋅ ⋅
= ⋅ − ⋅ − + ⋅ + ⋅ + +

+ + +

⋅
+ − ⋅ + ⋅ + ⋅ + ⋅

+

⋅
= ⋅ − ⋅ − ⋅ − − ⋅ ⋅ + ⋅

+ 2 1 3 2 1

1
2 2 32

t

p NN
in out N aitf N d itf inac dc inac p N

p to t

T k P T

k PdP k P T k P k F P k F k F k P
d t J P

+ ⋅

⋅
= ⋅ − ⋅ − ⋅ ⋅ + ⋅ + ⋅ − ⋅ −

+

 

c) TIM monomer 
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d) dCLK monomer 
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e) Complex: PER/TIM trimer, PER/TIM tetramer, transcription factor (dCLK and CYC), 

and inactive transcription factor (dCLK, CYC, and nuclear PER) 

2 2 12 1
2 1 2 1 3 2 1 3 2 1 2 1 1 2 2 3 2 2

2 2 22 2
2 1 1 2 2 3 2 2 3 2 2 2 2

2
2 2 2 2

2
2 2 2

p
apt dpt t p apt dpt t

p tot

p
apt dpt t p in

p tot

acc dcc ai

k PTdPT k P T k PT k PT k PT k PT T k PT k PT
dt J P

k PTdPT k PT T k PT k PT k PT k PT
dt J P

dF k C Y k F k
dt

⋅
= ⋅ ⋅ − ⋅ − ⋅ − ⋅ − − ⋅ ⋅ + ⋅ + ⋅

+

⋅
= ⋅ ⋅ − ⋅ − ⋅ − ⋅ − − ⋅

+

= ⋅ ⋅ − ⋅ − 2
3

2
3

p inac
tf N ditf inac dc p inac

p tot

p inacinac
aitf N ditf inac p inac dc inac

p tot

k F
F P k F k F k F

J P

k FdF k F P k F k F k F
dt J P

⋅
⋅ ⋅ + ⋅ − + ⋅ +

+

⋅
= ⋅ ⋅ − ⋅ − ⋅ − ⋅ −

+

 

f) Total Concentrations 
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Robustness Analysis 
 

For a fair comparison of the robustness of CR period of the three models RS, LG and 

TH described in the main text, we first need to equip LG and TH with compensation relations 

analogous to 24e μσ − ⋅=  (a constraint on the RS model). To this end, we first rank for each 

model the sensitivity coefficients, log
log i

T
p

∂
∂

, in order to identify the parameters that most 

influence the period (see Fig. 7). It is worthwhile to note from Fig. 7 that, while RS 

concentrates virtually all of the sensitivity into just two parameters (by design), both LG and 

TH have a more even distribution. The fact that LG has a more even distribution than TH is 

significant in the following results (as it will fair worse in both tests conducted). From these 

rankings, we choose as compensatory parameters: mv  and sk  for LG and pJ  and mk  for TH. 

We then ‘continue’ the limit cycle period in the two chosen parameters, generating a 

locus of ( , )i jp p  pairs that maintain constant 24 hT = ≅ . From this parametric curve, we 

derive a compensation relationship for ip  as a function of jp . For LG, we find that 

0.160.43 ( 0.3)m sv k −= ⋅ −  gives constant period close to 24 h, and for TH, 3.253.2 10p mJ k −−= × ⋅ . 

These functions fix the period in two parameters to within half-a-percent (data not shown), so 

we may confidently begin our analysis with the three models on equal footing. 

Now, Test A aims to assess how the period of a model co-varies (measured by the 

coefficient of variation of the distribution of resulting periods, CV) in response to varying 

strengths, pσ , of vector perturbations applied to the basal parameter set, simulating variations 

among individuals within a population. An abbreviated version of the algorithm is 

 
// initialize 
b = < bj >, the basal parameter vector of length n 
 
// loop through a number of perturbation strengths, σ 
for each σ = 0.01, 0.02, …, 0.4 
 
 // collect 10000 randomly perturbed individuals and their periods 

for i = 1 to 10000 
 

1) draw n random numbers from N(1, σ) to get r = < rj > 
2) set the individual’s parameters, p = < rj * bj > 
3) apply the compensation relationship 
4) compute period and save 

end 
 
// calculate statistic; (CV, σ) is what we plot 
compute CV from the mean and variance of the collected periods 

 end 
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Because certain perturbations move us outside of the domain of oscillation, especially for 

higher perturbation strengths, we threw out many samples in order to get 104 valid period 

values. The number of samples thrown out indicates how likely the oscillation is to be 

preserved under given perturbation strength, providing another statistic of robustness 

(unrelated to temperature compensation). 

Test B is meant to simulate a sample of single genetic mutations and measure the 

ability of the affected individuals to temperature compensate. Recall that 
† /0 i

G R

i ik k e
θ−Δ

= , 

where 
† † †

i i iG H SθΔ = Δ − ⋅Δ is the free energy of activation of reaction i. The enthalpy of 

activation, usually called the ‘activation energy,’ †
,a i iE H= Δ , is always > 0, and the entropy 

of activation, †
iSΔ , is always < 0. We write the rate constant expression in dimensionless 

form: 
† † 298/i i

so
i ik k e e ε θ− ⋅= where

†† /
i is S R= Δ  and 

†† / 298
i iH Rε = Δ ⋅ . Since values for †

i
s  and 

†
i

ε  aren’t experimentally known, we suppose (not unreasonably) that † †
i i

s ε= − and choose †
i

ε  

values in the range [3, 20] in order to obtain good temperature compensation for each model 

(see Table 3). †
iHΔ and †

iSΔ  are dependent on the biophysical properties of the enzyme that 

catalyzes reaction i; hence, their values are genetically determined and subject to random 

variations by single gene mutations.  

Binding constants are treated similarly. According to the Gibbs equation, 
298/oo

i is
iK e e ε θ− ⋅= , where 

i

os  and 
i

oε are dimensionless standard entropies and enthalpies of the 

binding reaction. These values are also subject to modification by mutations that change the 

binding properties of specific proteins. 

With this in mind, we generate ‘mutant’ individuals by perturbing is  and iε for a 

particular choice of i. (Because the models have already been temperature compensated by 

our choices of iε ’s, we do not constrain the parameters any further by the compensation 

relations of Test A.) For each mutant individual, we calculate the maximum excursion of 

period, max minT T TΔ = − , over a 10-degree temperature range (293 < θ  < 303) as a measure of 

the mutant’s ability to temperature compensate*. The algorithm is: 

 

                                                 
* Although the variation of the period over the stated temperature range may not be strictly increasing or 
decreasing and may in fact be highly non-linear, this measure was considered adequate given a sampling of 
perturbations. A more accurate statistic would depend on the shape of the curve in addition to the maximum and 
minimum values. 
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// initialize 
a = < εi >, the basal vector of εi values, of length n 
b = < si >, the basal vector of si values, of length n 
 
// loop through a number of perturbation strengths, σ 
for each σ = 0.01, 0.02, …, 0.4 
 
 // for each parameter (that can be mutated) 
 for i = 1 to n 
  

// collect 10 random samples of individuals with pi-mutations 
// and their periods in the temperature range 293-303 K 
for j = 1 to 10 

 
1) draw r1 and r2 from N(1,σ) 
2) set the individual’s ε = a, s = b 
3) perturb εi = ai * r1, si = bi * r2 
4) compute periods, Tk, for θ = 293, 294, …, 303 K 
5) compute temp. comp. stat, ∆Ti,j = max{Tk} - min{Tk},  

end 
 

 
// calculate intermediate statistic 
compute ∆Ti = arithmetic mean of ∆Ti,j from pi-mutation stat 

  end 
 
  // calculate final statistic; (∆T, σ) is what we plot 

compute ∆T as the harmonic mean of ∆Ti 
 end 
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